TCSS 422 A — Winter 2018 1/9/2018
Institute of Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES
| |
= Feedback from 1/3
Three Easy Pieces, 3 & A = Chapter 2: Operating Systems - Three Easy Pieces
Processes, Process API 3 "y Easy piece #1: CPU Virtualization

.y Easy piece #2: Memory Virtualization
= Easy piece #3:1/0 Virtualization
WeS J Lloyd = Operating system design goals

Institute of Technology » Processes - Ch. 4

University of Washington - Tacoma = C Linux Process API - Ch. 5

= Limited Direct Execution - Ch. 6 (wed)
= Virtualizing the CPU

TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
e Institute of Technology, University of Washington - Tacoma LERRET IR S s 1 T, st G B e TP

VIRTUAL MACHINE SURVEY QUIZ O - C REVIEW

6.348

Descriptive Statistics
2.000

= Please complete the Virtual Machine Survey is wanting :::mevm 15170%5433045 5.000 100.00% max
7.000 87.50% mode

an Institute of Technology hosted Ubuntu 16.04 VM

Histogram of x

mhttps://goo.gl/forms/XAxxuZtut50707Ip1

20

1
L

Frequancy
10
L

2 2 4 s 6 7 e

New Window | Postscript

TCS5422: Operating Systems [Winter 2018] 03 [TCS5422: Operating Systems [Winter 2018] 24
Institute of Technology, University of Washington - Tacoma i kD Institute of Technology, University of Washington - Tacoma i

January 8, 2018

SELECTED FEEDBACK FROM 1/3 FEEDBACK - 2
= What causes threads to interrupt each other? " What is “memory” fragmentation?
=The OS interrupts threads when: Malloc Memory Fragmentation Over Time

Threads YIELD (e.g. give up) the CPU because they're

waiting on 1/0 (disk or network) initialy un-fragmented — |5 NN IR
They exceed their “time slice” of execution (e.g. 10ms) 0 e
...program repeatedly frees --l. --
and allocates memory... - --.“ -
| N N L
memory has fragmented —> . --._ w -

Lan g uage unused space that cannot be
released to the operating system

u|s kernel-mode code written in a unified language,
or does it vary from 0S-to-0S?
= In Linux, kernel code is written in C and Assembly

TCSS422: Operating Systems [Winter 2018]

TCS5422: Operating Systems [Winter 2018]
125 L [nstueor TechnolosyUniversitylofWashinstonSTacoma!

Institute of Technology, University of Washington - Tacoma

[E13 |

January 8, 2018

Slides by Wes J. Lloyd L2.1

TCSS 422 A — Winter 2018
Institute of Technology

FEEDBACK - 3

= Are the resources given to a program static?
=NO
= Can programs request more memory?

using the malloc() command

= What is a device driver?
= A software program written in C and/or assembly

device (e.g. Disk or Network Card) to the Computer

= Block vs. char drivers, see:
http://www.linuxjournal.com/article/2890

=YES, In C, dynamic memory is allocated on the “HEAP”

language that facilitates transferring data to/from a

TCS5422: Operating Systems [Winter 2018]

LR P e e T e G T e

FEEDBACK - 4

= Are we allowed to publicly post source code for assignments
later on in another term, or after graduation?

= Or should source code for programs be kept private
indefinitely?

= During the term it could be grounds for an honor code
violation if code pops up elsewhere

= FREE SPEECH - you're always “allowed” to post code

= However, it is discouraged...

January 8 2018 TCSS422: Operating Systems [Winter 2018] | s |

Institute of Technology, University of Washington - Tacoma

CH. 2: INTRODUCTION TO

OPERATING SYSTEMS

TCSS422: Operating Systems [Winter 2018]

IR 2 Institute of Technology, University of Washington - Tacoma

VIRTUALIZATION

= Operating systems present physical resources
as virtual representations to the programs sharing
them

Physical resources: CPU, memory, disk ...
=The virtual form is “abstract”

=The OS presents an illusion that each user program
runs in isolation on its own hardware

=This virtual form is general, powerful, and easy-to-use

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L2.10

January 8, 2018

ABSTRACTIONS

=CPU

Processes and threads
*Memory

Address space

- large array of bytes

All programs see the same “size” of RAM
*Disk

Files

= What form of abstraction does the OS provide?

