TCSS 422 A — Winter 2018
Institute of Technology

Paging,
Translation Lookaside Buffer,
and Smaller Tables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

(el 2 2 Institute of Technology, University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS
| |
T

2/28/2018

OBJECTIVES

= Quiz 4 - Active Reading Chapter 19
= Homework 2 Questions
= Homework 3 Questions

=Ch. 18

= Introduction to Paging
= Ch. 19

= Translation Lookaside Buffer (TLB)
= Ch. 20

=Smaller Tables

TCS5422: Operating Systems [Winter 2018]

(e A S s 1 T, st G B e TP

a2

FEEDBACK FROM 2/23

=" There was no feedback !!!

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

[ues

CHAPTER 18:
INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Winter 2018]

LTy 22 2 Institute of Technology, University of Washington - Tacoma

PAGING DESIGN QUESTIONS

= Where are page tables stored?

= What are the typical contents of the page table?

= How big are page tables?

= Does paging make the system too slow?

TCS5422: Operating Systems [Winter 2018]

(g 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

[e

WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCS5422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

146

Slides by Wes J. Lloyd

L14.1

TCSS 422 A — Winter 2018
Institute of Technology

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot dereferences a VPN VPN,
VPN,

= Provides physical frame number
VPN,

= Each slot requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPN048576
unrealistically small)

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Winter 2018]

(el 2 2 e e T e G T e

[s

NOW FOR AN ENTIRE OS

= |[f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s thls efficlent?

February 28, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L8

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];

for (1= 0 i < 1000; i++)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, teax, 4)
0x1028 incl %eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

[e

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

= Locations: 3554
= Page table u g
= Array Page Table[1] uu 3
= Code 074 &
1024 =
= 50 accesses 2 40100 -
for 5 loop F 40050 % %
iterations = 40000 <

1124 4,

% 1074 % 5 %

10 20 30 40 50

Memory Access

February 28, 2018 TCS5422: Operating Systems [Winter 2018]

4.
Institute of Technology, University of Washington - Tacoma L0

b

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Winter 2018]
(R 2 200 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

OBJECTIVES

= Chapter 19

=TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

February 28, 2018 TCS5422: Operating Systems [Winter 2018]

4.
Instituteof Technology, University of Washington - Tacoma a2

2/28/2018

L14.2

TCSS 422 A — Winter 2018
Institute of Technology

=|lLegacy nhame...

= Better name, “Address Translation Cache”

=virtual > physical memory

TRANSLATION LOOKASIDE BUFFER

=TLB is an on CPU cache of address translations

2/28/2018

TCS5422: Operating Systems [Winter 2018]

(el 2 2 e e T e G T e

114.13

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

= Goal: 1224
Reduce access o o o o o 174
to the page Page Tablel1]
tables

= Example:

50 RAM accesses g w0
for first 5 for-loop & 40050
iterations 40000

Move lookups
from RAM to TLB
by caching page
table entries

Memory Access

Array(PA) Page Table(PA)

Code(PA)

TCSS422: Operating Systems [Winter 2018]

(e A S s 1 T, st G B e TP

a4

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

e
Logical | Lookup | AN T8 Hit -
Address TLB Address
popular v to p T
Page 0
Page Table 9
all v to p entries Page 1
Page 2
[Pagen |

Address Translation with MMU "
Physical Memory

TRANSLATION LOOKASIDE BUFFER (TLB)

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

14.15

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’'s Memory Management Unit (MMU)
= Address translation cache

| — ns VTR | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

|
t Page Table Page 0

all v to p entries Ll

Page 2
Page n

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Winter 2018]

(e A [See et Techolo syl niersity o Washinstoniecome!

L1416

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

»
»

VPN = (VirtualAddress & VPN _MASK) >> SHIFT
: (Success , TlbEntry) = TLB_Lookup (VEN)

if (Success == True){ // TLB Hit

Offset = VirtualAddress & OFFSET_MASK
‘PhysAddr»(leEntry.PFN << SHIFT) | Offset
AccessMemory(PhysAddr)

s
2
3
4: if (CanAccess (T1bEntry.ProtectBits) == True){
5
6
7
8

}else RaiseException(PROTECTION_ERROR)

| Generate the physical address to access memory

TCSS422: Operating Systems [Winter 2018]

| (g 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

114.17

Slides by Wes J. Lloyd

TLB BASIC ALGORITHM - 2

11: else{ //T. s
12: PTEAddr = PTBR + (VPN * sizeof (PTE))
53 ‘ PTE = AccessMemory (PTEAddr)
14: (.) // Check for, and raise exceptions..
15:
1é6: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)
17: RetryInstruction ()
18: }
19:}
I Retry the instruction... (requery the TLB) |
[remanamans T o - Tcome

