
TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.1Slides by Wes J. Lloyd

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Paging,
Translation Lookaside Buffer,

and Smaller Tables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz 4 – Active Reading Chapter 19

 Homework 2 Questions

 Homework 3 Questions

 Ch. 18
 Introduction to Paging

 Ch. 19
 Translation Lookaside Buffer (TLB)

 Ch. 20
 Smaller Tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

 There was no feedback !!!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.3

FEEDBACK FROM 2/23

CHAPTER 18:
INTRODUCTION TO

PAGING

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L14.4

 Where are page tables stored?

 What are the typical contents of the page table?

 How big are page tables?

 Does paging make the system too slow?

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.5

PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.6

WHERE ARE PAGE TABLES STORED?

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.2Slides by Wes J. Lloyd

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.7

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.8

NOW FOR AN ENTIRE OS

 Example: Use this Array initialization Code

 Assembly equivalent:

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.9

COUNTING MEMORY ACCESSES

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop
iterations

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.10

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L14.11

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.12

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.3Slides by Wes J. Lloyd

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.13

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for- loop
iterations

 Move lookups
from RAM to TLB
by caching page
table entries

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.14

TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.15

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.16

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 For: array based page table

 Hardware managed TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.17

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.18

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.4Slides by Wes J. Lloyd

Key detail:

 For a TLB miss, we first access the page table in RAM to
populate the TLB… we then requery the TLB

 All address translations go through the TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.19

TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.20

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.21

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.22

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.23

TLB EXAMPLE - 4

 Page size

 Larger page sizes increase the probability of a TLB hit

 Example: 16-bytes (very small), 4096-bytes (common)

 Larger sizes increase memory requirement of offset

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.24

TLB TRADEOFFS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.5Slides by Wes J. Lloyd

 Spatial locality

 Accessing addresses local to each other improves the hit
rate.

 Consider random vs. sequential array access

 What happens when the data size exceeds the TLB size?
 E.g. 1st level TLB caches 64 4KB page addresses

 Single program can cache data lookups for 256 KB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.25

TLB TRADEOFFS - 2

 Temporal locality

 Higher cache hit ratios are expected for repeated memory
accesses close in time

 Can dramatically improve performance for “second
iteration”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.26

TLB TRADEOFFS - 3

 Example: Consider an array of a custom struct where each
struct is 64-bytes. Consider sequential access for an
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits (98.4% hit
ratio)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.27

EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi level TLBs
 First level TLB:

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag

for larger page sizes

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.28

TLB EXAMPLE IMPLEMENTATIONS

 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.29

HW CACHE TRADEOFF

Speed Size

Dwight on “tradeoffs”

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions
and handling of TLB misses

HW has a page table register to store location of
page table

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.30

HANDLING TLB MISS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.6Slides by Wes J. Lloyd

 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can
use different data structures, etc.

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.31

HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.32

TLB CONTENTS

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB f lush
 Flush TLB on context switches, set all entries to 0

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.33

TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist
during context switches – also can support virtual machines

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.34

TLB: CONTEXT SWITCH - 2

When processes share a code page

Shared libraries ok

Code pages typically are RX,
not RWX

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.35

SHARED MEMORY SPACE

Sharing of pages is
useful as it reduces the

number of physical
pages in use.

When TLB cache is full, how add a new address
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.36

CACHE REPLACEMENT POLICIES

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.7Slides by Wes J. Lloyd

 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.37

LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

CHAPTER 20:
PAGING:

SMALLER TABLES

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L14.38

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.39

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.40

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.41

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.42

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.8Slides by Wes J. Lloyd

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.43

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.44

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.45

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Combine segments and page tables

 Use stack, heap, code
segment base/bound registers

 Base register: point to page table

 Bounds register: store end of page table

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.46

HYBRID TABLES

 Each process has (3) page tables

 1 each for code, stack, heap segments

 Base register stores address of start of table

 216 bits for VPN, can only address 65,536 pages/segment

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.47

HYBRID TABLES - 2

 HW must look up page table ADDR on TLB miss
 Segment (SN) bits: indicate which base/bound registers to use

 SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
 SN_SHIFT = 30 bits (shift 30 bits right)
 The SN will just be 2 bits…

 VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000
 VPN_SHIFT = 12 bits (shift 12 bits right)
 The VPN will just be 18 bits…

 PTE ADDR = Base of table + VPN * size of a page table entry
 PTE=4 (or “10” in binary), will shift VPN 2 bits left 

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.48

HYBRID TABLES:
COMPUTING PAGE TABLE ADDRESS

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.9Slides by Wes J. Lloyd

 Consider 3 Segments, w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x 16 B)

 32-bit VPN bit -string:
 2 bits – segment type bit code
 2 bits – status bits
 16 bits – virtual page number VPN (indexes 65,536 pages)
 12 bits – page offset (indexes 4KB pages)

 How much memory is required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)
February 28, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma
L14.49

HYBRID TABLE EXAMPLE:

 Consider 3 Segments, w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x 16 B)

 32-bit VPN bit -string:
 2 bits – segment type bit code
 2 bits – status bits
 16 bits – virtual page number VPN (indexes 65,536 pages)
 12 bits – page offset (indexes 4KB pages)

 How much memory is required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)
February 28, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma
L14.50

HYBRID TABLE EXAMPLE:

Problem: For a hybrid approach, with 32-
bit VPNs, how do we index all RAM

for a modern 4GB computer?

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.51

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.52

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.53

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.54

MULTI-LEVEL PAGE TABLES - 3

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.10Slides by Wes J. Lloyd

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.55

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.56

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.57

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.58

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.59

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.60

32-BIT EXAMPLE

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.11Slides by Wes J. Lloyd

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.61

MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.62

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.63

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.64

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.65

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.66

MORE THAN TWO LEVELS - 4

TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.12Slides by Wes J. Lloyd

QUESTIONS
 Early 64-bit RISC processor

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.68

EXAMPLE TLB ENTRY – MIPS R4000