TCS5422: Operating Systems [Winter 2018]

LR S Institute o Technoloay)Universitylof Washington®Tacomal

| [EXT

WHY ABSTRACTION?

= Allow applications to reuse common facilities
= Make different devices look the same
=Easier to write common code to use devices
Linux/Unix Block Devices
= Provide higher level abstractions
= More useful functionality

TCS5422: Operating Systems [Winter 2018]

L [nstueor TechnolosyUniversitylofWashinstonSTacoma!

[EXF)

Slides by Wes J. Lloyd

1/9/2018

L2.2

TCSS 422 A — Winter 2018 1/9/2018
Institute of Technology

H |
To perform parallel work, a single process may:
ABSTRACTION CHALLENGES

= What is the right “level” of abstraction?

=How much of the underlying hardware should be
exposed?

What if too much?
What if too llttle?

Launch Launch Both Aand B None of the
= What are the correct abstractions? multiple multiple above
-Security concerns threads to processes to
execute code execute code
in parallel in parallel

while sharing without sharing
globaldatain globaldatain
memory memory

TCS5422: Operating Systems [Winter 2018]
LR P e e T e G T e 1213

PERSISTENCE

PERSISTENCE - 2

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

1 #include <stdio.h>
2 #include <unistd.h>
a s . . 3 #include <assert.h>
tores data while power is present 1 finclude <fontl.hs
n A n 5 #include <sys/types.h>
= When power is lost, data is lost (volatile) ¢
° .
8 main(int arge, char *argv([])
9 {
= Operating System helps “persist” data more permanently 0 S e
= 1/0 device(s): hard disk drive (HDD), solid state drive (SSD) 3 e e, vhelte wortavan, 1
. . 13 (== 13);
= File system(s): “catalog” data for storage and retrieval 1 leseifars
15 0;

16 }

= open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
AL P Inttute of Technoloay)Universitylor Washington=Tacomal 1215 [See et Techolo syl niersity o Washinstoniecome! 216

OPERATING SYSTEM DESIGN GOALS

= To write to disk, OS must: = ABSTRACTING THE HARDWARE

= Determine where on disk data should reside = Makes programming code easier to write
= Automate sharing resources - save programmer burden
= Perform sys calls to perform 1/0:
Read/write to file system (inode record)

= PROVIDE HIGH PERFORMANCE
Read/write data to file

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Provide fault tolerance for system crashes * Share resources fairly

= Journaling: Record disk operations in a journal for replay : '::itg:?tgt (o Il PRfiEHERES v (EIHCES = Cerslier
= Copy-on-write: see ZFS
= Carefully order writes on disk = PROVIDE ISOLATION

= User programs can'’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Winter 2018]
LR S Institute o Technoloay)Universitylof Washington®Tacomal 1217

TCSS422: Operating Systems [Winter 2018]
L [nstueor TechnolosyUniversitylofWashinstonSTacoma!

1218

Slides by Wes J. Lloyd L2.3

TCSS 422 A — Winter 2018
Institute of Technology

SUMMARY:

= RELIABILITY
= 0S must not crash, 24/7 Up-time

Blue Screen

= Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

OPERATING SYSTEM DESIGN GOALS - 2

= Poor user programs must not bring down the system:

TCS5422: Operating Systems [Winter 2018]

LR P e e T e G T e

Process State

Gy somvs gy @)

or or
vt competon g~y evntvat

N

E /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

January 8, 2018

CPU VIRTUALIZING

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

efficiently?
= Goal is to minimize overhead of the swap

= How do we SWAP processes in and out of the CPU

TCS5422: Operating Systems [Spring 2017)

