
TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.1Slides by Wes J. Lloyd

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Paging,
Translation Lookaside Buffer,

and Smaller Tables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz 4 – Active Reading Chapter 19

 Homework 2 Questions

 Homework 3 Questions

 Ch. 18
 Introduction to Paging

 Ch. 19
 Translation Lookaside Buffer (TLB)

 Ch. 20
 Smaller Tables
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OBJECTIVES

 There was no feedback !!!
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FEEDBACK FROM 2/23

CHAPTER 18:
INTRODUCTION TO

PAGING
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 Where are page tables stored?

 What are the typical contents of the page table?

 How big are page tables?

 Does paging make the system too slow?
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PAGING DESIGN QUESTIONS

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes
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WHERE ARE PAGE TABLES STORED?



TCSS 422 A – Winter 2018
Institute of Technology

2/28/2018

L14.2Slides by Wes J. Lloyd

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is 

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits), 
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?
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NOW FOR AN ENTIRE OS

 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop 
iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

CHAPTER 19:
TRANSLATION 

LOOKASIDE BUFFER 
(TLB)
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Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch
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OBJECTIVES
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 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory
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TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 RAM accesses
for first 5 for- loop 
iterations

 Move lookups
from RAM to TLB 
by caching page
table entries
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TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory
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TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)
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Key detail:

 For a TLB miss, we first access the page table in RAM to 
populate the TLB… we then requery the TLB

 All address translations go through the TLB
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TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits  (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers
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TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 
in the TLB?
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality
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TLB EXAMPLE - 4

 Page size

 Larger page sizes increase the probability of a TLB hit

 Example: 16-bytes (very small), 4096-bytes (common)

 Larger sizes increase memory requirement of offset 

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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TLB TRADEOFFS
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 Spatial locality

 Accessing addresses local to each other improves the hit 
rate.

 Consider random vs. sequential array access

 What happens when the data size exceeds the TLB size?
 E.g. 1st level TLB caches 64 4KB page addresses

 Single program can cache data lookups for 256 KB
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TLB TRADEOFFS - 2

 Temporal locality

 Higher cache hit ratios are expected for repeated memory 
accesses close in time 

 Can dramatically improve performance for “second 
iteration”
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TLB TRADEOFFS - 3

 Example: Consider an array of a custom struct where each 
struct is 64-bytes.   Consider sequential access for an 
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits  (98.4% hit 
ratio)
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EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi  level TLBs
 First level TLB: 

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag 

for larger page sizes 

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…
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TLB EXAMPLE IMPLEMENTATIONS

 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory
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Institute of Technology, University of Washington - Tacoma
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HW CACHE TRADEOFF

Speed Size

Dwight on “tradeoffs”

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions 
and handling of TLB misses

HW has a page table register to store location of 
page table

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma
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HANDLING TLB MISS
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 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception 

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can 
use different data structures, etc.
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HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the 
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit
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TLB CONTENTS

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB f lush
 Flush TLB on context switches, set all entries to 0 

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process 
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TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist 
during context switches – also can support virtual machines
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TLB: CONTEXT SWITCH - 2

When processes share a code page 

Shared libraries ok

Code pages typically are RX,
not RWX

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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SHARED MEMORY SPACE

Sharing of pages is 
useful as it reduces the 

number of physical 
pages in use.

When TLB cache is full, how add a new address 
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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CACHE REPLACEMENT POLICIES
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 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

CHAPTER 20:
PAGING:

SMALLER TABLES
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Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations 
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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LINEAR PAGE TABLES - 2

Page tables are too big and 
consume too much memory.

Need Solutions …
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 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a 
few variables
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PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused 
and full of wasted space. (73%)

 Combine segments and page tables

 Use stack, heap, code 
segment base/bound registers

 Base register: point to page table

 Bounds register: store end of page table
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HYBRID TABLES

 Each process has (3) page tables

 1 each for code, stack, heap segments

 Base register stores address of start of table

 216 bits for VPN, can only address 65,536 pages/segment
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HYBRID TABLES - 2

 HW must look up page table ADDR on TLB miss
 Segment (SN) bits:  indicate which base/bound registers to use

 SEG_MASK = 1100 0000 0000 0000 0000 0000 0000 0000
 SN_SHIFT = 30 bits (shift 30 bits right)
 The SN will just be 2 bits… 

 VPN_MASK = 0011 1111 1111 1111 1111 0000 0000 0000
 VPN_SHIFT = 12 bits (shift  12 bits right) 
 The VPN will just be 18 bits…

 PTE ADDR = Base of table + VPN * size of a page table entry
 PTE=4 (or “10” in binary), will shift VPN 2 bits left 

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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HYBRID TABLES: 
COMPUTING PAGE TABLE ADDRESS
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 Consider  3 Segments,  w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x  16 B)

 32-bit VPN bit -string:
 2 bits – segment type bit code
 2 bits – status bits 
 16 bits – virtual page number VPN  (indexes 65,536 pages)
 12 bits – page offset  (indexes 4KB pages)

 How much memory is  required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be  addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)
February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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HYBRID TABLE EXAMPLE:

 Consider  3 Segments,  w/ 4KB pages
 3 code pgs (3 x 4KB), 1 stack pg (1 x 4KB), 3 heap pgs (3 x 4KB)

 3 sets of base/bounds registers (3 x 16 B)

 32-bit VPN bit -string:
 2 bits – segment type bit code
 2 bits – status bits 
 16 bits – virtual page number VPN  (indexes 65,536 pages)
 12 bits – page offset  (indexes 4KB pages)

 How much memory is  required?
 4 bytes per PTE x 65,536 pages = 262,144 bytes per segment
 3 segments = 786,432 bytes (pg tables) + 48 bytes (registers)
 786480 bytes ÷ 1024 KB/byte = ~ 768 KB per process

 How much memory can be  addressed?
 256 MB (216 pages x 4KB)
 Overhead= 768 KB / 256 MB (.3%)
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HYBRID TABLE EXAMPLE:

Problem: For a hybrid approach, with 32-
bit VPNs, how do we index all RAM 

for a modern 4GB computer?

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page 
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.52

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the 
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space 
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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MULTI-LEVEL PAGE TABLES - 3
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 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages 
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table 
entries (PTEs)  e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L14.56

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry  (PDE)

 One page table Index (PTI) – can address 16 pages

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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PAGE TABLE INDEX

 For this example, how much space is  required to store as a 
single-level page table with any number of  PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is  required for a two-level page table with 
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!
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EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB  (we’ve done this before)

 Two level:  (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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32-BIT EXAMPLE
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 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

February 28, 2018 TCSS422: Operating Systems [Winter 2018]
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MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI) 
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MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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Institute of Technology, University of Washington - Tacoma

L14.63

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a virtual address space with 4 
entries on a 512-byte page?  (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!
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QUESTIONS
 Early 64-bit RISC processor
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EXAMPLE TLB ENTRY – MIPS R4000