L14.3

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

TLB - ADDRESS TRANSLATION CACHE TLB EXAMPLE

™ Key detail: 0 int sum = 0 ; o o OFFSET
G or(i=0; i<10; i++){ =00
2 sum+=a[i] ; VPN = 01
= For a TLB miss, we first access the page table in RAM to 3:) ven - 03
opulate the TLB... we then requery the TLB . Vo8
Beb = Example: stk
VPN = 06 a[0] | a[| a[2
= Program address space: 256-byte R
= All address translatlons go through the TLB R X o Vo=
= Addressable using 8 total bits (28) VPN = 08 | af7) | aif) | aio)
= 4 bits for the VPN (16 total pages) e
VN - 10
= Page size: 16 bytes e
w12
= Offset is addressable using 4-bits p—
N - 10
= Store an array: of (10) 4-byte integers VeN = 15
TCSS422: Oy ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
(el 2 2 \nstituteo!flr:;:rl\r;?ugv;Sr’:;jersi;:i;WashingtonrTacuma L9 ‘ (e A |ns(i(u(euf?r:£:\rl|:?o;tmjersi:r;:;Washingwn—ra:oma | L1420
0: int sum = 0 ; OFFSET 0: int sum = 0 ; OFFSET
w o o 1 w o o 1
s for(i=0; i<10; i++){ - 1: (i=0; i<10; i++){ .
2: sum+=a[i]; VPN =01 2: sum+=a[i]; VPN =01
3 } VPN = 03 35 } VPN = 03
; ven - o4 VN = 0t
= Consider the code above: VT R
= For the accesses: a[0], a[1], a[2], a[3], a[4],

. . VPN = 06 a0 | a1l | al2] VPN = 06 a[0] | a[| a[2
= |nitially the TLB does not know where a[] is ven =07 o) | ata) | a1 | ate) = a[5], a[6], a[7], a[8], a[9] ven =07 (g | ate | a1 | atel
= Consider the accesses: Nl v - o

Ve =09 ven <08
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], = How many are hits?
a[8], a[9] N =1 = How many are misses? VN - 11
- n ven - 12 X i w12
How many pages are accessed? — = What is the hit rate? (%) ——
= What happens when accessing a page not VPN - 14 = 70% (3 misses one for each VP, 7 hits) VeN - 14
in the TLB? ven - 15 N =15
TCSS422: Oy ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
(el 2 2 \nsliluleo!?f:;rl\r;?ugv;Sr’:;jersillcz;Washingloanacuma L2l ‘ (e A |ns(i(u(euf?r:£:\rl|:?o;Smjersi:r;:;Washingwn—ra:oma | ta22
0: int sum = 0 7 OFFSET = Page slze
w o o5 12 16
s for(i=0; i<10; i++){ veN =00
2: sum+=a[i]; VPN = 01
3) e - 03 = Larger page sizes increase the probability of a TLB hit
ven - o4
. . . & ven =05
What factors affect the hit/miss rate? ven o6 | Tamnanem = Example: 16-bytes (very small), 4096-bytes (common)
= Page size ven =07 [ag) | a | aps) | ate)

D t I It VPN =08 | a7 | ai8] | a9

L] . . .

ELE ECELLY VEN 09 = Larger sizes increase memory requirement of offset

= Temporal locality VNS0
ven =11
ven - 12
ven =13
en - 14
ven =15

TCSS422: Of ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
banas s | S o ey ueas | rbnary2saots | 1S5 omeing e e [e |

Slides by Wes J. Lloyd L14.4

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

TLB TRADEOFFS - 2 TLB TRADEOFFS - 3

= Spatlal locallty = Temporal locallty

= Accessing addresses local to each other improves the hit

e = Higher cache hit ratios are expected for repeated memory

accesses close in time
= Consider random vs. sequential array access
= Can dramatically improve performance for “second
= What happens when the data size exceeds the TLB size? iteration”

