TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Free Space Management,
Introduction to Paging, 7
Translation Lookaside Buffer m<%

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

EeBILarvl2632018 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Ungraded Quiz 3- Synchronized Array
® Homework 2 Questions
® Homework 3 Questions

= Ch. 17
=" Free Space Management
= Ch. 18
= [ntroduction to Paging
=Ch. 19
= Translation Lookaside Buffer (TLB)

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 26, 2018

L13.2

Lioyd

2/26/2018

L13.1

TCSS 422 A — Winter 2018
Institute of Technology

FEEDBACK FROM 2/21

E |s this how my output will be tested (by running 'cat
/proc/proc_report' command)? I'm able to get the output
printed to the proc file.

PROCESS REPORTER

Name=systemd number_of_children=29 first_child_pid=234 first_child_name: systemd-journal
hreadd number_of_children=67 first_child_pid=4 first_child_name: kworker/@:0H
orker/0:0H *No Children
oftirqd/® *No Children
u_sched *No Children
u_bh *No Children
gration/@ *No Children

Name=1lru-add-drain *No Children
Name=watchdog/® *No Children
Name=cpuhp/® *No Children
Name=cpuhp/1 *No Children
Name=watchdog/1 *No Children
Name=migration/1 *No Children
Name=ksoftirqd/1 *No Children
Name=kworker/1:0H *No Children
Name=kdevtmpfs *No Children
Name=netns *No Children
Name=khungtaskd *No Children
Name=oom_reaper *No Children

February 26, 2018

TCSS422: Operating Systems [Winter 2018]

L13.3
Institute of Technology, University of Washington - Tacoma

the

= 3.1

Process

= NO,

FEEDBACK - 2

® 2 Do |l also need to print output to kernel log messages? (when |
type 'dmesg') or only print the proc file?

this is optional... The kernel log output is only used to grade
program if the procfile is not implemented.

notice process ID skips numbers, is that okay? See 'Process ID

="'below.

ID=896 Name=VBoxService *No Children
ID=921 Name=Xorg *No Children
ID=925 Name=dhclient *No Children

s ID=938 Name=dnsmasq *No Children
ID=1089 Name=lightdm number_of_children=1 first_child_pid=1098 first_child_name: upstart
ID=1094 Name=systemd number_of_children=1 first_child_pid=1095 first_child_name: (sd-pam)

= YES, the process that formerly had the PID has likely terminated.

February 26, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L134

Slides by Wes J. Lloyd

2/26/2018

L13.2

TCSS 422 A — Winter 2018

Institute of Technology

FEEDBACK - 3

= | am confused about trying to get this assignment going. |
understand the importance of process tree traversal being
separate from output being placed in proc file, however | don't
know how to go about completely separating these two.

® | am thinking | need to make a method that traverses the
process tree, and | store that information in some sort of data
structure?

® This is a good approach. Store the information in a data
structure so it can be accessed later. Note that malloc is
called kmalloc for kernel module programming.

® Or make a temporary output file?
® This is a less optimal solution.

TCSS422: Operating Systems [Winter 2018]

L13.5
Institute of Technology, University of Washington - Tacoma

February 26, 2018

FEEDBACK - 4

® The assignment description says: "Report generation and
process list computation cannot occur in the /proc output
routines. "

= | am confused as to what this report generation is supposed to
look like it it's not the /proc output.

= Points are deducted if report generation is done in the proc
file output routine. (e.g. the event handler that is called when
someone tries to read /proc/proc_report.)

= Page 2 of Assignment 2 shows example output of the proc file.

