TCSS 422 A — Winter 2018 2/26/2018
Institute of Technology

OBJECTIVES

TCSS 422: OPERATING SYSTEMS
| |

= Ungraded Quiz 3- Synchronized Array
= Homework 2 Questions
Free Space Management, o = Homework 3 Questions
Introduction to Paging, ‘
Translation Lookaside Buffer & = Ch. 17
= Free Space Management

u
Wes J. Lloyd ch.18 ,
= Introduction to Paging

Institute of Technology =Ch. 19
University of Washington - Tacoma = Translation Lookaside Buffer (TLB)

TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
(el 24 2 Institute of Technology, University of Washington - Tacoma FEBan25220 08 S s 1 T, st G B e TP

132 |

FEEDBACK FROM 2/21 FEEDBACK - 2

= |s this how my output will be tested (by running 'cat = 2, Do | also need to print output to kernel log messages? (when |
/proc/proc_report' command)? I'm able to get the output type 'dmesg') or only print the proc file?

printed to the proc file.
_ = NO, this is optional... The kernel log output is only used to grade

the program if the procfile is not implemented.

= 3. | notice process ID skips numbers, is that okay? See 'Process ID
="below.

6 Name=VBoxService *No Children
*No Children
ient *No Children
sq *No Children

=
lightdn number_of_children=1 first_child_pid=1698 first_child_name: upstart
temd number_of children=1 first_child_pid=1095 first_child_name: (sd-pam)

= YES = YES, the process that formerly had the PID has likely terminated.

[SEX)

February 26, 2018 TCS5422: Operating Systems [Winter 2018] | 133 ‘ February 26, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

FEEDBACK - 3 FEEDBACK - 4

= | am confused about trying to get this assignment going. | = The assignment description says: "Report generation and

understand the importance of process tree traversal being process list computation cannot occur in the /proc output

separate from output being placed in proc file, however | don't routines. "

know how to go about completely separating these two. = | am confused as to what this report generation is supposed to
= | am thinking | need to make a method that traverses the look like it it's not the /proc output.

process tree, and | store that information in some sort of data

structure? = Points are deducted if report generation is done in the proc

flle output routine. (e.g. the event handler that Is called when

= This Is a good approach. Store the Information In a data someone trles to read /proc/proc_report.)

structure so it can be accessed later. Note that malloc is

called kmalloc for kernel module programming.
prog g = Page 2 of Asslgnment 2 shows example output of the proc flle.

= Or make a temporary output file?
= This is a less optimal solution.

TCS5422: Operating Systems [Winter 2018] | s ‘ February 26, 2018 TCS5422: Operating Systems [Winter 2018] s

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

February 26, 2018

Slides by Wes J. Lloyd L13.1

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 17:
FREE SPACE
MANAGEMENT

TCSS422: Operating Systems [Winter 2018]
(R 20 200 Institute of Technology, University of Washington - Tacoma

2/26/2018

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

February 26, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Lss

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [_free [Tused | free]
0

10 20 30
= Request for 15-bytes

addr:0 addr:20

free listt head — 15 .99 — 1on:10

— NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| 139

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: Jost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

February 26, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | Ls10

= Request for 1 byte of memory: malloc(1)
30-byte heap: [_free [[used | free |
0

10 20 30

addr:0 addr:20

free list: head —> 1.,.10 Tent 10

— NULL
= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: [free [Tused [free |
0

10 20 21 30

s addr:0 addr:21
free listt head — 1...90 — 1cnig —> NULL

ALLOCATION STRATEGY: SPLITTING

TCS5422: Operating Systems [Winter 2018]

(1 24 2 Institute o Technoloay)Universitylof Washington®Tacomal

u3.11

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head —> 1n:10 > Len:10 len:10 > NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

—> NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

February 26, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | L2

Slides by Wes J. Lloyd

L13.2

TCSS 422 A — Winter 2018
Institute of Technology

2/26/2018

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?