= E.g. 15t level TLB caches 64 4KB page addresses

= Single program can cache data lookups for 256 KB

TCS5422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
(el 2 2 Institute of Technology, University of Washington - Tacoma L1425 (e A L1426

Institute of Technology, University of Washington - Tacoma

EXAMPLE: LARGE ARRAY ACCESS TLB EXAMPLE IMPLEMENTATIONS
= Example: Consider an array of a custom struct where each = Intel Nehalem microarchitecture 2008 - multi level TLBs
struct is 64-bytes. Consider sequential access for an * First level TLB: = ——

separate cache for data (DTLB) and code (ITLB)
= Second level TLB:

shared TLB (STLB) for data and code
" 64 structs per 4KB page = Multiple page sizes (4KB, 2MB)

= 128 total pages = Page Size Extension (PSE) CPU flag
= TLB caches stores a maximum of 64 - 4KB page lookups fcieeepacelsizen

array of 8,192 elements stored contiguously in memory: Name Level 4KB| 2MB
DTLB | 1st 64 32
ITLB 1st 128 | 7/ logical core

STLB | 2nd | 512 none

= Intel Haswell microarchitecture 22nm 2013

= How many hits vs. misses for sequential array iteration? = Two level TLB
= 1 miss for every 64 array accesses, 63 hits = Three page sizes (4KB, 2MB, 1GB) Cache Page size
Name = Level 4KB 2mB 1GB
= Complete traversal: 128 total misses, 8,064 hits (98.4% hit = Without large page sizes consider | one st | e 2 4
ratio) the # of TLB entries to address MB | 1st | 128 | 8/logicalcore | none
1.9 MB Of memory"' STLB 2nd 1024 none

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

114.28

1427

February 28, 2018 February 28, 2018

HW CACHE TRADEOFF HANDLING TLB MISS

=Speed vs. size ®m Historical view
Speed (mEEEEEEEEEEEEEEE———) Size .)

ECISC - Complex instruction set computer
= |n order to be fast, caches must be small =|ntel x86 CPUs

= Too large of a cache will mimic physical memory
= Limitations for on chip memory

"YOU CAN'T HAVE YOUR CAKE AND EAT 17003 =Trad itionally have provided on CPU HW instructions
' and handling of TLB misses
=HW has a page table register to store location of
page table
Dwight on ‘“tradeoffs”
peary 20,008 e e gt Tcoms Il . | s

Slides by Wes J. Lloyd L14.5

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

HANDLING TLB MISS - 2 TLB CONTENTS
= RISC - Reduced instruction set computer = TLB typically may have 32, 64, or 128 entries
= ARM CPUs = HW searches the entire TLB in parallel to find the
translation

= Traditionally the OS handles TLB misses
= HW raises an exception
=Trap handler is executed to handle the miss

= Other bits
= Valid bit: valid translation?
= Protection bit: read/execute, read/write
= Address-space identifier: identify entries by process

= Advantages = Dirty bit

= HW Simplicity: simply needs to raise an exception
= Flexibility: OS provided page table implementations can VPN PFN other bits
use different data structures, etc.

Typical TLB entry look like this

TCS5422: Operating Systems [Winter 2018]

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018 L1431 (e A Institute of Technology, University of Washington - Tacoma

=

TLB: ON CONTEXT SWITCH TLB: CONTEXT SWITCH - 2
= TLB stores address translations for current running process = Address space identifier (ASID): enables TLB data to persist
= A context/switch to a new process invalidates the TLB during context switches - also can support virtual machines
= Must “switch” out the TLB Page 0
Page 1 |

= TLB flush Page 2 |
= Flush TLB on context switches, set all entries to O Process A ‘ Pa"'e : ‘ TLB Table
9 VPN PFN valid prot ASID

= Requires time to flush Virtual Memory TRETEEE p— "
= TLB must be reloaded for each C/S N N
= If process not in CPU for long, the TLB may not get reloaded

TR 10 [170 [1 [wx { 2
= Alternative: be lazy... 7 Page 1 - =
= Don't flush TLB on C/S 855 Page 2
= Share TLB across processes during C/S Page n
= Use address space identifier (ASID) to tag TLB entries by process Virtual Memory

TCS5422: Operating Systems [Winter 2018]

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018 Institute of Technology, University of Washington - Tacoma

11433

‘ February 28, 2018

[s

SHARED MEMORY SPACE

CACHE REPLACEMENT POLICIES

PFN valid rot ASID q
TEETEER WX n =" When TLB cache is full, how add a new address

. " _ . translation to the TLB?
50 101 1 rwx 2

5 5 . i = Observe how the TLB is loaded / unloaded...

