TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Condition Variables,
Concurrency Problems

Intro to Memory Virtualization % :

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2018]

FELEL) 16, 2K Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Homework 2 Questions

= Ch. 30
= Condition Variables
= Ch. 32
= Concurrency Problems
= Ch. 13
= Address Spaces
= Ch. 14
= Memory API

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.2

Lioyd

2/16/2018

L11.1

TCSS 422 A — Winter 2018

Institute of Technology

FEEDBACK FROM 2/12

m Are device drivers implemented as kernel modules?

® Device drivers are frequently built as kernel modules:
® See: http://derekmolloy.ie/writing-a-linux-kernel-module-part-

2-a-character-device/

® Required drivers can loaded on demand to support running on
various hardware configurations.

® To see list of device drivers:
= cd /lib/modules/$(uname -r)

= find . | grep ko

® To count the number of drivers:
= find . | grep ko | wc -1

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.3

FEEDBACK - 2

m Alternatively, device drivers can be integrated into the Linux

kernel.

® Some drivers are
provided natively
(e.g. loopback
device driver)

® Linux kernel can
be rebuilt to
automatically
include device
drivers:

iz@ppauvm: ~/src/linux-3.2.0

config - Li >4 9 Kernel Configuration

Block devices
Arrow keys navigate the menu. <Enter> selects submenus --->.
Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
for Search. Legend: [*] built-in [] excluded <M> module < > module

<> Mylex DAC960/DAC1180 PCI RAID Controller support

M o_Memo MM Battery Backed RAM support (EXPERIMENTAL
(8 Nimber of Loop devices to pre-create at init time
<*> Cryptoloop Support

##*% DRBD disabled because PROC_FS, INET or CONNECTOR not sel

< > Network block device support
BromLEe-SATA-SXE

Low Performance USB Block driver]
TAM 510 device suppo

< Exit > < Help >

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.4

Slides by Wes J. Lloyd

2/16/2018

L11.2

TCSS 422 A — Winter 2018

Institute of Technology

FEEDBACK - 3

= Are kernel modules only run when accessed via the procfile
interface, or do they also have a main/background
thread/process?

= [t depends on the kernel module.

® A basic kernel module with only a read or write callback
function that doesn’t actively perform other tasks will sleep
until a user performs I/0 on the /proc file

® When I/0 is performed a [kworker] process traps the event
and calls the callback function

m See:

® https://www.ibm.com/developerworks/library/I-
proc/index.html

® Google search: “linux proc read callback”

TCSS422: Operating Systems [Winter 2018]

L11.5
Institute of Technology, University of Washington - Tacoma

February 14, 2018

FEEDBACK - 4

® |f the bounded buffer example (signal.c) used a data structure
for multiple matrices (queue/stack), would you use that data
structure’s size as a “ready” variable?

® A bounded buffer is similar to a queue

® Elements are added at the front, and retrieved from the tail.

® |f the data structure is “bounded” (i.e. has a fixed size) then:
= We can only ADD items to QUEUE if there is free capacity
= Can only REMOVE items from QUEUE if there’s content to “consume”

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L1L6

February 14, 2018

Slides by Wes J. Lloyd

2/16/2018

L11.3

TCSS 422 A — Winter 2018
Institute of Technology

February 14, 2018

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.8

Slides by Wes J. Lloyd

2/16/2018

L11.4

TCSS 422 A — Winter 2018 2/16/2018
Institute of Technology

MATRIX GENERATOR

® The main thread, and worker thread (generates matrices)
share a single matrix pointer.

