TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Paging,
Translation Lookaside Buffer,
and Smaller Tables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

FELIUEL o Ak Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Quiz 4 - Active Reading Chapter 19
® Homework 2 Questions
® Homework 3 Questions

= Ch. 18

= [ntroduction to Paging
= Ch. 19

= Translation Lookaside Buffer (TLB)
= Ch. 20

= Smaller Tables

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.2

Lioyd

2/28/2018

L14.1

TCSS 422 A — Winter 2018
Institute of Technology

FEEDBACK FROM 2/23

® There was no feedback !!!

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.3

INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Winter 2018]

ety e 2 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

2/28/2018

L14.2

TCSS 422 A — Winter 2018

Institute of Technology

PAGING DESIGN QUESTIONS

® Where are page tables stored?

® What are the typical contents of the page table?

® How big are page tables?

® Does paging make the system too slow?

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.5

WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (229 pages)
= 12 bits for the page offset (212 unique bytes in a page)

® Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.6

Slides by Wes J. Lloyd

2/28/2018

L14.3

TCSS 422 A — Winter 2018
Institute of Technology

PAGE TABLE EXAMPLE

® Each slot dereferences a VPN
® Provides physical frame number

® Each slot requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is
unrealistically small)

= With 220 slots in our page table for a single process

VPN,

VPN,

VPN,

VPN 1048576

® How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.7

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

400 MB / 4000 GB

® |s this efficient?

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

®m Page table memory requirement is now 4MB x 100 = 400MB

® |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.8

Slides by Wes J. Lloyd

2/28/2018

L14.4

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000]:

for (i = 0; 1 < 1000; i++)
array[i] = 0:

= Assembly equivalent:

0x1024 movl $0x0, (%edi, $eax, 4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
0x1030 jne 0xl024

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.9

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

® Locations:

Page Table[39]

1224
= Page table o o o i O 174 T
3
= Array Page Table[1] 1124 3
= Code \ -107a &
0 0000 good 0ong o000 gool jeoq
= 50 accesses 2 4000 4 PR
= o o
for 5 loop F 40050 4 ° - 7282 ®
. . £ m [n 2
iterations 40000 ——m | 555
1124 e ~ 4196
g :OERE 2
3 1074— a6 2
“ 1024 A N n u BT 096 ©
0 10 20 30 40 50
Memory Access
February 28, 2018 TCSS422: Operating Systems [Winter 2018] 114.10

Institute of Technology, University of Washington - Tacoma

Lloyd

2/28/2018

L14.5

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 19:
TRANSLATION
LOOKASIDE BUFFER

(TLB)

TCSS422: Operating Systems [Winter 2018]

bebruanyi28:2018 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Chapter 19

*TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.12

Slides by Wes J. Lloyd

2/28/2018

L14.6

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

TRANSLATION LOOKASIDE BUFFER

®mlLegacy name...

m Better name, “Address Translation Cache”

ETLB is an on CPU cache of address translations
=virtual - physical memory

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.13

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

® Goal: s
Reduce access 0 . - 0 o L g
to the page Page Table[1] — 1124 éz
tables \ 1074 &

OO0 0000000000000 1024

= Example:

50 RAM accesses g 40100 - | rs g
for first 5 for-loop e : - m %
iterations * s0000 L = L a 732 I

= Move lookups o WIS m 4%
from RAM to TLB ?‘; wa 45 70T 4146 %‘s;
by Caching page & 1024 —'_.L.r._.._.r._.._.r._.._.r._.LI, 4006 ©
table entries 0 10 20 30 40 50

Memory Access

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.14

Lloyd

2/28/2018

L14.7

TCSS 422 A — Winter 2018
Institute of Technology

m Address translation cache

® Part of the CPU’s Memory Management Unit (MMU)

TRANSLATION LOOKASIDE BUFFER (TLB)

TLB

. ViU TLB Hit 2

Logical Lookup ; Physical
>

Address i TL Address

popular v to p 2 vlr

| 7LE Miss

] Page 0
Page Table = 3 -

all v to p entries =

Address Translation with MMU Bhysical Memory
TCSS422: Operating Systems [Winter 2018]
EEbItan 282018 Institute of Technology, University of Washington - Tacoma L14.15