= When processes share a code page = Goal minimize miss rate, increase hit rate
=Shared libraries ok
- i =5 Shernglof peoss & = Least Recently Used (LRU)
ode pages typically are ’ useful as it reduces the = Evict the oldest entry
not RWX number of physical

pages in use.

= Random policy
= Pick a candidate at random to free-up space in the TLB

TCSS422: Operating Systems [Winter 2018]

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 28, 2018 L1435 February 28, 2018 Institute of Technology, University of Washington - Tacoma

=

Slides by Wes J. Lloyd L14.6

TCSS 422 A — Winter 2018
Institute of Technology

LEAST RECENTLY USED

Page Frame:

= RED - miss
= WHITE - hit
= For 3-page TLB, observe replacement

11 TLB miss, 5 TLB hit

2/28/2018

TCS5422: Operating Systems [Winter 2018]

(el 2 2 e e T e G T e

11437

CHAPTER 20:

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Winter 2018]

LTy 2 2 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Chapter 20

=Smaller tables

=Hybrid tables

=Multi-level page tables

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11439

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
=12 bits for the page offset

TCS5422: Operating Systems [Winter 2018]

(e A [See et Techolo syl niersity o Washinstoniecome!

L14.40

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Winter 2018]

(g 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

14.41

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

1442

Slides by Wes J. Lloyd

L14.7

TCSS 422 A — Winter 2018
Institute of Technology

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
m 218 = 262,144 pages

32
zT, *4 =1MB per page table

= Memory requirement cut to %
= However pages are huge
= Internal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

2/28/2018

TCS5422: Operating Systems [Winter 2018]

(el 2 2 e e T e G T e

L14.43

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address

code o
1\ Allocate y "
5 PFN valid prot present dirty
5 10 1 r-x 1 0
heap 4 0
° 0
6
7 . 0 .
8 15 1 W 1 1
9
0
" 9 - -
12 3 1 w- 1 1
stack 13 23 i w- 1 1
e

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]

44
Institute of Technology, University of Washington - Tacoma | Lad4

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address

code

1
2

heap Most of the page table is unused
and full of wasted space. (73%)

Allocate "
4 PFN valid prot present

dirty

3
3 23 1 w- 1 1

stack

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

L14.45

HYBRID TABLES

= Combine segments and page tables ??

= Use stack, heap, code ? ?
segment base/bound registers a B

= Base register: point to page table

= Bounds register: store end of page table

February 28, 2018 TCSS422: Operating Systems [Winter 2018]

4.4
Institute of Technology, University of Washington - Tacoma | tade

HYBRID TABLES - 2

= Each process has (3) page tables

= 1 each for code, stack, heap segments

= Base register stores address of start of table

= 216 pjts for VPN, can only address 65,536 pages/segment
313029282726252423222120191817161514131211109 8 765 4 321 0
BRI T e
" : :

VPN Offset

32-bit Virtual address space with 4KB pages

Seg value Content

00 unused segment
01 code
10 heap.
11 stack

TCS5422: Operating Systems [Winter 2018]

(g 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

L14.47

HYBRID TABLES:
COMPUTING PAGE TABLE ADDRESS

HW must look up page table ADDR on TLB miss
Segment (SN) bits: indicate which base/bound registers to use

01: SN = (VirtualAddress & SEG_MASK) >> SN_SHIFT
02: VEN = (VirtualAddress & VPN_MASK) >> VPN_SHIFT
03: AddressOfPTE = Base[SN] + (VPN * sizeof (PTE))

SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
SN_SHIFT = 30 bits (shift 30 bits right)
= The SN will just be 2 bits...
VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000
VPN_SHIFT = 12 bits (shift 12 bits right)
= The VPN will just be 18 bits...
PTE ADDR = Base of table + VPN * size of a page table entry
= PTE=4 (or “10” in binary), will shift VPN 2 bits left <

February 28, 2018 TCSS422: Operating Systems [Winter 2018]