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L13.6

February 26, 2018

Slides by Wes J. Lloyd

2/26/2018

L13.3

TCSS 422 A — Winter 2018
Institute of Technology

B o

T

0l
CHAPTER 17:

FREE SPACE
MANAGEMENT

TCSS422: Operating Systems [Winter 2018]

bebruanyi26a2018 Institute of Technology, University of Washington - Tacoma

LSRN

FREE SPACE MANAGEMENT

® Management of memory using

® Only fixed-sized units

= Easy: keep a list
= Memory request - return first free entry
= Simple search

® With variable sized units

= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.8

Slides by Wes J. Lloyd

2/26/2018

L13.4

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

FRAGMENTATION

® Consider a 30-byte heap

30-byte heap: | free | used | free |
0 10 20 30

® Request for 15-bytes

s addr:0 addr:20
free listt. head — 1.,.10 —® 1en:10 — ™ NULL

® Free space: 20 bytes

= No available contiguous chunk = return NULL

TCSS422: Operating Systems [Winter 2018]

February 26,2018 Institute of Technology, University of Washington - Tacoma

L13.9

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

® Internal: Jlost space - OS can’t compact
= OS returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
=" Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.10

Lloyd

2/26/2018

L13.5

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

ALLOCATION STRATEGY: SPLITTING

® Request for 1 byte of memory: malloc(1)

30-byte heap: | free | used | free |
0 10 20 30

5 addr:0 addr:20
free list. | head —» ...19 ™ jen:10 " NULL

® OS locates a free chunk to satisfy request
® Splits chunk into two, returns first chunk

30-byte heap: | free | used [| free |
0 10 20 21 30

e addr:0 addr:21
free list head —* 1.,.990 — 1en:o — > NULL

TCSS422: Operating Systems [Winter 2018]

L13.11
Institute of Technology, University of Washington - Tacoma

February 26, 2018

ALLOCATION STRATEGY: COALESCING

® Consider 30-byte heap
® Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr: 20

head len:10 Len:10 len:10

—> NULL

® Request arrives: malloc(30)
® SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
® Coalescing regroups chunks into contiguous chunk

addr:0

head len: 30

—> NULL

= Allocation can now proceed
® Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L13.12

February 26, 2018

Lloyd

2/26/2018

L13.6

TCSS 422 A — Winter 2018
Institute of Technology

ptr

MEMORY HEADERS

® free(void *ptr): Does not require a size parameter

® How does the OS know how much memory to free?

® Header block
= Small descriptive block of memory at start of chunk

j|~ The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

February 26, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L13.13

hptr —>

ptr —»

MEMORY HEADERS - 2

size: 20
magic: 1234567 typedef sﬁruct‘ __header_t {
int size;
int magic:
The 20 bytes } header t;
returned to caller

A Simple Header

Specific Contents Of The Header

® Contains size
® Pointers: for faster memory access
B Magic number: integrity checking

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.14

Slides by Wes J. Lloyd

2/26/2018

L13.7

TCSS 422 A — Winter 2018 2/26/2018
Institute of Technology

MEMORY HEADERS - 3

® Size of memory chunk is:
® Header size + user malloc size
® N bytes + sizeof(header)

® Easy to determine address of header

void free(void *ptr) ({

header t *hptr = (void *)ptr - sizeof (header_ t):

TCSS422: Operating Systems [Winter 2018] 13.15
Institute of Technology, University of Washington - Tacoma :

February 26, 2018

THE FREE LIST

® Simple free list struct

typedef struct _ node_t {
int size;
struct _ node t *next;

} nodet_t:

® Use mmap to create free list
®m 4kb heap, 4 byte header, one contiguous free chunk

// mmap () returns a pointer to a chunk of free space
node t *head = mmap (NULL, 4096, PROT READ|PROT WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0):
head->size - sizeof (node_t):
head->next

o5
NULL;

TCSS422: Operating Systems [Winter 2018] 113.16
Institute of Technology, University of Washington - Tacoma :

February 26, 2018

Slides by Wes J. Lloyd L13.8

TCSS 422 A — Winter 2018 2/26/2018
Institute of Technology

FREE LIST - 2

® Create and initialize free-list “heap”
// mmap () returns a pointer to a chunk of free space

node_t *head = mmap (NULL, 4096, PROT READ|PROT WRITE,
MAP ANOW|MAP PRIVATE, -1, 0):

