TCSS 422 A — Winter 2018 2/21/2018
Institute of Technology

OBJECTIVES

TCSS 422: OPERATING SYSTEMS
| |

= Optional Ungraded Quiz - Synchronized Array
= Homework 2 Questions

Memory API, f 7 y = Homework 3
Address Translation, €
Memory Segmentation, 3 =Ch. 14
Free Space Management — = Memory API
= Ch. 15
= Address Translation
Wes J. Lloyd = Ch. 16
Institute of Technology - (erman) SegmeniEiion
= Ch. 17

University of Washington - Tacoma e B M e

2 a stems [V 2018 " 5 .
February 21, 2018 TCSS422: Operating Systems [Winter 2018] TCS$422: Operating Systems [Winter 2018]

(o2 G e o, I of Washington - Tacoma GEERERTEL 2 S s 1 T, st G B e TP w22

FEEDBACK FROM 2/14 FEEDBACK -2

= What is a bounded buffer, and when is it used? = Homework #2: I'm using “for_each_process(task)” but Ubuntu
can’t find this function... HELP!?

= What is piping in operating systems?
= In your kernel module make file, note the required files:

All target:

= What is a condition variable? make -C /lib/modules/$ (shell uname -r)/build M=$ (PWD) modules

= Check to be sure you have this kernel sources:
= sudo apt-get install build-essential linux-headers-"uname -r~

= Helpful command - list kernel modules:
$1smod

TCS5422: Operating Systems [Winter 2018]

TCS5422: Operating Systems [Winter 2018]
(il 2, 2 [See et Techolo syl niersity o Washinstoniecome!

Institute of Technology, University of Washington - Tacoma | 23

February 21, 2018

124

FEEDBACK - 3

= “TCSS 422 has overlap with TCSS 333 for memory maps,
memory/address translation”...

= |nitial chapters of memory virtualization may be review

CHAPTER 14: THE

= However, memory virtualization spans chapters 13, 14, 15,

16, 17, 18, 19, 20, 21, 22... (10 chapters) M EMORY API

= Suspect this is not all review...

February 21, 2018 TCS5422: Operating Systems [Winter 2018]

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma February 21, 2018

Institute of Technology, University of Washington - Tacoma

| u2s

Slides by Wes J. Lloyd L12.1

TCSS 422 A — Winter 2018
Institute of Technology

2/21/2018

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
= size_t unsigned integer (must be +)
" size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

February 21, 2018 TCS5422: Operating Systems [Winter 2018] | 27

Institute of Technology, University of Washington - Tacoma

SIZEOF()
= Not safe to assume ‘ int *x = malloc(10 * sizeof (int)); ‘
N N printf (“%d\n”, sizeof(x)):
data type sizes using
different compilers, \ 4 \
systems
= Dynamic array of 10 iny int x[10); ‘
printf(“$d\n”, sizeof (x));
= Static array of 10 ints [|

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L28

February 21, 2018

FREE()

#include <stdlib.h>

void free(void* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

February 21, 2018 TCS5422: Operating Systems [Winter 2018] | 129

Institute of Technology, University of Washington - Tacoma

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int mainQ)

int * X = NULL;

x = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_bQ);

printf(“The magic number is=%d\n“,*x);
return 0;

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a; Output:
} $./pointer_error
)) The magic number is=53247
void set_magic_number_b() QR R P EE R b1

int b = 11111;
We have not changed *x but

int mainQ) the value has changed!!
int * X = NULL; Why?

x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b(Q);

printf("The magic number is=%d\n“,*x);
return 0;

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’'s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 1212

February 21, 2018

Slides by Wes J. Lloyd

L12.2

TCSS 422 A — Winter 2018 2/21/2018
Institute of Technology

DANGLING POINTER (2/2) CALLOC()

#include <stdlib.h>

mFortunately in the case, a compiler warning
is generated:

void *calloc(size_t num, size_t size)