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

m Let’s try “nosignal.c”

TCSS422: Operating Systems [Winter 2018]

L11.9
Institute of Technology, University of Washington - Tacoma

February 14, 2018

SUBTLE RACE CONDITION:

WITHOUT A WHILE

void thr exit() {
done = 1;
Pthread cond signal (&c);
}

void thr jeoin() {
if (done == 0)
Pthread cond wait(&c):;

WMo~ Gy W

}

= Parent thread calls thr_join() and executes the comparison
® The context switches to the child

® The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

® The signal is lost
® The parent deadlocks

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L11.10

February 14, 2018

Slides by Wes J. Lloyd L11.5

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

PRODUCER / CONSUMER

Work Queue

i

TCSS422: Operating Systems [Winter 2018]

February14,2013 Institute of Technology, University of Washington - Tacoma

L11.11

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Qur example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
B Multithreaded web server example
= Http requests placed into work queue; threads process

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.12

Lloyd

2/16/2018

L11.6

TCSS 422 A — Winter 2018
Institute of Technology

PRODUCER / CONSUMER - 2

® Producer / Consumer is also known as Bounded Buffer

® Bounded buffer

= Similar to piping output from one Linux process to another

= grep pthread signal.c | wc -I

= Synchronized access:
sends output from grep = wc as it is produced

= File stream

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.13

PUT/GET ROUTINES

®m Buffer is a one element shared data structure (int)
® Producer “puts” data

® Consumer “gets” data

® Shared data structure requires synchronization

1 int buffer;

2 int count = 0; // initially, empty
3

4 void put(int value) {

5 assert (count == 0);
6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert (count == 1);
12 count = 0;

13 return buffer;

14 }

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.14

Slides by Wes J. Lloyd

2/16/2018

L11.7

TCSS 422 A — Winter 2018
Institute of Technology

PRODUCER / CONSUMER - 3

® Producer adds data
®m Consumer removes data (busy waiting)
= Will this code work (spin locks) with 2-threads?

1. Producer 2. Consumer

[=- I . T R OV

void *producer(void *arg) {

61 e
int loops = (int) arg:
for (1 = 0; 1 < loops: i++) {

put(i);
}
}

void *consumer (void *arg) {
int- iy
while (1) {
int tmp = get():
printf ("$d\n", tmp);

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.15

PRODUCER / CONSUMER - 3

® The shared data structure needs synchronization!

[R A R R S A

cond_t cond;
mutex t mutex;

void *producer (void *arg) {

}

Vi

int i;
or (i =0; i < loops; 1++) {

» Pthread mutex lock(&mutex):

LE (Count — L)
Pthread cond wait (scond, &mutex);

put(i);
Pthread_cond signal (&cond) ;
Pthread mutex_unlock(amutex);

oid *consumer (void *arg) {

int is

for (i = 0; i < loops; i++) {
» Pthread mutex lock(&amutex);

Producer

[/
/f
Iy
//
r/

lf

pl
p2
p3
p4
p5

pé

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.16

Slides by Wes J. Lloyd

2/16/2018

L11.8

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

2/16/2018
20 if (count == 0) // c2
21 Pthread_cond_wait (&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread cond _signal (&cond) ; // c5
24 Pthread mutex unlock (&mutex) ; // c6
25 printf ("%d\n", tmp);
26 } Consumer
27 }
® This code as-is works with just:
(1) Producer
(1) Consumetr
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?
TCSS422: Operating Systems [Winter 2018]
February 14,2018 Institute of Technology, University of Washington - Tacoma L1117
NO WHILE, 1 PRODUCER, 2 CONSUMERS
T. State Te2 State T, State Count Comment
= Two threads cl Running Ready Ready 0
c2 Running Ready Ready 0
» c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready pl Running 0
C1 /p1 = IOCk Sleep Ready p2 Running 0
02/p2_ CheCk var Sleep Read pd Running 1: Buffer now full
C3/p3' Wa|t iea:y zea:y pz Eunnfng 1 T4 awoken
ea ea unnin
c4- put() . - | i
4 Ready Ready pl Running ik
p - get() Ready Ready p2 Running 1
C5/p5' Slg nal Ready Read p3 Sleep 1: Buffer full; sleep
06/p6' Un|OCk Ready| el Running Sleep 1 T, sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready 5 Running Ready 0 T, awoken
Ready] c6 Running Ready 0
» cd Running Ready Ready 0 Oh oh! No data
TCSS422: Operating Systems [Winter 2018]
February 14, 2018 Institute of Technology, University of Washington - Tacoma L1118
Lloyd L11.9