- sizeof(node t):

head->size = 409%¢
head->»next = NULL;

®= Heap layout:
[virtual address: 16KB]
header: size field

size: 4088

head —>| next: 0 header: next field(NULL is 0)

b the rest of the 4KB chunk

TCSS422: Operating Systems [Winter 2018]
Eebitian 2632018 Institute of Technology, University of Washington - Tacoma L13.17

FREE LIST: MALLOC() CALL

® Consider a request for a 100 bytes: malloc(100)

®m Header block requires 8 bytes
= 4 bytes for size, 4 bytes for magic number

m Split the heap - header goes with each block N

A 4KB Heap With One Free Chunk A Heap : After One Allocation :
head ——> T
size: 4088 S8 i
magic: 1234567
ptr —> 2
the rest of e FI.rSt- block the 100 bytes now allocated
the 4KB chunk is used
head — E
size: 3980
next: 0
. the free 3980 byte chunk
TCSS422: Operating Systems [Winter 2018]
February 26, 2018 Institute of Technology, University of Washington - Tacoma L13.18

Slides by Wes J. Lloyd L13.9

TCSS 422 A — Winter 2018

Institute of Technology

® Addresses of chunks

FREE LIST: FREE() CALL

size: 100
RSN { il e

® Start=16384

[virtual address: 16KB]

100 bytes still allocated

100 bytes still allocated
(but about to be freed)

+ 108 (end of 15t chunk) size.100

+ 108 (end of 2" chunk) spt —p O 2
Free this

+ 108 (end of 3" chunk) block

= 16708 size: 100

magic: 1234567

head —>

size: 3764
next: 0

] 100 bytes still allocated

The free 3764-byte chunk

Free Space With Three Chunks Allocated

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.19

® Free(sptr)

FREE LIST:

FREE() CHUNK #2

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of
memory)

100 bytes still allocated

® Qur 3 chunks start at 16 KB :::.c 123350507
(@ 16,384 bytes)
head size: 100
= Free chunk #2 - sptr sptr — next 16708
Block
® Sptr = 16500 Now Free
= addr - sizeof(node_t) 2
®m Actual start of chunk #2 e 3762
" 16492 next: 0

The free 3764-byte chunk

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.20

Slides by Wes J. Lloyd

2/26/2018

L13.10

TCSS 422 A — Winter 2018
Institute of Technology

" Free(16392)
" Free(16608)

out of order

= Now free remaining chunks:

FREE LIST- FREE ALL CHUNKS

[virtual address: 16KB]

= External fragmentation
= Free chunk pointers

®m Coalescing of next
pointers is needed

= Walk back 8 bytes for actual
start of chunk

S size: 10 |[«—m
i next. 16492
e (now free)
size: 100 | «—————
next: 16708
. (now free)
head, —» size: 100
next: 16384
wes (now free)
size: 3764 |«
next: 0
i The free 3764-byte chunk

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.21

® sbrk(), brk()

GROWING THE HEAP

(not in use)
Heap Heap
(not in use)

Address Space

® Start with small sized heap
® Request more memory when full

break

Segmented heap
(not in use)
Heap Heap
sbrk()‘,'
y
break T N __‘ (not in use)
\\.\\\
Address Space ., Heap

Physical Memory

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.22

Slides by Wes J. Lloyd

2/26/2018

L13.11

TCSS 422 A — Winter 2018

Institute of Technology

MEMORY ALLOCATION STRATEGIES

m Best fit
= Traverse free list

= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

® Worst fit
= Traverse free list
= |dentify largest free chunk

= Split largest free chunk, leaving a still large free chunk

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.23

EXAMPLES

® Allocation request for 15 bytes

head > 10 > 30

20

® Result of Best Fit

head > 10 > 30

> NULL

® Result of Worst Fit

head > 10 > 15

> NULL

20

> NULL

February 26, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L13.24

Slides by Wes J. Lloyd

2/26/2018

L13.12

TCSS 422 A — Winter 2018

Institute of Technology

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TCSS422: Operating Systems [Winter 2018]

February 26,2018 Institute of Technology, University of Washington - Tacoma

L13.25

SEGREGATED LISTS

® For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

® Manage as segregated free lists
® Provide object caches: stores pre-initialized objects

® How much memory should be dedicated for specialized
requests (object caches)?