= Allocate “C”lear memory on the heap

$ g++ -o pointer_error -std=c++0x pointer_error.cpp = Calloc wipes memory in advance of use...
" size_t num : number of blocks to allocate
.) . P
OV RESr Lo (08 I"_fu"‘:tw" Lot =" size_t size:size of each block(in bytes)

set_magic_number_a()’:
pointer_error.cpp:6:7: warning: address of local

variable ‘a’ returned [enabled by default] = Calloc() prevents
[] is i i - - char *dest = malloc(20);
ThIS. Is'a common rmstake printf("dest string=%s\n", dest);
accidentally referring to addresses that have
gone “out of scope” dest string=@@F
[s I e e en- e ez a0in | e o T EX

#include <stdlib.h> int *x = (int *)malloc(sizeof(int)); // allocated
free(x);
void *realloc(void *ptr, size t size) free(x);
L] i i i i .
Resize an existing memory allocation 0 @ dealleeaie fulce
= Returned pointer may be same address, or a new address = Second call core dumps
= New if memory allocation must move
i . . T X .
" void *ptr: Pointer to memory block allocated with malloc, le ! l“eap i
calloc, or realloc | free(m | freen
" size_t size: New size for the memory block(in bytes)) | i i
TSta(k i Tsu(k i
= EXAMPLE: realloc.c ik 28 o g 2Bl
= EXAMPLE: nom.c Address Space Address Space
TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
(il 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal uz1s (R 2 [See et Techolo syl niersity o Washinstoniecome! | 1216

SYSTEM CALLS

= brk(), shrk()

= Used to change data segment size (the end of the heap)

" bon't use these CHAPTER 15: ADDRESS
= Mmap(), munmap() TRANSLATION

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

TCSS422; Operating Systems [Winter 2018]
(Rl 2, 20 Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 21, 2018 217

Slides by Wes J. Lloyd L12.3

TCSS 422 A — Winter 2018
Institute of Technology

OBJECTIVES

= Address translation
= Base and bounds
= HW and OS Support
= Memory segments

= Memory fragmentation

2/21/2018

TCS5422: Operating Systems [Winter 2018]
(el 2, 20 e e T e G T e

112,19

ADDRESS TRANSLATION

Virtual mapping
= 64KB o8 % okB
Address space Program Code Operating System
example
Heap
. .
= Translation: S
. 32KB P
mapping ! o
virtual to heap v &
. (allocated o
physical (free) but not in use) 2
t 4
Stack Kol
stack ~ &
T (not in use)
Stack
BT (-) — Physical M
Address Space yesemory
TCSS422: Operating Systems [Winter 2018]
GEERERTEL 2 S s 1 T, st G B e TP | 1220 |

BASE AND BOUNDS

= Dynamic relocation
= Two registers base & bounds: on the CPU
= 0S places program in memory

= Sets base register

[physical address = virtual address + base

= Bounds register
= Stores size of program address space (16KB)
= 0S verifies that every address:

[0 < virtual address < bounds J

TCS5422: Operating Systems [Winter 2018]

(il 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

1221

INSTRUCTION EXAMPLE

128 : movl 0x0(%ebx), %eax OKB 128[mevi om0 (Ve Vean
= Base = 32768 :i: Program Code
= Bounds =16384 e e
= Fetch instruction at 128 (virt addr) 1 48

= Phy addr = virt addr + base reg

= 32896 = 128 + 32768 (base) >
= Execute instruction o

= Load from address (var x is @ 15kb=15360)

= 48128 = 15360 + 32768 (base) -- found x... stack
= Bounds register: terminate process if

= ACCESS VIOLATION: Virtual address > bounds reg 4K

15KB |s000 INtX
[physical address = virtual address + base 16k8 Stack
[remanaans [o o Tome |

MEMORY MANAGEMENT UNIT

DYNAMIC RELOCATION OF PROGRAMS

= MMU
= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physlical Address

0 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)
February 21, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L1223

= Hardware requirements:

Requirements | HWsuwpot |
Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in Translation circuitry, check limits
bounds