AL P Inttute of Technoloay)Universitylof Washington®Tacomal

| w21

PROCESS

running program

= Process comprises of:
= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

TCS5422: Operating Systems [Spring 2017)

L 5 [See ot Techolo syl niersityofWashinstonmiecome!

w2 |

PROCESS API

= Modern OSes provide a Process API for process support
= Create
= Create a new process
= Destroy
= Terminate a process (ctrl-c)
" Wait
= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

TCS5422: Operating Systems [Spring 2017)

LR S Institute o Technoloay)Universitylof Washington®Tacomal

| 223

Slides by Wes J. Lloyd

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loadIng: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

TCS5422: Operating Systems [Spring 2017)

L [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

24 |

1/9/2018

L2.4

TCSS 422 A — Winter 2018 1/9/2018
Institute of Technology

PROCESS API: CREATE cpu Memory

T code
| static data
3. Create program’s heap memory | heap
= For dynamically allocated data
Lsek
4. Other initialization Process

= |/0 Setup S
Each process has three open file descriptors: Loading:
Standard Input, Standard Output, Standard Error Reads 32,9'2,9,;1 from

‘ disk into the address

5. Start program running at the entry point: main () space of process

= OS transfers CPU control to the new process

TCS5422: Operating Systems [Spring 2017]

TCSS422: Operating Systems [Spring 2017]
LR P T e a0l 2 U nvers o Washins tonsTace el

LT G200 Institute of Technology, University of Washington - Tacoma 12.26

| 25

PROCESS STATES PROCESS STATE TRANSITIONS

" RUNNING - Ve
= Currently executing instructions / \\ Descheduled / \\
R i [e— \: Ready |
= READY \) seheaed /

= Process is ready to run, but has been preempted - _

/
= CPU is presently allocated for other tasks - -
1/0: initiate o 1/0: done
= BLOCKED h

s N
. N et /
= Process is not ready to run. It is waiting for another event { \
to complete: \ Blocked
Process has already been initialized and run for awhile \
o " . AN
Is now waiting on 1/0 from disk(s) or other devices ~
TCS$422: Operating Systems [Spring 2017] TCSS422: Operating Systems [Spring 2017]
AL P Inttute of Technoloay)Universitylof Washington®Tacomal | 1227 L 5 [See ot Techolo syl niersityofWashinstonmiecome! 1228

PROCESS DATA STRUCTURES XV6 KERNEL DATA STRUCTURES

= 0S provides data structures to track process information = xv6: pedagogical implementation of Linux
= Process list = Simplified structures
Process Data

State of process: Ready, Blocked, Running cue ‘Con'te‘x‘t {

= Register context ’“t Zig: 1 ister
in ; a ister
int ebx; 1 €
int ecx; 4 ed 1 C n e
= PCB (Process Control Block) int edx; 1led the data
int esi; ource index regi =T
= A C-structure that contains information about each int edi; Destination index register
int ebp; E k ba s n
process eop '

b
the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

January 8, 2018 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | 22

RO TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma L2.30

Slides by Wes J. Lloyd L2.5

TCSS 422 A — Winter 2018
Institute of Technology

XV6 KERNEL DATA STRUCTURES - 2

inc g
struct proc {
char *mem;

t sz;
*kstack;

*parent;

t *ofile[NOFILE];
inode *cwd;

context context;

trapframe *tf;

current interrupt

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | 231 ‘

January 8, 2018

LINUX: STRUCTURES

= struct task struct, equivalent to struct proc
= Provides process description
= Large: 10,000+ bytes
= /usr/src/linux-headers-{kernel version}/include/linux/sched.h
1227 - 1587

" struct thread info, provides “context”
= thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

January 8, 2018

[FX?)