4.4
Instituteof Technology, University of Washington - Tacoma | L1448

Slides by Wes J. Lloyd

L14.8

TCSS 422 A — Winter 2018
Institute of Technology

HYBRID TABLE EXAMPLE:

= Consider 3 Segments, w/ 4KB pages

= 3 sets of base/bounds registers (3 x 16 B)
= 32-bit VPN bit-string:
= 2 bits - segment type bit code
= 2 bits - status bits
= 16 bits - virtual page number VPN (indexes 65,536 pages)
= 12 bits - page offset (indexes 4KB pages)
= How much memory Is required?
= 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
= 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
= 786480 bytes + 1024 KB/byte = ~ 768 KB per process

= How much memory can be addressed?
= 256 MB (21¢ pages x 4KB)

TCS5422: Operating Systems [Winter 2018]

(el 2 2 e e T e G T e

= 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

2/28/2018

HYBRID TABLE EXAMPLE:

= Consider 3 Segments, w/ 4KB pages

= 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)
= 3 sets of base/bounds registers (3 x 16 B)
= 32-bit VPN bit-string:

= 2 bits - segment type bit code

i Problem: For a hybrid approach, with 32-
. VPNs, how do we index a// RAM

= Ho for a modern 4GB computer?

= 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
= 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
= 786480 bytes + 1024 KB/byte = ~ 768 KB per process

= How much memory can be addressed?
= 256 MB (21 pages x 4KB)

TCS5422: Operating Systems [Winter 2018]

(e A S s 1 T, st G B e TP

MULTI-LEVEL PAGE TABLES

= Consider a page table:
= 32-bit addressing, 4KB pages
m 220 page table entries

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBIR | 201

= Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

| PBTR | 200
j S PN

k] = =

2 e 2 El

5 T T 2 PN

i i wm i ~] ©

u S g o o] B |8
2 s S|
& g o] - of - -2

0 X 203 1| w 100 o

The Page Directory Page

1 of PT:Not Allocated]

PFN202

“=lelel=l=la el a [~ - |valid
H

&

15

PFN203

0
0
1
i

15

PFN204

= MUST SAVE MEMORY!

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11451

Linear (Left) And Multi-Level (Right) Page Tables

TCS5422: Operating Systems [Winter 2018]

(e A [See et Techolo syl niersity o Washinstoniecome!

[s

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR | 201 PBTR | 200

3

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

PFN203

1w 36

1w]| 15

0
0
1
1

PFN204

rw 8
w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCS5422: Operating Systems [Winter 2018]

(g 2 2 Institute o Technoloay)Universitylof Washington®Tacomal

114553

MULTI-LEVEL PAGE TABLES - 3

= Advantages

=Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space

tradeoff

= Sacrifice address translation time (now 2-level) for space

= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

[s

Slides by Wes J. Lloyd

L14.9

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

EXAMPLE EXAMPLE - 2
= 16KB address space, 64byte pages = 256 total page table entries (64 bytes each)
= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 = 256 (pages) = 1,024 bytes page table size, stored using 64-byte pages
o~ = (1024/64) = 16 page directory entries (PDEs)
10000 000 code
(free) Address space 16 k8
(ree) Page size 64 byte = Each page directory entry (PDE) can hold 16 page table
:eap Virtual address 14 bit entries (PTES) e.g. Ioukups
icop) VPN 8 bit
E:'ee; Offset 6 bit
Stack Page table entry Gl = 16 page directory entries (PDE) x 16 page table entries (PTE)
1111 111 stack A 16-KB Address Space With 64-byte Pages = 256 total PTEs

[13]12]11]0[o[8]7[6[5]4a][3]2]2]0]
: d Offset i

= Key Idea: the page table Is stored uslng pages too!

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L1455 February 28, 2018 | 114,56

PAGE DIRECTORY INDEX PAGE TABLE INDEX
= Now, let’s split the page table into two: = 4 bits page directory index (PDI - 15t |evel)
= 8 bit VPN to map 256 pages = 4 bits page table index (PTI - 2" level)

= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

Page Directory Index , Page Table Index

13|12l11|10‘9|8]716I5|4|3‘2|1|0|
VPN ' Offset '
14-bits Virtual address

. Page Directory Index _,

|13|12|11|10I9‘8‘7‘6|5‘4‘3|2|1|0“
! VPN " Offset ! = To dereference one 64-byte memory page,