7LB

m Address translation cache

A

® Part of the CPU’s Memory Management Unit (MMU)

1

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an addres's'translatior.l cache
Different than L1, L2, L3 CPU memory caches

=)

Page Table -
all v to p entries

Address Translation with MMU

Page O

Page 1

Physical Memory

TCSS422: Operating Systems [Winter 2018]
February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.16

Slides by Wes J. Lloyd

2/28/2018

L14.8

TCSS 422 A — Winter 2018
Institute of Technology

® For: array
® Hardware

TLB BASIC ALGORITHM

based page table
managed TLB

»

[T« N & 3 B Y B N R

» VPN = (VirtualAddress & VPN MASK) >> SHIFT
» (Success , TlbEntry) = TLB_Lookup (VPN)
if (Success == True){ // TLB Hit
if (CanAccess (T1bEntry.ProtectBits) == True){

Offset = VirtualAddress & OFFSET MASK
PhySAddr_»(leEntIy.PFN << SHIFT) | Offset

AccessMemory (PhysAddr)

}else RaiseException (PROTECTION ERROR)

Generate the physical address to access memory

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.17

TLB BASIC ALGORITHM - 2

317 i
12:
3 »
14:

15:

le:

L

18: }
19:}

PTEAddr = PTBR + (VPN * sizeof (PTE))
PTE = AccessMemory (PTEAdAr)

(..) // Check for, and raise exceptions..

TLE_Insert(VPN , PTE.FFN , PTE.ProtectBits)

RetryInstruction ()

Retry the instruction... (requery the TLB)

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.18

Slides by Wes J. Lloyd

2/28/2018

L14.9

TCSS 422 A — Winter 2018
Institute of Technology

= Key detail:

= All address translations go through the TLB

TLB - ADDRESS TRANSLATION CACHE

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

TLB EXAMPLE

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i];

w N o

= Example:

® Program address space: 256-byte
= Addressable using 8 total bits (28)
= 4 bits for the VPN (16 total pages)

® Page size: 16 bytes
= Offset is addressable using 4-bits

® Store an array: of (10) 4-byte integers

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

2/28/2018
L14.19
OFFSET
00 04 08 12 16
al0] | ay | a2
a3l | a[4] | aps] | alel
a7l | a[8l | a[9]
L14.20
L14.10

TCSS 422 A — Winter 2018
Institute of Technology

2/28/2018

TLB EXAMPLE - 2

g
1
2z
3

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i] ;

}

® Consider the code above:

Initially the TLB does not know where a[] is
Consider the accesses:
a[0], a[1], a[2], a[3], a[4], a[53], a[6], a[7],

a[8], a[9]

How many pages are accessed?

= What happens when accessing a page not
in the TLB?

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

04 08 12 16

OFFSET

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.21

TLB EXAMPLE - 3

w N o

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i];

For the accesses: a[0], a[1], a[2], a[3], a[4],

a[5], a[6], a[7], a[8], a[9]

How many are hits?
How many are misses?

What is the hit rate? (%)

= 70% (3 misses one for each VP, 7 hits)

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

00

04

OFFSET
08 12 16

afo] | a[] | a[2

a3

a4l | a[s] | al6]

a8l | a[9]

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.22

Slides by Wes J. Lloyd

L14.11

TCSS 422 A — Winter 2018
Institute of Technology

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i] ;

Ww N = o

® What factors affect the hit/miss rate?
= Page size
= Data locality
= Temporal locality

TLB EXAMPLE - 4

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

OFFSET

04 08 12 16

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.23

TLB TRADEOFFS

= Page size

m Larger page sizes increase the probability of a TLB hit

= Example: 16-bytes (very small), 4096-bytes (common)

m Larger sizes increase memory requirement of offset

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.24

Slides by Wes J. Lloyd

2/28/2018

L14.12

TCSS 422 A — Winter 2018
Institute of Technology

rate.

