
TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.1Slides by Wes J. Lloyd

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Memory API,
Address Translation,

Memory Segmentation,
Free Space Management

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Optional Ungraded Quiz – Synchronized Array
 Homework 2 Questions
 Homework 3

 Ch. 14
 Memory API

 Ch. 15
 Address Translation

 Ch. 16
 (Memory) Segmentation

 Ch. 17
 Free Space Management

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.2Slides by Wes J. Lloyd

 What is a bounded buffer, and when is it used?

 What is piping in operating systems?

 What is a condition variable?

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.3

FEEDBACK FROM 2/14

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.4

FEEDBACK - 2

 Homework #2: I ’m using “for_each_process(task)” but Ubuntu
can’t find this function… HELP!?

 In your kernel module make fi le, note the required fi les:
All target:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

 Check to be sure you have this kernel sources:

 sudo apt-get install build-essential l inux-headers-`uname –r`

 Helpful command - list kernel modules:
$lsmod

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.3Slides by Wes J. Lloyd

 “TCSS 422 has overlap with TCSS 333 for memory maps,
memory/address translation”…

 Init ial chapters of memory vir tualization may be review

 However, memory vir tualization spans chapters 13, 14, 15,
16, 17, 18, 19, 20, 21, 22. . . (10 chapters)

 Suspect this is not all review…

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.5

FEEDBACK - 3

CHAPTER 14: THE
MEMORY API

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.6

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.4Slides by Wes J. Lloyd

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.7

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.8

SIZEOF()

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.5Slides by Wes J. Lloyd

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.9

FREE()

10

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.6Slides by Wes J. Lloyd

11

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.12

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.7Slides by Wes J. Lloyd

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.13

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.14

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.8Slides by Wes J. Lloyd

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.15

REALLOC()

 Can’t deallocate twice

 Second call core dumps

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.16

DOUBLE FREE

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.9Slides by Wes J. Lloyd

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.17

SYSTEM CALLS

CHAPTER 15: ADDRESS
TRANSLATION

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.18

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.10Slides by Wes J. Lloyd

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.19

OBJECTIVES

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.20

ADDRESS TRANSLATION

Virtual mapping

Address Space

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.11Slides by Wes J. Lloyd

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.21

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.22

INSTRUCTION EXAMPLE

Int x

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.12Slides by Wes J. Lloyd

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.23

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.24

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.13Slides by Wes J. Lloyd

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.25

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.26

OS: WHEN PROCESS STARTS RUNNING

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.14Slides by Wes J. Lloyd

 OS places memory back on the free l ist

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.27

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.28

OS: WHEN CONTEXT SWITCH OCCURS

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.15Slides by Wes J. Lloyd

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.29

DYNAMIC RELOCATION

CHAPTER 16:
SEGMENTATION

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.30

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.16Slides by Wes J. Lloyd

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.31

BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment
(registers)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.32

MULTIPLE SEGMENTS

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.17Slides by Wes J. Lloyd

 Consider 3 segments:

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.33

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.34

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.18Slides by Wes J. Lloyd

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap star t)

 Physical address = 104 + 34816 (of fset + heap base)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.35

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.36

SEGMENTATION FAULT

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.19Slides by Wes J. Lloyd

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.37

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.38

SEGMENTATION DEREFERENCE

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.20Slides by Wes J. Lloyd

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.39

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic l inked l ibrary

 .so (l inux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.40

SHARED CODE SEGMENTS

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.21Slides by Wes J. Lloyd

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.41

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.42

SEGMENTATION GRANULARITY - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.22Slides by Wes J. Lloyd

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.43

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.44

COMPACTION

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.23Slides by Wes J. Lloyd

CHAPTER 17: FREE
SPACE MANAGEMENT

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.45

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.46

FREE SPACE MANAGEMENT

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.24Slides by Wes J. Lloyd

QUESTIONS