14-bits Virtual address = We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Oy ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
(el 2 2 \nsliluleo!?f:;rl\r;?ugv;Sr’:;jersillcz;Washingloanacuma L7 (e A |ns(i(u(euf?r:£:\rl|:?o;Smjersi:r;:;Washingwn—ra:oma | L1458
= For thls example, how much space Is requlired to store as a = Consider: 32-bit address space, 4KB pages, 22° pages

single-level page table with any number of PTEs? = Only 4 mapped pages
= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= How much space Is required for a two-level page table with = Page directory = 210 entries x 4 bytes = 1 x 4 KB page
only 4 page table entrles (PTEs) ? = Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= Page directory = 16 entries x 4 bytes (1 x 64 byte page) = 8KB (8,192 bytes) required
= Page table = 4 entries x 4 bytes (1 x 64 byte page) = Savings = using just .78 % the space !!!
= 128 bytes required (2 x 64 byte pages)
= Savings = using just 12.5% the space !!! = 100 sparse processes now require < 1MB for page tables

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

February 28, 2018 Institute of Technology, University of Washington - Tacoma

L1459 February 28, 2018

[e

Slides by Wes J. Lloyd L14.10

TCSS 422 A — Winter 2018
Institute of Technology

2/28/2018

MORE THAN TWO LEVELS MORE THAN TWO LEVELS - 2

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

30292827262524232221201918171615141312111098 76 54 3 2

10
30292827262524232221201918171615141312111098 76 54 3 21 0 ‘ | |] ‘ ‘ ‘ ‘ [‘ l l l | | | | | ‘) ‘ ‘ l l | | | |
ENANRRNANNRNARNANNRNARRANARAE e ——
VPN offset
Virtual address 30 bit Page size 512 byte
Page size 512 byte VPN 21 yt
bit Offset 9 bit
Z:f’;‘et slbn Page entry per page 128 PTEs ——> log,128 =7

TCS5422: Operating Systems [Winter 2018]

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

e a5 L6l FEBan28720 8 S s 1 T, st G B e TP L1462

MORE THAN TWO LEVELS - 3

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

3029282726252423222120191817161514131211109 8 7 6 5 4

NNRRRRAARNRN A ANRRARRRRNANN

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

" Pagosad -

Can't Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses

Page Directory Index]

VPN offset
(512 bytes / 32 bytes)
Virtual address 30 bit irtual address 30 bit
Page size 512 byte Page size 512 byte
VPN 21 bit VPN 21 bit
Offset 9 bit Offset 9 bit
Page entry per page | 128 PTEs 1 > log,128=7 Page entry per page | 128 PTEs —1 > 1log,128 =7

February 28, 2018

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L14.63

TCS5422: Operating Systems [Winter 2018]

(e A [See et Techolo syl niersity o Washinstoniecome!

Lia64

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Pagg

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

February 28, 2018

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.65

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

30292827262524232221201918171615141312111098 7654 3 21 0

[T T I T T T

“Page Table Index

VPN

= Consider the implications for address translation!
= How much space is required for a virtual address space with 4

Virtual address 0 bit

Page size 512 byte entries on a 512-byte page? (let’s say 4 32-bit integers)
;;T,t ;1;“ = PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

Page entry per page | 128 PTEs ——>log,128 =7 = Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

TCSS422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

L1466

Slides by Wes J. Lloyd

L14.11

TCSS 422 A — Winter 2018 2/28/2018
Institute of Technology

EXAMPLE TLB ENTRY - MIPS R4000

QUESTIONS

= Early 64-bit RISC processor

All 64 bits of this TLB entry(example of MIPS R4000)

0123456789011 .. 19 . 31
O P T T e T
CLLTTTTT DT e, PETEETTTTLT e, 1o

Flag Content

19-bit VPN The rest reserved for the kernel.

24-bit PFN Systems can support with up to 64GB of main memory(22¢s 4KB pages).

Global bitG) Used for pages that are globally-shared among processes.

AsD 05 can use to distinguish between address spaces.

Coherence bit(C) | determine how a page is cached by the hardware.

Dirty bit®) marking when the page has been written.

Valid bitt) tells the hardware if there is a valid translation present in the entry.

TCS5422: Operating Systems [Winter 2018]
(e A S s 1 T, st G B e TP L1468

Slides by Wes J. Lloyd L14.12