TLB TRADEOFFS - 2

= Spatial locality

® Consider random vs. sequential array access

®m Accessing addresses local to each other improves the hit

® What happens when the data size exceeds the TLB size?
= E.g. 15t level TLB caches 64 4KB page addresses
= Single program can cache data lookups for 256 KB

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.25

iteration”

TLB TRADEOFFS - 3

= Temporal locality

® Can dramatically improve performance for “second

®m Higher cache hit ratios are expected for repeated memory
accesses close in time

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.26

Slides by Wes J. Lloyd

2/28/2018

L14.13

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

EXAMPLE: LARGE ARRAY ACCESS

= Example: Consider an array of a custom struct where each
struct is 64-bytes. Consider sequential access for an
array of 8,192 elements stored contiguously in memory:

® 64 structs per 4KB page
m 128 total pages
B TLB caches stores a maximum of 64 - 4KB page lookups

® How many hits vs. misses for sequential array iteration?
= 1 miss for every 64 array accesses, 63 hits

= Complete traversal: 128 total misses, 8,064 hits (98.4% hit
ratio)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]

L14.27
Institute of Technology, University of Washington - Tacoma

TLB EXAMPLE IMPLEMENTATIONS

® Intel Nehalem microarchitecture 2008 - multi level TLBs
= First level TLB: T
separate cache for data (DTLB) and code (ITLB) e i
= Second level TLB: Name Level.4KB. 2MB
shared TLB (STLB) for data and code el

ITLB 1st 128 | 7/ logical core
= Multiple page sizes (4KB, 2MB) ' ' '

STLB | 2nd | 512 none
= Page Size Extension (PSE) CPU flag
for larger page sizes
® Intel Haswell microarchitecture 22nm 2013
= Two level TLB .
= Three page sizes (4KB, 2MB, 1GB) Cache | i
Name | Level | 4 KB 2MB | 1GB
® Without large page sizes consider |DTB | st | 64 3z 4
the # of TLB entries to address ITLB | 1st . 128 8 / logical core | none
1_9 MB of memory_" STLB 2nd 1024 none

February 28, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L14.28

Slides by Wes J. Lloyd L14.14

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

HW CACHE TRADEOFF

= Speed vs. size

Speed (EEEEEEEEEEEEEEEEEE———) Size

® |[n order to be fast, caches must be small
® Too large of a cache will mimic physical memory
® Limitations for on chip memory

"YOU CANT m\ YOUR CAKE AND EAT IT,T00;

J
FALSE.:YOU,CAN HAVE l\ [H“(E AND EAT
0 Dwight on ‘“tradeoffs”

TCSS422: Operating Systems [Winter 2018]

L14.29
Institute of Technology, University of Washington - Tacoma

February 28, 2018

HANDLING TLB MISS

® Historical view

mCISC - Complex instruction set computer
"|ntel x86 CPUs

=Traditionally have provided on CPU HW instructions
and handling of TLB misses

*HW has a page table register to store location of
page table

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L14.30

February 28, 2018

Lloyd

2/28/2018

L14.15

TCSS 422 A — Winter 2018

Institute of Technology

HANDLING TLB MISS - 2

®m RISC - Reduced instruction set computer
= ARM CPUs

= Traditionally the OS handles TLB misses
= HW raises an exception
= Trap handler is executed to handle the miss

® Advantages
= HW Simplicity: simply needs to raise an exception

= Flexibility: OS provided page table implementations can
use different data structures, etc.

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.31

TLB CONTENTS

= TLB typically may have 32, 64, or 128 entries

®m HW searches the entire TLB in parallel to find the
translation

= Other bits
= Valid bit: valid translation?
= Protection bit: read/execute, read/write
= Address-space identifier: identify entries by process
= Dirty bit

VPN PFN other bits

Typical TLB entry look like this

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.32

Slides by Wes J. Lloyd

2/28/2018

L14.16

TCSS 422 A — Winter 2018
Institute of Technology

= TLB flush

= Requires

TLB: ON CONTEXT SWITCH

time to flush

= TLB must be reloaded for each C/S
= If process not in CPU for long, the TLB may not get reloaded

= Alternative: be lazy...
= Don’t flush TLB on C/S
= Share TLB across processes during C/S
= Use address space identifier (ASID) to tag TLB entries by process

= Flush TLB on context switches, set all entries to O

®m TLB stores address translations for current running process
® A context/switch to a new process invalidates the TLB
® Must “switch” out the TLB

