
TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.1Slides by Wes J. Lloyd

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Smaller Tables,
Beyond Virtual Memory

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 3 Questions

 Ch. 20
 Smaller Tables

 Ch. 21/22
 Beyond Physical Memory: Mechanisms (Ch. 21)
 Virtual “Swap” Memory

 Beyond Physical Memory: Policies (Ch. 22)
 Page Replacement Algorithms

 Replacement algorithm effectiveness

 Ch. 36
 I/O Devices

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.2Slides by Wes J. Lloyd

 There was no feedback !!!

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.3

FEEDBACK FROM 2/28

CHAPTER 20:
PAGING:

SMALLER TABLES

March 5, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L15.4

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.3Slides by Wes J. Lloyd

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.5

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.6

MULTI-LEVEL PAGE TABLES - 2

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.4Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.7

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.8

MULTI-LEVEL PAGE TABLES - 3

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.5Slides by Wes J. Lloyd

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.9

32-BIT EXAMPLE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.10

MORE THAN TWO LEVELS

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.6Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.11

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.12

MORE THAN TWO LEVELS - 3

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.7Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.13

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.14

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.8Slides by Wes J. Lloyd

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.15

MORE THAN TWO LEVELS - 4

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.16

ADDRESS TRANSLATION - 1

(01) Extract the virtual page number (VPN)(02-03) Check if TLB holds VPN translation(05-07) Generate physical address from TLB

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.9Slides by Wes J. Lloyd

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.17

ADDRESS TRANSLATION - 2

(12-13) Extract PDIndex and PDEAddr(14) Get page directory entry(15-17) Check if PDE is valid, if so fetch entry from page table

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.18

ADDRESS TRANSLATION - 3

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.10Slides by Wes J. Lloyd

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.19

INVERTED PAGE TABLES

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

March 5, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L15.20

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.11Slides by Wes J. Lloyd

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.21

MEMORY HIERARCHY

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.22

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.12Slides by Wes J. Lloyd

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.23

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Latency number s ever y p ro grammer sho uld know
 Fro m: h t t ps :/ /g is t .g i t hub.co m/jboner/2841 832#f i le - la tency - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.24

SWAP SPACE

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.13Slides by Wes J. Lloyd

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.25

PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.26

PAGE FAULT

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.14Slides by Wes J. Lloyd

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.27

PAGE REPLACEMENTS

REPLACEMENT
POLICIES

March 5, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L15.2

8

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.15Slides by Wes J. Lloyd

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access t ime can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.29

CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃ு௜௧ ∗ 𝑇ெ + (𝑃ெ௜௦௦ ∗ 𝑇஽)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇஽ The cost of accessing disk (time)

𝑃ு௜௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௜௦௦ The probability of not finding the data in the cache(a miss)

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.30

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.16Slides by Wes J. Lloyd

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.31

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.32

RANDOM REPLACEMENT

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.17Slides by Wes J. Lloyd

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used
 Always replace page with fewest accesses (front)
 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.33

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.34

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.18Slides by Wes J. Lloyd

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.35

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.36

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.19Slides by Wes J. Lloyd

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.37

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L15.38

IMPLEMENTING LRU - 2

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.20Slides by Wes J. Lloyd

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L15.39

CLOCK ALGORITHM

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.40

CLOCK ALGORITHM - 2

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.21Slides by Wes J. Lloyd

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.41

WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.42

OTHER SWAPPING POLICIES

TCSS 422 A – Winter 2018
Institute of Technology

3/5/2018

L15.22Slides by Wes J. Lloyd

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

March 5, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L15.43

OTHER SWAPPING POLICIES - 2

QUESTIONS