® |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.26

Slides by Wes J. Lloyd

2/26/2018

L13.13

TCSS 422 A — Winter 2018

Institute of Technology

BUDDY ALLOCATION

® Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

®m Consider a 7KB request

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

64KB free space for 7KB request

TCSS422: Operating Systems [Winter 2018]

February 26,2018 Institute of Technology, University of Washington - Tacoma

L13.27

BUDDY ALLOCATION - 2

®m Buddy allocation: suffers from internal fragmentation

m Allocated fragments, typically too large

® Coalescing is simple
= Two adjacent blocks are promoted up

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.28

Slides by Wes J. Lloyd

2/26/2018

L13.14

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 18:
INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Winter 2018]

bebruanyi26a2018 Institute of Technology, University of Washington - Tacoma

PAGING

® Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 26, 2018

L13.30

Slides by Wes J. Lloyd

2/26/2018

L13.15

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

ADVANTAGES OF PAGING

® Flexibility
= Abstracts the process address space into pages

= No need to track direction of HEAP / STACK growth
Just add more pages...

= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCSS422: Operating Systems [Winter 2018]
February 26,2018 Institute of Technology, University of Washington - Tacoma

L13.31

Page Table:

PAGING: EXAMPLE VPO - PF3

VP1 - PF7
VP2 > PF5
= Consider a 128 byte address space VP3 - PF2

with 16-byte pages

page frame 0 of
physical memory

® Consider a 64-byte program (unused) | page frame 1
address space

reserved for OS

page 3 of AS | page frame 2

page 0 of AS page frame 3

64
g (page 0 of (unused) page frame 4
16 the address space) 20
(page 1) page 2 of AS | page frame 5
32 9%
(page 2) (unused) page frame 6
48 112
64 (page 3) page 1 of AS | page frame7
128
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
February 26, 2018 ;rncsstlstti: .ocf)g’:;;tr:glgosg\\l:tz:qiie[glt;tz; Seai.?ington - Tacoma L1332

Lloyd

2/26/2018

L13.16

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset

Va5 | Va4 | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes, Address Space: 64-bytes

VPN offset
Here there are

Jjust four pages...

I I
[[1

0 1 0 d 0 1

TCSS422: Operating Systems [Winter 2018]

February 26,2018 Institute of Technology, University of Washington - Tacoma

L13.33

EXAMPLE:

PAGING ADDRESS TRANSLATION

® Consider a 64-byte program address space (4 pages)
® Stored in 128-byte physical memory (8 frames)

® Offset is preserved : V?N i Oﬁ.SEt 1
= VPN is looked up :ég;asws g i w25 |
Page Table: Vo
VPO - PF3
> Address
VP1 > PF7 < Translation
VP2 - PF5
VP3 > PF2 Vo
v R EAE
L i] L : J
PFN offset

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.34

Lloyd

2/26/2018

L13.17

TCSS 422 A — Winter 2018

Institute of Technology

PAGING DESIGN QUESTIONS

® Where are page tables stored?

® What are the typical contents of the page table?

® How big are page tables?

® Does paging make the system too slow?

TCSS422: Operating Systems [Winter 2018]

February 26,2018 Institute of Technology, University of Washington - Tacoma

L13.35

WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (229 pages)
= 12 bits for the page offset (212 unique bytes in a page)

® Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Winter 2018]

February 26, 2018 Institute of Technology, University of Washington - Tacoma

L13.36

Slides by Wes J. Lloyd

2/26/2018

L13.18

TCSS 422 A — Winter 2018
Institute of Technology

PAGE TABLE EXAMPLE

® Each slot dereferences a VPN
® Provides physical frame number

® Each slot requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is
unrealistically small)

= With 220 slots in our page table for a single process

VPN,

VPN,

VPN,

VPN 1048576

® How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.37

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

400 MB / 4000 GB

® |s this efficient?

