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OBJECTIVES

= Homework 3 Questions

= Ch. 20
=Smaller Tables
=Ch. 21/22
= Beyond Physical Memory: Mechanisms (Ch. 21)
= Virtual “Swap” Memory
= Beyond Physical Memory: Policies (Ch. 22)
= Page Replacement Algorithms
= Replacement algorithm effectiveness
= Ch. 36
=1/0 Devices
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FEEDBACK FROM 2/28

=" There was no feedback !!!
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MULTI-LEVEL PAGE TABLES

= Consider a page table:
= 32-bit addressing, 4KB pages
m 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % + 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

" MUST SAVE MEMORY!
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MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
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MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR | 201 PBTR | 200

3

Two level page table:
220 pages addressed with

two level-indexing

(page directory index, page table index)
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Linear (Left) And Multi-Level (Right) Page Tables

MULTI-LEVEL PAGE TABLES - 3

= Advantages

=Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex
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32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

MORE THAN TWO LEVELS

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

30292827262524232221201918171615141312111098 7654 3 21 0

NERNNRNARNRNRNRRNEN [TT1

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
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MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7 6 54 3 21 0
[T T A
Page Directory Index i &
VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——> log,128 =7

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

30292827262524232221201918171615141312111098 76 54 3 21 0

[T] [TTTTTTTTTTTTTT

Page Directory Index

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ———> log,128 =7
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MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Pagosad ‘ a

Can'’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page | 128 PTEs ——F—> log,128 =7

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
" Pagosad i

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

TCS5422: Operating Systems [Winter 2018]
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Virtual address 0 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page | 128 PTEs ——> log,128 =7
March 5, 2018 TCSS422: Operating Systems [Winter 2018] | 115.14

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

3029282726252423222120191817161514131211109 876 54 3 21 0

EENARNARNRRNN NN NNARNARENE

" Page Table Index.

VPN

= Consider the implications for address translation!

® How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

ADDRESS TRANSLATION - 1

01: VEN = (VirtualAddress & VPN_MASK) >> SHIFT

02: (Success, T1bEntry) = TLB_Lookup (VEN)

03: (Success == True) //TLB Hit

04: (CanAccess (T1bEntry.ProtectBits) == True)

05: Offset = VirtualAddress & OFFSET_MASK

06: PhysAddr = (T1bEntry.PFN << SHIFT) | Offset
07: Register = AccessMemory (PhysAddr)

08: RaiseException (PROTECTION_FAULT) ;

09: // perform the full multi

I (05-07) Generate physical address from TLB |
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ADDRESS TRANSLATION - 2

11:
12: BDIndex = (VBN & PD_MASK) >> PD_SHIFT

13: PDEAdAr = PDBR + (PDIndex * sizeof (PDE))

14: BDE = AccessMemory (PDEAdr)

15: (PDE.Valid == False)

16: RaiseException (SEGMENTATION FAULT)
7 // PDE is Valid: now fetch PTE from BT

| (15-17) Check if PDE is valid, if so fetch entry from page table I

ADDRESS TRANSLATION - 3
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18: PTIndex = (VPN & PT_MASK) >> PT_SHIFT
19: PTEAdr = (PDE.PFN << SHIFT) + (PTIndex * sizeof (PTE))
20: PTE = AccessMemory (PTEAAr)
21: (PTE.Valid == False)
22: RaiseException (SEGMENTATION FAULT)
23: (CanAccess (PTE.ProtectBits) == False)
24: RaiseException (PROTECTION_FAULT) ;
25:
263 TLB_Insert (VEN, PTE.PFN , PTE.ProtectBits)
275 RetryInstruction()
Marchs, 2018 TCSS422: Operating Systems [Winter 2018] | sas
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INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page
= Which process virtual page (from process virtual address
space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages

= Hash table: can index memory and speed lookups
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CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY
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MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage( hard disk, tape, etc...)

