
TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.1Slides by Wes J. Lloyd

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces,
Processes, Process API

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Feedback from 1/3

 Chapter 2: Operating Systems – Three Easy Pieces
 √ Easy piece #1: CPU Virtualization

 √ Easy piece #2: Memory Virtualization

 Easy piece #3: I/O Virtualization

 Operating system design goals

 Processes – Ch. 4

 C Linux Process API – Ch. 5

 Limited Direct Execution – Ch. 6 (wed)
 Virtualizing the CPU

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.2

OBJECTIVES

 Please complete the Virtual Machine Survey is wanting
an Institute of Technology hosted Ubuntu 16.04 VM

https://goo.gl/forms/XAxxuZtut5o707Ip1

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.3

VIRTUAL MACHINE SURVEY

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.4

QUIZ 0 – C REVIEW

What causes threads to interrupt each other?

The OS interrupts threads when:
 Threads YIELD (e.g. give up) the CPU because they’re

waiting on I/O (disk or network)

 They exceed their “time slice” of execution (e.g. 10ms)

 Is kernel-mode code written in a unified language,
or does it vary from OS-to-OS?
 In Linux, kernel code is written in C and Assembly

Language

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.5

SELECTED FEEDBACK FROM 1/3

 What is “memory” fragmentation?

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.6

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.2Slides by Wes J. Lloyd

 Are the resources given to a program static?

 NO

 Can programs request more memory?

 YES, In C, dynamic memory is allocated on the “HEAP”
using the malloc() command

 What is a device driver?
 A software program written in C and/or assembly

language that facilitates transferring data to/from a
device (e.g. Disk or Network Card) to the Computer

 Block vs. char drivers, see:
http://www.linuxjournal.com/article/2890

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 3

 Are we allowed to publicly post source code for assignments
later on in another term, or after graduation?

 Or should source code for programs be kept private
indefinitely?

 During the term it could be grounds for an honor code
violation if code pops up elsewhere

 FREE SPEECH – you’re always “allowed” to post code

 However, it is discouraged…

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.8

FEEDBACK - 4

CH. 2: INTRODUCTION TO
OPERATING SYSTEMS

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L2.9

 Operating systems present physical resources
as vir tual representations to the programs sharing
them
 Physical resources: CPU, memory, disk …

 The virtual form is “abstract”

 The OS presents an illusion that each user program
runs in isolation on its own hardware

 This virtual form is general, powerful, and easy-to-use

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.10

VIRTUALIZATION

What form of abstraction does the OS provide?

CPU
 Processes and threads

Memory
 Address space

 large array of bytes

 All programs see the same “size” of RAM

Disk
 Files

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.11

ABSTRACTIONS

Allow applications to reuse common facilities

Make different devices look the same

Easier to write common code to use devices
 Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.12

WHY ABSTRACTION?

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.3Slides by Wes J. Lloyd

What is the right “level” of abstraction?

How much of the underlying hardware should be
exposed?
What if too much?

What if too little?

What are the correct abstractions?

Security concerns

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.13

ABSTRACTION CHALLENGES

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L2.14

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.15

PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.16

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write: see ZFS

 Carefully order writes on disk

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.17

PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.18

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.4Slides by Wes J. Lloyd

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L2.19

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L2.20

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 How do we SWAP processes in and out of the CPU
efficiently?

 Goal is to minimize overhead of the swap

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.21

CPU VIRTUALIZING

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.22

PROCESS

A process is a running program.

 Modern OSes provide a Process API for process support

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.23

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.24

PROCESS API: CREATE

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.5Slides by Wes J. Lloyd

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.25

PROCESS API: CREATE

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L2.26

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.27

PROCESS STATES

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.28

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.29

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.30

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.6Slides by Wes J. Lloyd

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.31

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.32

LINUX: STRUCTURES

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.33

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
http://www.makelinux.net/books/lkd2/ch03lev1sec1
2nd edition is online (dated from 2005):
Linux Kernel Development, 2nd edition
Robert Love
Sams Publishing

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.34

LINUX STRUCTURES - 2

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L2.35

CHAPTER 5:
C PROCESS API

January 8, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L2.36

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.7Slides by Wes J. Lloyd

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of
 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.37

fork()

 p1.c

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.38

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.39

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.40

:(){ :|: & };:

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.41

wait()

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.42

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

TCSS 422 A – Winter 2018
Institute of Technology

1/9/2018

L2.8Slides by Wes J. Lloyd

 Deterministic ordering of execution

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.43

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

 Linux example

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.44

FORK EXAMPLE

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments… (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.45

exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

January 8, 2018 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L2.46

EXEC() - 2

QUESTIONS