LINUX: THREAD_INFO

struct thread_info {

#ifdef CONFIG_X86_32

#endif

}i

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */

_u32 flags; /* low level flags */

—u32 status; /* thread synchronous flags */
_u32 cpu; /* current CPU */

int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart block restart_block;
void __user *sysenter_return;
unsigned long previous_esp; /* ESP of the previous stack in
case of nested (IRQ) stacks
*
_u8 supervisor_stack[0] ;

int uaccess_err;

TCS5422: Operating Systems [Spring 2017)

AL P Inttute of Technoloay)Universitylof Washington®Tacomal

| 1233 ‘

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
http://www.makelinux.net/books/l1kd2/ch03leviseci

2nd edition is online (dated from 2005):
Linux Kernel Development, 2" edition
Robert Love

Sams Publishing

TCS5422: Operating Systems [Spring 2017)

L 5 [See ot Techolo syl niersityofWashinstonmiecome!

34

When a process is in this state, it is
advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED Allofthe None of
above theabove

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Winter 2018]

LTI G 2R Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/9/2018

L2.6

TCSS 422 A — Winter 2018
Institute of Technology

fork()

= Creates a new process - think of “a fork in the road”
= ‘Parent” process is the original

executlon polnt
= Book says “pretty odd”

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

= Creates “child” process of the program from the current

= Creates a duplicate program instance (these are processes!)

TCS5422: Operating Systems [Spring 2017]

LR P T e a0l 2 U nvers o Washins tonsTace el

| 1237 ‘

FORK EXAMPLE

= pl.c

finclude <stdio.h>
finclude <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
- nt rc = fork();
(rc < 0) { ;
fprintf (stderr, "fork failed\n");
exit(1);
} x 0t

printf("hello, I am child (pid:®d)\n", (int) getpid());
{ 2 (

printf("hello, I am parent of %d (pid:%d)\n",

re, (int) getpid());:

0;

TCS5422: Operating Systems [Spring 2017)

L S 1 T, Pt G e TP

1238 |

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl
hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>
or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCS5422: Operating Systems [Spring 2017]

AL P Inttute of Technoloay)Universitylof Washington®Tacomal

| 139 ‘

)

TCSS422: Operating Systems [Spring 2017]

(TR) 2 Institute of Technology, University of Washington - Tacoma

EX

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Spring 2017)

LR S Institute o Technoloay)Universitylof Washington®Tacomal

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int arge, char *argv(l){
rintf("hello world (pid:sd)\n", (int) getpid());
nt re = fork();

(xre < 0) { i led;
printf (stderr, "fork failed\n");
exit (1);

(x 0 |
printf("hello, I am child (pid:%d)\n", (int) getpid());

{
‘ int we = wait (NULL);
(pid:®d)\n",

printf("hello, I am parent of %d (wc:%d)
re, we, (int) getpid());

0;

TCS5422: Operating Systems [Spring 2017)

4
Institute of Technology, University of Washington - Tacoma 1242

January 8, 2018

Slides by Wes J. Lloyd

1/9/2018

L2.7

TCSS 422 A — Winter 2018
Institute of Technology

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> . /p2
hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Spring 2017)

LR P T e a0l 2 U nvers o Washins tonsTace el

| .43 ‘

FORK EXAMPLE

® Linux example

TCS5422: Operating Systems [Spring 2017)

L S 1 T, Pt G e TP

.44

exec()

® Supports running an external program
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)

to strings provided as arguments... (arg0, argi, .. argn)
= Execv(), execvp(), execvpe()

Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

TCS5422: Operating Systems [Spring 2017)

AL P Inttute of Technoloay)Universitylof Washington®Tacomal

| 1245 ‘

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services
= Legacy program thought of as a “black box”

= We don’t want to know what is inside... ©

Qutput

nout ———]

Internal behovior ofthe code is unkrown

TCS5422: Operating Systems [Spring 2017)

L 5 [See ot Techolo syl niersityofWashinstonmiecome!

1246

QUESTIONS

Slides by Wes J. Lloyd

1/9/2018

L2.8