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.33

TLB: CONTEXT SWITCH - 2

Page 0
Page 1

Page 2

Page n

Virtual Memory

Page 0
Page 1

Page 2

Page n

Virtual Memory

TLB Table
VPN PFN wvalid prot ASID
10 100 1 rwx 1
10 170 1. rwx 2

®m Address space identifier (ASID): enables TLB data to persist
during context switches - also can support virtual machines

Process A

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.34

Slides by Wes J. Lloyd

2/28/2018

L14.17

TCSS 422 A — Winter 2018

Institute of Technology

SHARED MEMORY SPACE

VPN PFN valid prot ASID
10 101 1 rwx 1

50 101 1 rwx 2

®" When processes share a code page
=Shared libraries ok

"Code FEIES typica”y are RX, usz:“:Ir?s?itoieF:ialﬂ:eeii:he
not RWX number of physical

pages in use.

TCSS422: Operating Systems [Winter 2018]

L14.35
Institute of Technology, University of Washington - Tacoma

February 28, 2018

CACHE REPLACEMENT POLICIES

" When TLB cache is full, how add a nhew address
translation to the TLB?

® Observe how the TLB is loaded / unloaded...
® Goal minimize miss rate, increase hit rate

= Least Recently Used (LRU)
= Evict the oldest entry

= Random policy
=" Pick a candidate at random to free-up space in the TLB

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L14.36

February 28, 2018

Slides by Wes J. Lloyd

2/28/2018

L14.18

TCSS 422 A — Winter 2018

Institute of Technology

LEAST RECENTLY USED

Reference Row
(70120304230321201

Page Frame:

® RED - miss
® WHITE - hit
® For 3-page TLB, observe replacement

11 TLB miss, 5 TLB hit

TCSS422: Operating Systems [Winter 2018]

L14.37
Institute of Technology, University of Washington - Tacoma

February 28, 2018

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

Slides by Wes J. Lloyd

2/28/2018

L14.19

TCSS 422 A — Winter 2018
Institute of Technology

= Chapter 20

OBJECTIVES

=Smaller tables

=Hybrid tables

= Multi-level page tables

February 28, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L14.39

LINEAR PAGE TABLES

= Consider array-based page tables:

= Each process has its own page table

= 32-bit process address space (up to 4GB)
= With 4 KB pages

= 20 bits for VPN

= 12 bits for the page offset

February 28, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L14.40

Slides by Wes J. Lloyd

2/28/2018

L14.20

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

LINEAR PAGE TABLES - 2

® Page tables stored in RAM

® Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
® Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

® Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.41

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

m Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page

= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

m Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.42

Lioyd

2/28/2018

L14.21

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

232

— x4 = 1MB per page table

214

= Memory requirement cut to V4
® However pages are huge
® Internal fragmentation results

® 16KB page(s) allocated for small programs with only a
few variables

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.43

PAGE TABLES: WASTED SPACE

® Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address
Space
code o b,
1 Allocate | N .
g g PFN valid prot present dirty
y B \ 10 1 rx 1 0
h /
= C 0
/ 0
N O
4
g/ L 15 1 rw- 1 i
s/
10 ;'; 0
11 /
12 ..: 3 1 rw- 1 1
stack 13/ e 23 1 rw- 1 i
w——_
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.44

Lloyd

2/28/2018

L14.22

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

PAGE TABLES: WASTED SPACE

® Process: 16KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address

Space

code

LN 1
1 ~ Allocate /

PFN valid prot present dirty

L Most of the page table is unused
and full of wasted space. (73%)

8

L]
0/
11 .‘."
12/ 2} 1 rw-
stack 13/ 23 1 rw-
w—

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.45

HYBRID TABLES

B Combine segments and page tables ??’
m Use stack, heap, code ? ?
segment base/bound registers

® Base register: point to page table

® Bounds register: store end of page table

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.46

Slides by Wes J. Lloyd L14.23

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

HYBRID TABLES - 2

® Each process has (3) page tables

®m 1 each for code, stack, heap segments

® Base register stores address of start of table

m 216 pjts for VPN, can only address 65,536 pages/segment

313029282726252423222120191817161514131211109 8 765 4 321 0

" seg

' VPN '

Offset

32-bit Virtual address space with 4KB pages

Seg value Content

00 unused segment
01 code
10 heap
13 stack

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.47

HYBRID TABLES:

COMPUTING PAGE TABLE ADDRESS

HW must look up page table ADDR on TLB miss

= Segment (SN) bits: indicate which base/bound registers to use

01:
02:
03:

SN = (VirtualAddress & SEG MASK) >> SN_SHIFT

VEN = (VirtualAddress & VEN MASK) >> VPN SHIFT

RAddressOfPTE = Base[SN] + (VPN * sizeof (PTE))

SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
SN_SHIFT = 30 bits (shift 30 bits right)

= The SN will just be 2 bits...

VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000
VPN_SHIFT = 12 bits (shift 12 bits right)

= The VPN will just be 18 bits...

PTE ADDR = Base of table + VPN * size of a page table entry

= PTE=4 (or “10” in binary), will shift VPN 2 bits left <

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.48

Lloyd

2/28/2018

L14.24

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

HYBRID TABLE EXAMPLE:

m Consider 3 Segments, w/ 4KB pages

= 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)
m 3 sets of base/bounds registers (3 x 16 B)
= 32-bit VPN bit-string:

= 2 bits - segment type bit code

= 2 bits - status bits

= 16 bits - virtual page number VPN (indexes 65,536 pages)
= 12 bits - page offset (indexes 4KB pages)

= How much memory is required?
= 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
= 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
= 786480 bytes + 1024 KB/byte = ~ 768 KB per process

" How much memory can be addressed?
= 256 MB (216 pages x 4KB)
= Overhead= 768 KB / 256 MB (.3%)

TCSS422: Operating Systems [Winter 2018]
February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.49

HYBRID TABLE EXAMPLE:

® Consider 3 Segments, w/ 4KB pages
= 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

® 3 sets of base/bounds registers (3 x 16 B)
® 32-bit VPN bit-string:
= 2 bits - segment type bit code

Problem: For a hybrid approach, with 32-

bit VPNs, how do we index a// RAM
. for a modern 4GB computer?

= 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
= 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
= 786480 bytes + 1024 KB/byte = ~ 768 KB per process

= How much memory can be addressed?
= 256 MB (216 pages x 4KB)
= Overhead= 768 KB / 256 MB (.3%)

TCSS422: Operating Systems [Winter 2018]
February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.50

Lloyd

2/28/2018

L14.25

TCSS 422 A — Winter 2018
Institute of Technology

MULTI-LEVEL PAGE TABLES

® Consider a page table:
® 32-bit addressing, 4KB pages
m 220 page table entries

®m Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4MByte

= MUST SAVE MEMORY!

®m Often most of the 4MB per process page table is empty
® Page table must be placed in 4MB contiguous block of RAM

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.51

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table

o[mi o e[w0]
: PFN] :

200
]
5 B = z s
2 2 T PEN S 5 PFN
| 12 — 1| 201 |[———> 1] 12
| = S 8 o] - 1] o 13 |3
o - 3 z 2 &
o T |o ol - _ z
1 mw 100 o, o
it 203 1] w 100
0
- "
0 = The Page Directory [Page 1 of PT:Not Allocated]
0 z
i —_—
o
0
0 on
0 - S L - &,
Z 0 - o
1 rw 86 o 3
| v 15 1 rw 86 i
o
1 mw 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.52

Slides by Wes J. Lloyd

2/28/2018

L14.26

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

Two level page table:
220 pages addressed with

two level-indexing
page directory index, page table index)

: S 0
z 0 b=y
1] w 86 o %
1] w 15 8 b L&
1] w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Winter 2018]

L14.53
Institute of Technology, University of Washington - Tacoma

February 28, 2018

MULTI-LEVEL PAGE TABLES - 3

® Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

®m Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L14.54

February 28, 2018

Lioyd

2/28/2018

L14.27

TCSS 422 A — Winter 2018

Institute of Technology

EXAMPLE

= 16KB address space, 64byte pages

® How large would a one-level page table need to be?
m 214 (address space) / 26 (page size) = 28 = 256 (pages)

0000 000 code
00000001 code

(free)

(free)

heap

heap

(free)

(free)

stack

1111 1113 stack

Address space 16 KB
Page size 64 byte
Virtual address 14 bit
VPN 8 bit
Offset 6 bit
Page table entry 2%(256)

A 16-KB Address Space With 64-byte Pages

13/12|11]10|9[8]7]6

s[afafz]1]0]

Offset

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.55

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

®m 1,024 bytes page table size, stored using 64-byte pages

= (1024/64) = 16 page directory entries (PDEs)

®m Each page directory entry (PDE) can hold 16 page table

entries (PTEs) e.g. lookups

®m 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table is stored using pages too!