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s)

to register exception handlers

Ability to raise exceptions

Set code pointers to OS code to handle faults

For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS422: Operating Systems [Winter 2018]
(R 2 [nstueor TechnolosyUniversitylofWashinstonSTacoma! 224

Slides by Wes J. Lloyd

L12.4

TCSS 422 A — Winter 2018
Institute of Technology

2/21/2018

VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

=When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

0S SUPPORT FOR MEMORY

TCS5422: Operating Systems [Winter 2018]

(el 2, 20 e e T e G T e

11225

0S: WHEN PROCESS STARTS RUNNING

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

0kB
Operating System
The OS lookup the free list
16K8B
Free list
(not in use)
16K8 3268 s
Heap
! v
(allocated but not in use)|
48K8 48K8B Stack_
(not in use)
64K8

Physical Memory

February 21, 2018 TCS5422: Operating Systems [Winter 2018] |

Institute of Technology, University of Washington - Tacoma

11226

= 0S places memory back on the free list

0S: WHEN PROCESS IS TERMINATED

0KB Free list 0KB
l Operating System Operating System
16KB
o Y 16€8
(not in use) (not in use)
l 328 L 3268
48K8 Process A 32KB (not in use)
48KB l 48K8
(not in use) (not in use)
64KB 48KB 64KB.
Physical Memory Physical Memory
TCSS422: Operating Systems [Winter 2018]
(il 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal w227

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB

0KB Context Switching k8
Operating System — Operating System
16KB 16KB
(not in use) base (not in use)
38 | 3B 328
FEEEE Bongs Process A
Currently Running
48KB 48K8 48K8
Process B
Process B e e
64KB 64KB

Physical Memory Physical Memory

TCS5422: Operating Systems [Winter 2018]

(R 2 [See et Techolo syl niersity o Washinstoniecome!

| 11228

= 0S can move process data when not running

. 0S deschedules process from scheduler

ENSRINITN

. OS reschedules process

= Process doesn’t know it was even moved!

DYNAMIC RELOCATION

0S copies address space from current to new location
. 0OS updates PCB (base and bounds registers)

= When process runs new base register is restored to CPU

TCS5422: Operating Systems [Winter 2018]

(il 2, 2 Institute o Technoloay)Universitylof Washington®Tacomal

11229

CHAPTER 16:

SEGMENTATION

TCSS422: Operating Systems [Winter 2018]

(Rl 2, 20 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L12.5

TCSS 422 A — Winter 2018
Institute of Technology

2/21/2018

BASE AND BOUNDS INEFFICIENCIES

0KB
= Address space K8

Program Code

. . s 2KB
= Contains significant unused memory o

= |s relatively large -

Heap

= Preallocates space to handle stack/heap growth sk

= Large address spaces
= Hard to fit in memory

= How can these issues be addressed?

14K8

(free)

15kB
16K8

Stack

TCS5422: Operating Systems [Winter 2018]

(el 2, 20 e e T e G T e

11231

MULTIPLE SEGMENTS

= Memory segmentation

= Address space has (3) segments
=Contiguous portions of address space
=Logically separate segments for: code, stack, heap

mEach segment can placed separately
mTrack base and bounds for each segment
(registers)

TCS5422: Operating Systems [Winter 2018] 232
Institute of Technology, University of Washington - Tacoma i

‘ February 21, 2018

SEGMENTS IN MEMORY

= Consider 3 segments:

Physical Memory

Operating System
s 4
(not in use)
t Segment Base Size
Stack Code 32K 2K
(not in use)
32KB o Heap 34K 2K
Heap Stack 28K 2K
BN (not in use)
64KB

TCS5422: Operating Systems [Winter 2018]

(il 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11233

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base J

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Segment __ Base

Bounds check: =
Is virtual address within 2KB il
address space? i

(not in use)

Virtual Address Space Physical Address Space

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L1234

February 21, 2018

ADDRESS TRANSLATION: HEAP

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start
Physical address = 104 + 34816 (offset + heap base)

Segment Base size

Heap 34K 2K
(not in use)
38
Code

8 kg [104+ 34K or 34920
g pen — is the desired

H sical a s
oy efp 36 | Physical ada

(not in use)
Address Space

Physical Memory

Virtual address + base is not the correct physical address.