Memory Hierarchy in modern system
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MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

= Can provide illusion of an address space larger than
physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space for many concurrent
processes

WELEN S, Z Institute of Technology, University of Washington - Tacoma
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LATENCY TIMES

= Design considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

SWAP SPACE

= Disk space for storing memory pages
= “Swap” them in and out of memory to disk as needed

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from 55D 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps.
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memaory, 20X 55D

= Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt
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PFN O PEN 1 PFN 2 PEN 3
Physical Proc0 Proc 1 Proc 1 Proc2
Memory VPN 0] VPN 2] [VPN 3] [VPN 0]
Block0 Blockl  Block2  Block3  Block4 Block5  Block6  Block 7
Swap | proc0 | ProcO | o | Procl | Procl | Proc3 | Proc2 | Proc3
Space | [VPN1] | VPN 2] VPN O] | VPN 1] | VPN O] | VPN1] | (VPN 1]
Physical Memory and Swap Space
TC55422: Operating Systems [Winter 2018]
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PAGE LOCATION PAGE FAULT

= Page table pages are: = OS steps in to handle the page fault
= Stored in memory
= Swapped to disk = Loading page from disk requires a free memory page

= Present bit = Page-Fault Algorithm

= In the page table entry (PTE) indicates if page is present 1: PEN = FindFreePhysicalPage ()
& if (PFN == -1)
5 PFN = EvictPage ()
- Page faUIt 4: DiskRead (PTE.DiskAddr, pfn)
= Memory page is accessed, but has been swapped to disk 5: PTE.present = True 1/
6: PTE.PFN = PFN 1/ e
7z RetryInstruction()
e [ usas |

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)

=Threshold for when to swap pages to disk R EPLACEM ENT
= Daemon checks: free pages < LW POLICI ES

POLICY
‘

= Begin swapping to disk until reaching the highwater mark
= High watermark (HW)

= Target threshold of free memory pages

= Daemon free until: free pages >= HW

TCS5422: Operating Systems [Winter 2018]
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CACHE MANAGEMENT OPTIMAL REPLACEMENT POLICY

= Replacement policies apply to “any” cache = What if:
= Goal is to minimize the number of misses = We could predict the future (... with a magical oracle)
= Average memory access time can be estimated: * All future page accesses are known

= Always replace the page in the cache used farthest in the future
| AMAT = (Pyic * Tn) + (Pugiss * To) ‘

= Used for a comparison

T The cost of ti . u .
il e cost of accessing memory (fime) = Provides a “best case” replacement policy
Tp The cost of accessing disk (time)
Py | The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss) = Consider a 3-element empty cache with the following page
= Consider Ty, = 100 ns, T, = 10ms R
= Consider Py, = .9 (90%), Pyes = .1 01201303121 What Is the hit/milss ratlo?
= Consider Py, = .999 (99.9%), P, = .001 6 hits
TCSS422: Operating Systems [Winter 2018] TCS$422: Operating Systems [Winter 2018]
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FIFO REPLACEMENT

= Queue based

= Always replace the oldest element at the back of cache
= Simple to implement

= Doesn’t consider importance... just arrival ordering

= Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

= How is FIFO different than LRU? LRU incorporates history

TCS5422: Operating Systems [Winter 2018]
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RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

o — .
1 2 3 a H 6
Number of Hits
Random Performance over 10,000 Trials
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HISTORY-BASED POLICIES

= LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= Considers temporal locality (when pg was last accessed)

What Is the hit/miss ratlo?

= LFU: Least frequently used
= Always replace page with fewest accesses (front)
= Consider frequency of page accesses

Hit/miss ratlo Is=

01201303121

01201303121

TCS5422: Operating Systems [Winter 2018]
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WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

When the cache is
large enough to fit
the entire workload,
it doesn’t matter
which policy you use.

Hit Rate

Cache Size (Blocks)

TCSS422: Operating Systems [Winter 2018]
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WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

LRU is more likely
to hold onto
hot pages

Hit Rate
2

(recalls history)

Cache Size (Blocks)

TCS5422: Operating Systems [Winter 2018]
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WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

Random performs
better than FIFO and

3 /| LRU for
o ¢ — ot cache sizes < 50
= / — LRU

i FIFO

o /) Algorithms should provide
i “scan resistance”
1 T T

20 40 Ed 8 100
Cache Size (Blocks)
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IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages

= Times can be tracked with a list
= For cache eviction, we must scan an entire list

= Consider: 4GB memory system (232),
with 4KB pages (212)

= This requires 22° comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

March 5, 2018 TCS5422: Operating Systems [Winter 2018]
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IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

TCSS422: Operating Systems [Winter 2018]
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CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload
o

Cache Size (Blocks)

TCSS422: Operating Systems [Winter 2018]
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CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

= Clock algorithm should favor no cost eviction

TCSS422: Operating Systems [Winter 2018]
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WHEN TO LOAD PAGES

= On demand > demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Winter 2018]
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OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=0Occurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Winter 2018]
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OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden

=Allows some processes to run, reduces thrashing

TCS5422: Operating Systems [Winter 2018]
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