
TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.1Slides by Wes J. Lloyd

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Memory API,
Address Translation,

Memory Segmentation,
Free Space Management

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Optional Ungraded Quiz – Synchronized Array
 Homework 2 Questions
 Homework 3

 Ch. 14
 Memory API

 Ch. 15
 Address Translation

 Ch. 16
 (Memory) Segmentation

 Ch. 17
 Free Space Management

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.2Slides by Wes J. Lloyd

 What is a bounded buffer, and when is it used?

 What is piping in operating systems?

 What is a condition variable?

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.3

FEEDBACK FROM 2/14

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.4

FEEDBACK - 2

 Homework #2: I ’m using “for_each_process(task)” but Ubuntu
can’t find this function… HELP!?

 In your kernel module make fi le, note the required fi les:
All target:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

 Check to be sure you have this kernel sources:

 sudo apt-get install build-essential l inux-headers-`uname –r`

 Helpful command - list kernel modules:
$lsmod

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.3Slides by Wes J. Lloyd

 “TCSS 422 has overlap with TCSS 333 for memory maps,
memory/address translation”…

 Init ial chapters of memory vir tualization may be review

 However, memory vir tualization spans chapters 13, 14, 15,
16, 17, 18, 19, 20, 21, 22. . . (10 chapters)

 Suspect this is not all review…

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.5

FEEDBACK - 3

CHAPTER 14: THE
MEMORY API

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.6

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.4Slides by Wes J. Lloyd

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.7

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.8

SIZEOF()

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.5Slides by Wes J. Lloyd

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.9

FREE()

10

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.6Slides by Wes J. Lloyd

11

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.12

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.7Slides by Wes J. Lloyd

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.13

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.14

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.8Slides by Wes J. Lloyd

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.15

REALLOC()

 Can’t deallocate twice

 Second call core dumps

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.16

DOUBLE FREE

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.9Slides by Wes J. Lloyd

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.17

SYSTEM CALLS

CHAPTER 15: ADDRESS
TRANSLATION

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.18

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.10Slides by Wes J. Lloyd

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.19

OBJECTIVES

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.20

ADDRESS TRANSLATION

Virtual mapping

Address Space

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.11Slides by Wes J. Lloyd

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.21

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.22

INSTRUCTION EXAMPLE

Int x

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.12Slides by Wes J. Lloyd

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.23

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.24

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.13Slides by Wes J. Lloyd

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.25

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.26

OS: WHEN PROCESS STARTS RUNNING

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.14Slides by Wes J. Lloyd

 OS places memory back on the free l ist

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.27

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.28

OS: WHEN CONTEXT SWITCH OCCURS

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.15Slides by Wes J. Lloyd

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.29

DYNAMIC RELOCATION

CHAPTER 16:
SEGMENTATION

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.30

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.16Slides by Wes J. Lloyd

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.31

BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment
(registers)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.32

MULTIPLE SEGMENTS

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.17Slides by Wes J. Lloyd

 Consider 3 segments:

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.33

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.34

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.18Slides by Wes J. Lloyd

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap star t)

 Physical address = 104 + 34816 (of fset + heap base)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.35

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.36

SEGMENTATION FAULT

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.19Slides by Wes J. Lloyd

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.37

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01 heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.38

SEGMENTATION DEREFERENCE

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.20Slides by Wes J. Lloyd

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.39

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic l inked l ibrary

 .so (l inux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.40

SHARED CODE SEGMENTS

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.21Slides by Wes J. Lloyd

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.41

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.42

SEGMENTATION GRANULARITY - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.22Slides by Wes J. Lloyd

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.43

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.44

COMPACTION

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.23Slides by Wes J. Lloyd

CHAPTER 17: FREE
SPACE MANAGEMENT

February 21, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L12.45

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

February 21, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L12.46

FREE SPACE MANAGEMENT

TCSS 422 A – Winter 2018
Institute of Technology

2/21/2018

L12.24Slides by Wes J. Lloyd

QUESTIONS