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need while, not if

= What if T, puts a value, wakes T,; whom consumes the value

= Then T, has a value to put, but T;,'s signal on &cond wakes T,
® There is nothing for T,, consume, so T, sleeps
" T.4, Teo, and T, all sleep forever

= T, needs to wake T, to T,

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.19

EXECUTION TRACE:

Legend
c1/p1-lock

c2/p2- check var
c3/p3- wait

c4- put()

p4- get()

c5/p5- signal
c6/p6- unlock

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty State T2 State T State Count Comment
cl Running Ready Ready 0
2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Sleep ¢l Running Ready 0
Sleep c2 Running Ready 0
Sleep c3 Sleep Ready 0 Nothing to get
Sleep Sleep pl Running 0
Sleep Sleep p2 Running 0
Sleep Sleep pd Running i Buffer now full
* Ready Sleep p5 Running 1 T, awoken
Ready Sleep p6 Running il
Ready Sleep pl Running 3
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep i Must sleep (full)
» c2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T,; grabs data
» c5 Running Ready Sleep 0 Oops! Woke T,

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.20

Lloyd

2/16/2018

L11.10

TCSS 422 A — Winter 2018
Institute of Technology

EXECUTION TRACE - 2

= T., runs, no data to consume

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

T State T2 State T, State Count Comment

L_ege_nd 5 (cont)
C1/p1 - IOCk 6 Running Ready Sleep 0
02/p2' CheCk var cl Running Ready Sleep 0
C3/p3- Walt c? Running Ready Sleep 0
c4- put() c3 Sleep Ready Sleep 0 Nothing to get
p4_ get() Sleep c2 Running Sleep 0
CS/pS' Slg nal Sleep £3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.21

TWO CONDITIONS

m Use two condition variables: empty & full

= One condition handles the producer
=the other the consumer

W Jo U WN

ond t empty, full;
mutex_t mutex;

void *producer (void *arg) {
int 1i;
for (1 = 0; 1 < loops; i++) {
Pthread mutex lock (&mutex) ;

while (count == 1)
Pthread cond wait (&empty, &mutex);
put (i) ;

Pthread cond signal (&full);
Pthread mutex unlock (&mutex) ;

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.22

Slides by Wes J. Lloyd

2/16/2018

L11.11

TCSS 422 A — Winter 2018
Institute of Technology

FINAL PRODUCER/CONSUMER

® Change buffer from int, to int buffer[MAX]
= Add indexing variables

s int buffer[MAX];

2 int fill = 0;

2 int use = 0;

4 int count = 0;

5

3 void put (int value) {

i) buffer[fill] = value;
8 fi11 = (fill + 1) % MAX;
9 count++;

10 1

11

12 int get() {

13 int tmp = buffer[use];
14 use = (use + 1) % MAX;
15 count--;

16 return tmp;

12 1

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.23

FINAL P/C - 2

1

2 mutex t mutex;

3

4 void *producer(wvoid *arg) {

5 int i;

& for (i = 0; i < loops:; i++) {

7 Pthread mutex lock(smutex); /7 pl
8 while (count == MAX) // p2
9 Pthread cond wait (sempty, smutex); f{ip3
10 put (i) s // pé
il Pthread_cond_signal (&full); {f PS5
12 Pthread mutex unlock(smutex); /! pe
13 }

14 }

15

16 void *consumer(void *arg) {

17 2 ol i

18 for (i = 0; i < loops; i++) {

19 Pthread mutex lock(amutex); i el
20 while (count == 0) el
21 Pthread cond wait(s&full, &mutex):; i e3
22 int tmp = get () ’ // c4

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.24

Slides by Wes J. Lloyd

2/16/2018

L11.12

TCSS 422 A — Winter 2018
Institute of Technology

FINAL P/C - 3

(Cont.)