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.56

Slides by Wes J. Lloyd

2/28/2018

L14.28

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:

= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. _Page Directory Index
3

13]12]11 10’[9|8\7\6 s|al3|2]1]o0

VPN Offset

cu)
>

14-bits Virtual address

TCSS422: Operating Systems [Winter 2018]

L14.57
Institute of Technology, University of Washington - Tacoma

February 28, 2018

PAGE TABLE INDEX

" 4 bits page directory index (PDI - 1stlevel)
m 4 bits page table index (PTI - 29 |evel)

. Page Directory Index | Page Table Index

12 |11 IOT\ g

I‘13 8‘7’615‘4|3‘2|1|0‘

VPN Offset
14-bits Virtual address

® To dereference one 64-byte memory page,

= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L14.58

February 28, 2018

Lloyd

2/28/2018

L14.29

TCSS 422 A — Winter 2018

Institute of Technology

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

m 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
®m 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

® Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.59

32-BIT EXAMPLE

m Consider: 32-bit address space, 4KB pages, 22° pages
® Only 4 mapped pages

m Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

® Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

®m 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.60

Slides by Wes J. Lloyd

2/28/2018

L14.30

TCSS 422 A — Winter 2018

Institute of Technology

MORE THAN TWO LEVELS

® Consider: page size is 22 = 512 bytes
® Page size 512 bytes / Page entry size 4 bytes

= VPN is 21 bits

3029282726252423222120191817161514131211109 8 76 54 3 21 0

IRNRNRNRNNNNNNNNNNNRNNANENENEN

N
>

<
€

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

February 28, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L14.61

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
m 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 8 76 54 3 21 0

[1]

NN

Page Directory Index

ERNNRNNNRRANRRNNRDY

i
Calny

.
>

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset g bit
Page entry per page 128 PTEs

——1—> log,128 =7

February 28, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.62

Slides by Wes J. Lloyd

2/28/2018

L14.31

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

® When using 27 (128 entry) page tables...

® Page size = 512 bytes / 4 bytes per addr

30292827262524232221201918171615141312111098 7654 3 21 0

ENNARRNANRNARNNARRNA AR ARRRAS

Page Directory Index

3l 3!

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L14.63

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

B Pagess

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

| Virtualaddress |30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log, 128 =7

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018

L14.64

Lioyd

2/28/2018

L14.32

TCSS 422 A — Winter 2018

Institute of Technology

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
® When using 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Winter 2018]

L14.65
Institute of Technology, University of Washington - Tacoma

February 28, 2018

MORE THAN TWO LEVELS - 4

® We can now address 1GB with“fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 87654 3 21 0

NERRNRNNNNNNNNNENNRRAREE

o

Y. ¥

’ Page Table Index

L

VPN = >
® Consider the implications for address translation!
® How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’'s say 4 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes
® Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L14.66

February 28, 2018

Slides by Wes J. Lloyd

2/28/2018

L14.33

TCSS 422 A — Winter 2018
Institute of Technology

QUESTIONS

EXAMPLE TLB ENTRY - MIPS R4000

All 64 bits of this TLB entry(example of MIPS R4000)

= Early 64-bit RISC processor Sl

0 1L2'34 567 891001 .. 9. .. 31

VPN ‘ ‘ ‘ G ‘ ASID

‘ ‘ PFN C ‘ D ‘ v

L L L 1 1
Flag Content
19-bit VPN The rest reserved for the kernel,
24-bit PFN Systems can support with up to 64GB of main memory(22*= 4KB pages).
Global bit(G) Used for pages that are globally-shared among processes.
ASID OS can use to distinguish between address spaces.
Coherence bit(C) determine how a page is cached by the hardware.
Dirty bit(D) marking when the page has been written.
Valid bit(V) tells the hardware if there is a valid translation present in the entry.
TCSS422: Operating Systems [Winter 2018]
February 28, 2018 Institute of Technology, University of Washington - Tacoma L14.68

Slides by Wes J. Lloyd

2/28/2018

L14.34

