
TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.1Slides by Wes J. Lloyd

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

I/O Devices

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 3 Questions

 Quiz 5 Posted

 Feedback from 3/5

 Ch. 36
 I/O Devices

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.2Slides by Wes J. Lloyd

 Could we go over one more example of a multi-level page
table?

 It would be helpful to explicitly define what the input
parameters are, what we can derive based on those, and
what an expected answer would be.

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.3

FEEDBACK FROM 3/5

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many of fset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.4

MULTI-LEVEL PAGE TABLE EXAMPLE

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.3Slides by Wes J. Lloyd

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.5

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.6

MULTI LEVEL PAGE TABLE EXAMPLE - 3

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.4Slides by Wes J. Lloyd

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if al l of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.7

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 3.125%

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.8

ANSWERS

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.5Slides by Wes J. Lloyd

 For grading questions related to the programming
assignments please first reach out to your grader,
and then follow-up with any issues, questions

Matthew Subido
Message on Canvas

 Ibrahim Diabate
message on Canvas

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.9

GRADING QUESTIONS

CHAPTER 36:
I/O DEVICES

March 7, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L16.10

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.6Slides by Wes J. Lloyd

 Chapter 36

 Polling vs Interrupts

 Programmed I/O (PIO)

 Direct memory Access (DMA)

 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.11

OBJECTIVES

 Modern computer systems interact with a variety of devices

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L16.12

I/O DEVICES

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.7Slides by Wes J. Lloyd

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.13

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.14

I/O BUSES

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.8Slides by Wes J. Lloyd

 Consider an arbitrary canonical device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.15

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.16

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.9Slides by Wes J. Lloyd

 Common example of device interaction

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.17

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.18

POLLING

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.10Slides by Wes J. Lloyd

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.19

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.20

INTERRUPTS VS POLLING - 2

If device I/O is fast polling is better.
If device I/O is slow interrupts are better.

What is the tradeoff space ?

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.11Slides by Wes J. Lloyd

 One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.21

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.22

DEVICE I/O

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.12Slides by Wes J. Lloyd

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.24

PROGRAMMED I/O (PIO)

PIO

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.13Slides by Wes J. Lloyd

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.25

PIO DEVICES

 Copy data in memory by of floading to a “DMA controller”

 Many devices (including CPUs) have DMA controllers

 Give DMA memory address, size, and copy instruction

 DMA performs I/O independent of the CPU

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.26

DIRECT MEMORY ACCESS (DMA)

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.14Slides by Wes J. Lloyd

 Two primary methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.27

DEVICE INTERACTION

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX device’s I/O port

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.28

PORT MAPPED I/O (PMIO)

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.15Slides by Wes J. Lloyd

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.29

MEMORY MAPPED I/O (MMIO)

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.30

DEVICE INTERACTION

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.16Slides by Wes J. Lloyd

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.31

FILE SYSTEM ABSTRACTION

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device drivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

March 7, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L16.32

FILE SYSTEM ABSTRACTION ISSUES

TCSS 422 A – Winter 2018
Institute of Technology

3/7/2018

L16.17Slides by Wes J. Lloyd

QUESTIONS