}

w

Pthread cond signal (semptv); f/
Pthread mutex unlock(&mutex); 7/
printf ("%d\n", tmp);

nn
o

® Producer: only sleeps when buffer is full
® Consumer: only sleeps if buffers are empty

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.25

scarce

COVERING CONDITIONS

®m A condition that covers all cases (conditions):
® Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

= When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.26

Slides by Wes J. Lloyd

2/16/2018

L11.13

TCSS 422 A — Winter 2018

Institute of Technology

COVERING CONDITIONS - 2

1 // how many bytes of the heap are free?
2 int bytesLeft = MAX HEAP SIZE;

3

4 // need lock and condition too

5 cond_t c;

[3 mutex t m;

i

8 void *

9 allocate(int size) {

10 Pthread mutex lock(&m);

11 »while (bytesLeft < size) Check available memory
12 Pthread cond wait(sc, &m);

13 void *piri= ...¢ // get mem from heap
14 bytesLeft -= size;

15 Pthread_mutex unlock (&m) ;

le return ptr;

17 }

18

19 void free (void *ptr, int size) {

20 Pthread mutex lock(&m);

21 bytesLeft += size;

23 Pthread mutex_unlock (&m) ;

24 }

TCSS422: Operating Systems [Winter 2018]

L11.27
Institute of Technology, University of Washington - Tacoma

February 14, 2018

COVER CONDITIONS - 3

®m Broadcast awakens all blocked threads requesting
memory

®m Each thread evaluates if there’s enough memory:
(bytesLeft < size)

= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory

= Run: requests which can be fulfilled
with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L11.28

February 14, 2018

Slides by Wes J. Lloyd

2/16/2018

L11.14

TCSS 422 A — Winter 2018
Institute of Technology

February 14, 2018

CHAPTER 32 -
CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

® Chapter 32:

OBJECTIVES

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.30

Slides by Wes J. Lloyd

2/16/2018

L11.15

TCSS 422 A — Winter 2018

Institute of Technology

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

® “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.31

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=QOrder violation: failure to initialize lock/condition
before use

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.32

Slides by Wes J.

Lloyd

2/16/2018

L11.16

TCSS 422 A — Winter 2018
Institute of Technology

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically...

® Simple example:

= Two threads access the proc_info field in struct thd
" NULLisOinC

® Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

1 Threadl::

2 if (thd->proc_info) {

3

4 fputs (thd->proc_info , ..);
5

6 }

7

8 Thread2::

9

thd->proc info = NULL;

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.33

= Add

ATOMICITY VIOLATION - SOLUTION

locks for all uses of: thd->proc_info

@~ m e Wk

w0

}

[
[E I N SRy

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

Threadl::
pthread mutex lock(&lock):
if (thd-»proc info){

fputs (thd->proc_info , ..):

pthread mutex unlock(&lock):

Thread2: :

pthread mutex lock(&lock):
thd-»>proc info = NULL;
pthread mutex unlock(&lock):

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.34

Slides by Wes J. Lloyd

2/16/2018

L11.17

TCSS 422 A — Winter 2018
Institute of Technology

ORDER VIOLATION BUGS

mE.g. something is checked before it is set
= Example:

Threadl: :
void init(){

mThread = PRﬁCreateThread(mMain, -
}

1
2
3
4
5
6 Thread2: :

7 void mMain(..) {

8 mState = mThread->State
9

}

®What if mThread is not initialized?