= Header block

} The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

=Small descriptive block of memory at start of chunk

TCS5422: Operating Systems [Winter 2018]

(Rl 24 2 e e T e G T e

113.13 ‘

MEMORY HEADERS - 2

size: 20

magic: 1234567 "
size;

int magic;
} header_t;

The 20 bytes

jef struct _ header_t {

returned to caller

» A Simple Header
Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {
header_t *hptr = (void *)ptr - sizeof (header_t);

TCS5422: Operating Systems [Winter 2018]

February 26, 2018

TCSS422: Operating Systems [Winter 2018]
(e A, S s 1 T, st G B e TP | 314
= Simple free list struct
t def struct _ node_t {
int size;
ct __node_t *next;
} nodet_t;
= Use mmap to create free list
= 4Kkb heap, 4 byte header, one contiguous free chunk
mmap rns a | to a ch of free space
node_t *hea mmap (NULL, 4096, PROT_READ|PROT_WRITE,
MAP7M0N\MP7PRIVATE, 7 WK
head->size = 4096 - sizeof(node_t);
head->next = LL;
TCSS422: Operating Systems [Winter 2018] | L13.16

Institute of Technology, University of Washington - Tacoma

(1 24 2 Institute o Technoloay)Universitylof Washington®Tacomal

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal 315 ‘
= Create and initialize free-list “heap”
PROT_READ|PROT_WRITE,
MAP7MONIMAP7PRIVATE, =1, 0)r
head->size sizeof (node_t);
head->next
= Heap layout:
[virtual address: 16KB]
- header: size field
size: 4088
head —>| next: 0 | header: next field(NULL is 0)
LI the rest of the 4KB chunk
TCSS422: Operating Systems [Winter 2018] 1317 ‘

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk A Heap : After One Allocation
head —> T)
size: 4088 2 20

magic: 1234567

the rest of Firstblock || 100 bytes now alloc
the 4KB chunk is used
\—1 head —>
size: 3980
next: 0

the free 3980 byte chunk

ated

TCSS422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| 1318

Slides by Wes J. Lloyd

L13.3

TCSS 422 A — Winter 2018
Institute of Technology

2/26/2018

FREE LIST: FREE() CALL

" Addresses of chunks & byt s { [virtual address: 16K8]

100 bytes still allocated

= Start=16384
+ 108 (end of 1st chunk) izE 1233?507
P GO (o) off 2 il 4 m;g;ethis 100 bytes still allocated
ytes still allocate
+ 108 (end of 3 chunk) l block }(butabounobefreed)
= 16708 size: 100
magic: 1234567
100 bytes still allocated
pead sze. 3764
[het 0]

The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 1319

February 26, 2018

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
= Our 3 chunks start at 16 KB
(@ 16,384 bytes)

magic: 1234567

= Free chunk #2 - sptr

Block
[] Sptr =16500 Now Free

size: 100
magic: 1234567

= addr - sizeof(node_t)

= Actual start of chunk #2 size. 3764
= 16492 next: 0

[

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of
memory)

100 bytes still allocated

The free 3764-byte chunk

TCSS422: Operating Systems [Winter 2018]

(e A, S s 1 T, st G B e TP

| 113.20

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: [virtual address: 16k8]

100 |«——

Free(16392) next: 16492

0
= Free(16608) (now free)
00 |«
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head —p— T
= External fragmentation Fnext 16384 |
= Free chunk pointers
out of order (now free)
size 3764 |«
= Coalescing of next e]
pointers is needed The free 3764-byte chunk
[

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 26, 2018 321 ‘

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
- 1 break sprk()
Ayl
break 7 (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
TCSS422: Operating Systems [Winter 2018]
(e A, [See et Techolo syl niersity o Washinstoniecome! us22

MEMORY ALLOCATION STRATEGIES

= Best fit
=Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
=Traverse free list
= [dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L1323

