
TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.1Slides by Wes J. Lloyd

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Paging,
Translation Lookaside Buffer,

and Smaller Tables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz 4 – Active Reading Chapter 19

 Homework 2 Questions

 Homework 3 Questions

 Ch. 18
 Introduction to Paging

 Ch. 19
 Translation Lookaside Buffer (TLB)

 Ch. 20
 Smaller Tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.2Slides by Wes J. Lloyd

 There was no feedback !!!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.3

FEEDBACK FROM 2/23

CHAPTER 18:
INTRODUCTION TO

PAGING

February 28, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L14.4

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.3Slides by Wes J. Lloyd

 Where are page tables stored?

 What are the typical contents of the page table?

 How big are page tables?

 Does paging make the system too slow?

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.5

PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.6

WHERE ARE PAGE TABLES STORED?

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.4Slides by Wes J. Lloyd

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.7

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.8

NOW FOR AN ENTIRE OS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.5Slides by Wes J. Lloyd

 Example: Use this Array initialization Code

 Assembly equivalent:

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.9

COUNTING MEMORY ACCESSES

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop
iterations

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.10

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.6Slides by Wes J. Lloyd

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

February 28, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L14.11

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.12

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.7Slides by Wes J. Lloyd

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual physical memory

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.13

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for-loop
iterations

 Move lookups
from RAM to TLB
by caching page
table entries

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.14

TRANSLATION LOOKASIDE BUFFER - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.8Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.15

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.16

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.9Slides by Wes J. Lloyd

 For: array based page table

 Hardware managed TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.17

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.18

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.10Slides by Wes J. Lloyd

Key detail:

 For a TLB miss, we first access the page table in RAM to
populate the TLB… we then requery the TLB

 All address translations go through the TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.19

TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.20

TLB EXAMPLE

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.11Slides by Wes J. Lloyd

 Consider the code above:

 Init ially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.21

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.22

TLB EXAMPLE - 3

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.12Slides by Wes J. Lloyd

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.23

TLB EXAMPLE - 4

 Page size

 Larger page sizes increase the probability of a TLB hit

 Example: 16-bytes (very small), 4096-bytes (common)

 Larger sizes increase memory requirement of offset

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.24

TLB TRADEOFFS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.13Slides by Wes J. Lloyd

 Spatial locality

 Accessing addresses local to each other improves the hit
rate.

 Consider random vs. sequential array access

 What happens when the data size exceeds the TLB size?
 E.g. 1st level TLB caches 64 4KB page addresses

 Single program can cache data lookups for 256 KB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.25

TLB TRADEOFFS - 2

 Temporal locality

 Higher cache hit ratios are expected for repeated memory
accesses close in time

 Can dramatically improve performance for “second
iteration”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.26

TLB TRADEOFFS - 3

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.14Slides by Wes J. Lloyd

 Example: Consider an array of a custom struct where each
struct is 64-bytes. Consider sequential access for an
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits (98.4% hit
ratio)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.27

EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi level TLBs
 First level TLB:

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag

for larger page sizes

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.28

TLB EXAMPLE IMPLEMENTATIONS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.15Slides by Wes J. Lloyd

 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.29

HW CACHE TRADEOFF

Speed Size

Dwight on “tradeoffs”

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions
and handling of TLB misses

HW has a page table register to store location of
page table

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.30

HANDLING TLB MISS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.16Slides by Wes J. Lloyd

 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can
use different data structures, etc.

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.31

HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.32

TLB CONTENTS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.17Slides by Wes J. Lloyd

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB flush
 Flush TLB on context switches, set all entries to 0

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.33

TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist
during context switches – also can support virtual machines

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.34

TLB: CONTEXT SWITCH - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.18Slides by Wes J. Lloyd

When processes share a code page

Shared libraries ok

Code pages typically are RX,
not RWX

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.35

SHARED MEMORY SPACE

Sharing of pages is
useful as it reduces the

number of physical
pages in use.

When TLB cache is full, how add a new address
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.36

CACHE REPLACEMENT POLICIES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.19Slides by Wes J. Lloyd

 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.37

LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

CHAPTER 20:
PAGING:

SMALLER TABLES

February 28, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L14.38

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.20Slides by Wes J. Lloyd

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.39

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.40

LINEAR PAGE TABLES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.21Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.41

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.42

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.22Slides by Wes J. Lloyd

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.43

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.44

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.23Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.45

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Combine segments and page tables

 Use stack, heap, code
segment base/bound registers

 Base register: point to page table

 Bounds register: store end of page table

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.46

HYBRID TABLES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.24Slides by Wes J. Lloyd

 Each process has (3) page tables

 1 each for code, stack, heap segments

 Base register stores address of start of table

 216 bits for VPN, can only address 65,536 pages/segment

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.47

HYBRID TABLES - 2

 HW must look up page table ADDR on TLB miss
 Segment (SN) bits: indicate which base/bound registers to use

 SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
 SN_SHIFT = 30 bits (shif t 30 bits r ight)
 The SN will just be 2 bits…

 VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000
 VPN_SHIFT = 12 bits (shif t 12 bits r ight)
 The VPN will just be 18 bits…

 PTE ADDR = Base of table + VPN * size of a page table entry
 PTE=4 (or “10” in binary), will shift VPN 2 bits left

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.48

HYBRID TABLES:
COMPUTING PAGE TABLE ADDRESS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.25Slides by Wes J. Lloyd

 Consider 3 Segments, w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x 16 B)

 32-bit VPN bit -str ing:
 2 bits – segment type bit code
 2 bits – status bits
 16 bits – virtual page number VPN (indexes 65,536 pages)
 12 bits – page offset (indexes 4KB pages)

 How much memory is required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)
February 28, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma
L14.49

HYBRID TABLE EXAMPLE:

 Consider 3 Segments, w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x 16 B)

 32-bit VPN bit -str ing:
 2 bits – segment type bit code
 2 bits – status bits
 16 bits – virtual page number VPN (indexes 65,536 pages)
 12 bits – page offset (indexes 4KB pages)

 How much memory is required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)
February 28, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma
L14.50

HYBRID TABLE EXAMPLE:

Problem: For a hybrid approach, with 32-
bit VPNs, how do we index all RAM

for a modern 4GB computer?

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.26Slides by Wes J. Lloyd

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.51

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.52

MULTI-LEVEL PAGE TABLES - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.27Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.53

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.54

MULTI-LEVEL PAGE TABLES - 3

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.28Slides by Wes J. Lloyd

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.55

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.56

EXAMPLE - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.29Slides by Wes J. Lloyd

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.57

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.58

PAGE TABLE INDEX

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.30Slides by Wes J. Lloyd

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.59

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.60

32-BIT EXAMPLE

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.31Slides by Wes J. Lloyd

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.61

MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.62

MORE THAN TWO LEVELS - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.32Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.63

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.64

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.33Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.65

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.66

MORE THAN TWO LEVELS - 4

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.34Slides by Wes J. Lloyd

QUESTIONS

 Early 64-bit RISC processor

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.68

EXAMPLE TLB ENTRY – MIPS R4000