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

®m Page table memory requirement is now 4MB x 100 = 400MB

® |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.38

Slides by Wes J. Lloyd

2/26/2018

L13.19

TCSS 422 A — Winter 2018 2/26/2018
Institute of Technology

WHAT’S ACTUALLY IN THE PAGE TABLE

®m Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

® Page-table entry
= 32 bits for capturing state

Bl30BBTX5XB32222019181716151413121109 8 7 6 5 4

3
= O
PFN o|g[o|<[0]3

Us |m

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Winter 2018] 113.39

February 26,2018 Institute of Technology, University of Washington - Tacoma

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

BV BTXH5XB3R2A01918171615143121109 8 7 65 4

RAW |+
P

3
PFN olzla|<|S|E
O |0

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Winter 2018] 113.40
Institute of Technology, University of Washington - Tacoma !

February 26, 2018

Slides by Wes J. Lloyd L13.20

TCSS 422 A — Winter 2018
Institute of Technology

PAGE TABLE ENTRY - 2

= Common flags:

= Protection Bit: Indicating whether the page could be read

from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

accessed

= Valid Bit: Indicating whether the particular translation is valid.

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.41

HOW BIG ARE PAGE TABLES?

®m Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Reduced memory requirement
Compared to base and bounds, and segments

®E Paging supports efficiently storing a sparsely populated
address space

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.42

Slides by Wes J. Lloyd

2/26/2018

L13.21

TCSS 422 A — Winter 2018
Institute of Technology

heeded

DOES PAGING MAKE

THE SYSTEM TOO SLOW?

® Translation

® |ssue #1: Starting location of the page table is

= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP1 > PF7

: VP2 > PF5

Stored in RAM > VP3 > PF2

m |ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.43

PAGING MEMORY ACCESS

// Extract the VPN from the virtual address
VPN = (virtualAddress & VPN_MASK) >> SHIFT

the address of the page-table entry (PTE)
= PTBR + (VPN * sizeof(PTE))

// Fetch the PTE
PTE = AccessMemory(PTEAddr)

// Check if process can access the page

valid == False)
RaiseException(SEGMENTATION_FAULT)
(CanAccess(PTE.ProtectBits) == False)

RaiseException(PROTECTION_FAULT)

// Access is OK: form physical address and fetch it
offset = virtualAddress & OFFSET_MASK

PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

Register = AccessMemory(PhysAddr)

1.

2.

3.

4, // Form
5. PTEAddr
6.

7.

8.

9.

10.

11. if (PTE.
12

13 else if
14

15 else

16

17

18

19

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.44

Slides by Wes J. Lloyd

2/26/2018

L13.22

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000]:

for (i = 0; 1 < 1000; i++)
array[i] = 0:

= Assembly equivalent:

0x1024 movl $0x0, (%edi, $eax, 4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
0x1030 jne 0xl024

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L13.45

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

® Locations:

Page Table[39]

1224
= Page table o o o i O 174 T
3
= Array Page Table[1] 1124 3
= Code \ -107a &
0 0000 good 0ong o000 gool jeoq
= 50 accesses 2 4000 4 PR
= o o
for 5 loop F 40050 4 ° - 7282 ®
. . £ m [n 2
iterations 40000 ——m | 555
1124 e ~ 4196
g :OERE 2
3 1074— a6 2
“ 1024 A N n u BT 096 ©
0 10 20 30 40 50
Memory Access
February 26, 2018 TCSS422: Operating Systems [Winter 2018] 113.46

Institute of Technology, University of Washington - Tacoma

Lloyd

2/26/2018

L13.23

TCSS 422 A — Winter 2018 2/26/2018
Institute of Technology

QUESTIONS

Slides by Wes J. Lloyd L13.24