February 26, 2018

EXAMPLES

= Allocation request for 15 bytes

head —> 10 —> 30 —> 20 —> NU

= Result of Best Fit

LL

head —>» 10 —> 30 —> 5 ——> NULL

= Result of Worst Fit

head —> 10 ——> 15 ——> 20 —> NULL

TCSS422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| 1324

Slides by Wes J. Lloyd

L13.4

TCSS 422 A — Winter 2018
Institute of Technology

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fIt
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit

= Avoids full free list traversal

MEMORY ALLOCATION STRATEGIES - 2

= Find first chunk, that is large enough for the request, and split

2/26/2018

TCS5422: Operating Systems [Winter 2018]

(Rl 24 2 e e T e G T e

11325

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

February 26, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | L1326

BUDDY ALLOCATION

= Binary buddy allocation

accommodate the request; the next split is too small...
= Consider a 7KB request

64KB free space for 7KB request

= Divides free space by two to find a block that is big enough to

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11327

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

February 26, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | L1328

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Winter 2018]
(R 2 200 Institute of Technology, University of Washington - Tacoma

PAGING

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

February 26, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | L1330

Slides by Wes J. Lloyd

L13.5

TCSS 422 A — Winter 2018
Institute of Technology

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages

Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

= No need to track direction of HEAP / STACK growth

2/26/2018

TCS5422: Operating Systems [Winter 2018]

(Rl 24 2 e e T e G T e

Page Table:
VPO - PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

PAGING: EXAMPLE

= Consider a 128 byte address space

with 16-byte pages 0
page frame 0 of
g reserved for OS| oy cical memory
= Consider a 64-byte program (unused) | page frame 1

address space page 3 of AS | page frame 2

page 0 of AS | page frame 3

0 64
(page 0 of (unused) | page frame 4

16 the address space) 0
(page 1) page 2 of AS | page frame 5

32 %
(page 2) (unused) page frame 6

48 12
o i page 1 of AS | page frame 7

128
64-Byte Address Space Placed In Physical Memory

A Simple 64-byte Address Space

11331

TCSS422: Operating Systems [Winter 2018]

(e A, S s 1 T, st G B e TP

[SEE?)

= PAGE: Has two address components
= VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset
(S N

o[
= Example:

Page Size: 16-bytes, Address Space: 64-bytes

VPN offset

PAGING: ADDRESS TRANSLATION

Here there are

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11333

EXAMPLE:
PAGING ADDRESS TRANSLATION

= Consider a 64-byte program address space (4 pages)
= Stored in 128-byte physical memory (8 frames)

. VPN ffset
= Offset is preserved e
——

= VPN is looked up XQ::L nnn
Vo

Page Table:
VPO > PF3
Address
VP1-> PF7 Translation
VP2 > PF5
VP3 > PF2 Vol
Physical
me LT[
L ik]
PEN offset
TCSS422: Operating Systems [Winter 2018]
(e A, [See et Techolo syl niersity o Washinstoniecome! 1334

PAGING DESIGN QUESTIONS

= Where are page tables stored?

= What are the typical contents of the page table?

= How big are page tables?

= Does paging make the system too slow?

TCSS422: Operating Systems [Winter 2018]

(1 24 2 Institute o Technoloay)Universitylof Washington®Tacomal

11335

WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Winter 2018]

(R A [nstueor TechnolosyUniversitylofWashinstonSTacoma!

11336

Slides by Wes J. Lloyd

L13.6

TCSS 422 A — Winter 2018 2/26/2018
Institute of Technology

PAGE TABLE EXAMPLE NOW FOR AN ENTIRE OS

= With 220 slots in our page table for a single process = |[f 4 MB is required to store one process
= Each slot dereferences a VPN VPNo = Consider how much memory is required for an entire 0S?
VPN = Wi
= Provides physical frame number N With for example 100 processes...
VPN, q ; -
= Each slot requires 4 bytes (32 bits) = Page table memory requirement is now 4MB x 100 = 400MB
: ig ffz: ::Z ::f’:e‘:“wiiﬁ?:;izzxi;h SEEIPaEES = If computer has 4GB memory (maximum for 32-bits),
0
= (note we have no status bits, so this is VPNyo4576 MIOREEIRE DLt Rk S0 UG
unrealistically small) 400 MB / 4000 GB

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

= |s thls efficlent?