®mDesired order between memory accesses is flipped

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.35

ORDER VIOLATION - SOLUTION

m Use condition variable to enforce order

o~ G o Wk

pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
pthread cond t mtCond = PTHREAD COND_ INITIALIZER;
int mtInit = 0;

Thread 1::
void init(){
mThread = PR CreateThread (mMain,..) ;
// signal that the thread has been created.
pthread mutex lock(amtLock) ?
mtInit = 1;
pthread cond signal (amtCond);
pthread mutex unlock(&mtLock) ;

}

Thread2: :
void mMain (..) {

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.36

Slides by Wes J. Lloyd

2/16/2018

L11.18

TCSS 422 A — Winter 2018
Institute of Technology

ORDER VIOLATION - SOLUTION 2

21 // wait for the thread to be initialized ..
22 pthread mutex lock(&mtLock) ;

23 while (mtInit == 0)

24 pthread cond wait (&mtCond, &mtLock):
25 pthread mutex unlock(&mtLock) ;

26

27 mState = mThread->»State;

28

29 }

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.37

NON-DEADLOCK BUGS - 1

=97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

®m Consider what is involved in “spotting” these
bugs in code

® Desire for automated tool support (IDE)

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.38

Slides by Wes J. Lloyd

2/16/2018

L11.19

TCSS 422 A — Winter 2018 2/16/2018
Institute of Technology

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
* How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?
Before threads are created, after threads exit
Must verify the scope

® Order violation
= Must consider all variable accesses
= Must known desired order

February 14, 2018 TCSS422: Operating Systems [Winter 2018]

L11.39
Institute of Technology, University of Washington - Tacoma

DEADLOCK BUGS

@

® Presence of a cycle in code
® Thread 1 acquires lock L1, waits for lock L2
® Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:
Holds
lock(Ll); lock(L2); — | Zock 11
lock (1L2) ; lock (L1);
by S
®m Both threads can block, unless ?g 3;
one manages to acquire both locks £ g
Lock L2
Holds

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.40

Slides by Wes J. Lloyd L11.20

TCSS 422 A — Winter 2018
Institute of Technology

® Complex

® Encapsul
= Easy-to-

= Conside

REASONS FOR DEADLOCKS

code

= Must avoid circular dependencies - can be hard to find...

ation hides potential locking conflicts
use APIs embed locks inside

= Programmer doesn’t know they are there

r the Java Vector class:

1 Vector v1,v2;

2 v1.AddAll (v2):

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.41

C

ONDITIONS FOR DEADLOCK

Condition

Mutual Exclusion

Description

Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Hold-and-wait

Threads hold resources allocated to them while waiting for additional
resources

No preemption

Resources cannot be forcibly removed from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more

resources that are being requested by the next thread in the chain

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.42

Slides by Wes J. Lloyd

2/16/2018

L11.21

TCSS 422 A — Winter 2018
Institute of Technology

PREVENTION - MUTUAL EXCLUSION

® Build wait-free data structures

= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

®m C pseudo code for CompareAndSwap
® Hardware executes this code atomically

1
2
3
4
5
6
7

}

int CompareAndSwap(int *address, int expected, int new) {

if (*address == expected) {
*address = new;
return 1y // success
}

return 0;

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.43

PREVENTION - MUTUAL EXCLUSION - 2

® Recall atomic increment

S I VI

void AtomicIncrement (int *value, int amount) {

do{
int old = *value;
}while(CompareAndSwap (value, old, old+amount)==0);

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
® When it runs it is ALWAYS atomic (at HW level)

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.44

Slides by Wes J. Lloyd

2/16/2018

L11.22

TCSS 422 A — Winter 2018
Institute of Technology

MUTUAL EXCLUSION: LIST INSERTION

®m Consider list insertion

1 void insert(int walue) {

2 node t * n = malloc(sizeof(node t));
3 assert(n != NULL);

4 n->value = value ;

5 n->next = head;

6 head = n;

7

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.45

" Lock based implementation

unlock(listlock) ; //end critical section

1 void insert (int wvalue) {

2 node t * n = malloc(sizeof(node_t)):;