)

TCS5422: Operating Systems [Winter 2018]

(il 2, 2 Institute o Technoloay)Universitylof Washington®Tacomal

11235

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) B R
6KB
s
8KB

Address Space

February 21, 2018

TCS5422: Operating Systems [Winter 2018] 1236
Institute of Technology, University of Washington - Tacoma i

Slides by Wes J. Lloyd

L12.6

TCSS 422 A — Winter 2018
Institute of Technology

SEGMENT REGISTERS

= Used to dereference memory during translation

13 1211 10. 9 8 7 € 5 4 3 2 1 0

L A J

T T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

2/21/2018

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Segment bits
| of1|o|ojojoflof1|l21|0o|2|0|0]|0 | Code 00
| I | Heap 01
T T Stack 10
Segment Offset - 11

TCS5422: Operating Systems [Winter 2018]

(el 2, 20 e e T e G T e

11237

SEGMENTATION DEREFERENCE

// get top 2 bits of 14-bit VA
(VirtualAddress & SEG_MASK) >> SEG_SHIFT

/) fset

Offset = VirtualAddress & OFFSET_MASK

if (0ffset >= Bounds[Segment])
RaiseException (PROTECTION_FAULT)
PhysAddr = Base [Segment] + Offset
Register = AccessMemory (PhysAddr)

R

= VIRTUAL ADDRESS = 01000001101000

= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
= OFFSET_MASK = OxFFF (00111111111111)
= OFFSET = 000001101000 = 104
= OFFSET < BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

TCSS422: Operating Systems [Winter 2018]

(e 2 S s 1 T, st G B e TP

| 11238

STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
26KB T i i ive-(
Segment Register(with Negative-Growth Support)
Stack
28KB Segment Base Size Grows Positive?
(not in use) cods 52K 25 z
Heap 34K 2K 1
Stack 28K 2K o

Physical Memory

TCS5422: Operating Systems [Winter 2018]

(il 2, 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11239

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® .so (linux): shraed object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write
February 21, 2018 TCSS422: Operating Systems [Winter 2018] | 112.40

Institute of Technology, University of Washington - Tacoma

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TCS5422: Operating Systems [Winter 2018]

(il 2, 2 Institute o Technoloay)Universitylof Washington®Tacomal

1241

SEGMENTATION GRANULARITY - 2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems

= Stored in memory
=Tracked large number of segments

TCSS422: Operating Systems [Winter 2018]

(R 2 [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| L12.42

Slides by Wes J. Lloyd

L12.7

TCSS 422 A — Winter 2018 2/21/2018
Institute of Technology

MEMORY FRAGMENTATION COMPACTION

= Consider how much free space? Not compacted = Supports rearranging memory Compacted
[——
= We'll say about 24 KB K8 .
8KB | Operating System = Can we fulfil the request for 20 KB of 8KB | Operating System
. contiguous memory?
= Request arrives to allocate a 20 KB heap 16K8B 16KB
segment — v = Drawback: Compaction is slow _—
Allocated = Rearranging memory is time consuming Allocated
= Can we fulfil the request for 20 KB of 32K8 = 64KB is fast 228
contiguous memory? 40k8 | Allocated ® 4GB+ ... slow 40k8
48KB _ i . 48K8
(not in use) = Algorithms: (not in use)
56KB = Best fit: keep list of free spaces, allocate the 56KB
Allocated most snug segment for the request
GAKE = Others: worst fit, first fit... (in future chapters) i
TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
(el 2, 20 T o (Ca A e o et e e L1243 (e 2 S s 1 T, st G B e TP | 244

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list

CHAPTER 17 FREE = Memory request > return first free entry
SPACE MANAGEMENT * Simple seareh

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Winter 2018] TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma (R, e Institute of Technology, University of Washington - Tacoma L1246

February 21, 2018

QUESTIONS

Slides by Wes J. Lloyd L12.8