TCS5422: Operating Systems [Winter 2018]
(Rl 24 2 Institute of Technology, University of Washington - Tacoma L1337 (e A,

TCS5422: Operating Systems [Winter 2018] 338
Institute of Technology, University of Washington - Tacoma

WHAT’S ACTUALLY IN THE PAGE TABLE PAGE TABLE ENTRY
= Page table is data structure used to map virtual page o P: present
numbers (VPN) to the physical address (Physical Frame o R/W: read/write bit

Number PFN)
= Linear page table > simple array

o U/S: supervisor
o A: accessed bit
o D: dirty bit

* Page-table entry o PFN: the page frame number

= 32 bits for capturing state

BNV BTXB5XAB2A019181716151413 1211109 8 76 543210
= als|e
| ESRRCEEER

310087 XXUBLANVIBT6I5MU4131211109 87 6543210
| | EEEREEEES

An x86 Page Table Entry(PTE) An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018] 1340
Institute of Technology, University of Washington - Tacoma

11339

| February 26, 2018

‘ February 26, 2018

PAGE TABLE ENTRY - 2 HOW BIG ARE PAGE TABLES?

= Common flags: = Page tables are too big to store on the CPU

= Valld Bit: Indicating whether the particular translation is valid.
= Page tables are stored using physical memory
= Protection Bit: Indicating whether the page could be read
from, written to, or executed from
= Paging supports efficiently storing a sparsely populated
= Present Bit: Indicating whether this page is in physical address space
memory or on disk(swapped out)
= Reduced memory requirement
= Dirty BIt: Indicating whether the page has been modified since Compared to base and bounds, and segments
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Winter 2018]
(1 24 2 Institute of Technology, University of Washington - Tacoma L4 (R A

TCS5422: Operating Systems [Winter 2018] 342
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L13.7

TCSS 422 A — Winter 2018
Institute of Technology

DOES PAGING MAKE
THE SYSTEM TOO SLOW?

= Translation

= Issue #1: Starting location of the page table is
needed

2/26/2018

PAGING MEMORY ACCESS

requires an extra memory reference
=HW Support: TLBs (Chapter 19)

=HW Support: Page-table base register Page Table:
=stores active process VPO > PF3
Facilitates translation VP12 PFT

- . VP2 > PF5
Stored in RAM > VP3 > PF2

= Issue #2: Each memory address translation for paging

TCS5422: Operating Systems [Winter 2018]

(Rl 24 2 e e T e G T e

113.43

1 // Extract the VPN from the virtual address

2 VPN = (virtualaddress & VPN_MASK) >> SHIFT

&l

4 // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6

7 // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // check if process can access the page

11. if (PTE.valid == False)

12 RaiseException(SEGMENTATION_FAULT)

13. else if (canAccess(PTE.ProtectBits) == False)

14 RaiseException(PROTECTION_FAULT)

15. else

16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK

18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

February 26, 2018

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

| L13.44

= Example: Use this Array initialization Code

COUNTING MEMORY ACCESSES

int array[1000];

for (1= 0 i < 1000; i++)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, teax, 4)
0x1028 incl %eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCS5422: Operating Systems [Winter 2018]

(el 2 2 Inttute of Technoloay)Universitylor Washington=Tacomal

113.45

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

® Locations:
= Page table
= Array
= Code

= 50 accesses

Page Table[39]

Page Table[1]

1224
1174
1124
1074
1024

7132

Page Table(PA)

g g
for 5 loop F 40050 282
o q z £

iterations 40000 7232
g u; s o
£ 1074 4146 I
S o
[8

O oion mmmiy gl puf, qul, gud

10 20 30 a0 50
Memory Access
February 26, 2018 TCSS422: Operating Systems [Winter 2018] | s

Institute of Technology, University of Washington - Tacoma

QUESTIONS

Slides by Wes J. Lloyd

L13.8