3 assert(n != NULL);

4 n->value = value ;

5 lock(listlock); // begin critical section
6 n->»next = head;

7 head = n;

8

9

MUTUAL EXCLUSION - LIST INSERTION -

2

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.46

Slides by Wes J. Lloyd

2/16/2018

L11.23

TCSS 422 A — Winter 2018
Institute of Technology

MUTUAL EXCLUSION - LIST INSERTION

= Wait free (no lock) implementation

void insert (int wvalue) {
node t *n = malloc(sizeof(node t));
assert(n != NULL);
n->value = value;
do {
n->next = head;
} while (CompareAndSwap (&head, n->next, n));

O J o) Ul WM

mAssign &head to n (new node ptr)
= Only when head = n->next

-3

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.47

CONDITIONS FOR DEADLOCK

Mutual Exclusion | Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Condition Description

: Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Circular wait

resources that are being requested by the next thread in the chain

There exists a circular chain of threads such that each thread holds one more

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.48

Slides by Wes J. Lloyd

2/16/2018

L11.24

TCSS 422 A — Winter 2018 2/16/2018
Institute of Technology

PREVENTION - HOLD AND WAIT

= Problem: acquire all locks atomically
® Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock(Ll):
lock (L2) ;

mo W

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

® Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

® Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.49

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

CHclanwart resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.50

Slides by Wes J. Lloyd L11.25

TCSS 422 A — Winter 2018
Institute of Technology

= pthread_mutex_trylock() - try once

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_timedlock() - try and wait awhile

top:
lock(Ll):
if(tryLock(n2) == -1){
unlock(Ll1);
goto top;

oy o W

}

®Eliminates deadlocks

NO
STOPPING

ANY
TIME

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.51

®Can lead to livelock

top:
lock(Ll) ;
if(tryLock(L2) == -1){
unlock(Ll) #
goto top;

[NI B = OV RN e

}

= Two threads execute code in parallel 2>
always fail to obtain both locks

= Add random delay

=Allows one thread to win
livelock race!

NO PREEMPTION - LIVELOCKS PROBLEM

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.52

Slides by Wes J. Lloyd

2/16/2018

L11.26

TCSS 422 A — Winter 2018
Institute of Technology

CONDITIONS FOR DEADLOCK

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

resources that are being requested by the next thread in the chain

: . There exists a circular chain of threads such that each thread holds one more
Circular wait

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.53

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code

= Always acquire locks in same order
L1, L2, L3, ..
*Never mix: L2, L1, L3;L2,L3,L1; L3, L1, L2...

program

®Must carry out same ordering through entire

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.54

Slides by Wes J. Lloyd

2/16/2018

L11.27

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

®Consider a smart scheduler

=Scheduler knows which locks threads use

®m Consider this scenario:
=4 Threads (T4, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.55

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

CPU 1

CPU 2

®No deadlock can occur

®m Consider:

T1 T2 T3 T4
L1 yes yes yes no
L2 yes yes yes no

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.56

Lloyd

2/16/2018

L11.28

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

INTELLIGENT SCHEDULING - 3

®m Scheduler produces schedule

m Scheduler must be conservative and not take risks
= Slows down execution - many threads

® There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCSS422: Operating Systems [Winter 2018]

L11.57
Institute of Technology, University of Washington - Tacoma

February 14, 2018

DETECT AND RECOVER

® Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

® How often is this acceptable?

B Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L11.58

February 14, 2018

Lloyd

2/16/2018

L11.29

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 13:
ADDRESS SPACES

TCSS422: Operating Systems [Winter 2018]

bebruaryyle 12018 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Chapter 13
= Introduction to memory virtualization
= The address space
= Goals of OS memory virtualization

= Chapter 14
= Memory API
= Commonh memory errors

= Chapter 15
= Address translation
= Base and bounds
= HW and OS Support
® Chapter 16
= Memory segments, fragmentation

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.60

Slides by Wes J. Lloyd

2/16/2018

L11.30

TCSS 422 A — Winter 2018
Institute of Technology

MEMORY VIRTUALIZATION

® What is memory virtualization?

® This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.61

MEMORY VIRTUALIZATION - 2

® Presentation of system memory to each process

® Appears as if each process can access the entire
machine’s address space

® Each process’s view of memory is isolated from others
®m Everyone has their own sandbox
Process A

Process B Process C

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.62

Slides by Wes J. Lloyd

2/16/2018

L11.31

TCSS 422 A — Winter 2018
Institute of Technology

E |[solation

®E Protection

MOTIVATION FOR

® Easier to program
= Programs don’t need to understand special memory models

=" From other processes: easier to code

= From other processes
= From programmer error (segmentation fault)

MEMORY VIRTUALIZATION

®m Abstraction enables sophisticated approaches to manage
and share memory among processes

February 14, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L11.63

= Poor memory utilization
= Little abstraction

OKB

64KB

max

EARLY MEMORY MANAGEMENT

®m Load one process at a time into memory

Operating System
(code, data, etc.)

Current
Program
(code, data, etc.)

Physical Memory

February 14, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L11.64

Slides by Wes J. Lloyd

2/16/2018

L11.32

TCSS 422 A — Winter 2018
Institute of Technology

= Solution>

® Need to protect from errant memory
accesses in a multiprocessing environment

MULTIPROGRAMMING

WITH SHARED MEMORY

® Later machines supported running multiple KB

processes
= Swap out processes during I/0 waits to =

increase system utilization and efficiency 128K8
= Swap entire memory of a process to disk g

for context switch
® Too slow, especially for large processes

256KB

320KB

384KB

= Leave processes in memory

448KB

512KB

Operating System
(code, data, etc.)

Free

Process C

(code, data, etc.)

Process B

(code, data, etc.)

Free

Process A

(code, data, etc.)

Free

Free

Physical Memory

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.65

=Stack
=Heap

ADDRESS SPACE

® Easy-to-use abstraction of physical
memory for a process

OKB

1KB

2KB

® Main elements:
*Program code

15KB

16KB

= Example: 16 KB address space

Program Code

Heap

l

(free)

T

Stack

Address Space

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.66

Slides by Wes J. Lloyd

2/16/2018

L11.33

TCSS 422 A — Winter 2018
Institute of Technology

= Code
= Program code

® Stack

ADDRESS SPACE - 2

= Program counter (PC)
= Local variables

= Parameter variables

= Return values (for functions)

® Heap

= Dynamic storage

= Malloc() new()

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.67

® Program code

= Static size

ADDRESS SPACE - 3

® Heap and stack
= Dynamic size

= Grow and shrink during program execution
= Placed at opposite ends

® Addresses are virtual

= They must be physically mapped by the 0S

OKB

1KB

2KB

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.68

Slides by Wes J. Lloyd

2/16/2018

L11.34

TCSS 422 A — Winter 2018
Institute of Technology

VIRTUAL ADDRESSING

Every address is virtual

=0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int arge, char *argvI[]){

printf("location of cede : %p\n", (void *) main):
printf("location of heap : %p\n", (void *) malloc(l));
int x = 3;

printf("location of stack : %p\n", (void *) &x):
return x;

}

= EXAMPLE: virtual.c

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.69

VIRTUAL ADDRESSING - 2

® Qutput from 64-bit Linux: 0x400000
0x401000

location of code: 0x400686
location of heap: 0x1129420 0xcf2000
location of stack: Ox7ffe040d77e4 0xd13000
0x7fff9ca28000
Ox7fff9ca49000

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

Address Space

Code
(Text)

Data

Heap

l

heap

(free)

stack

T

Stack

L11.70—‘

Slides by Wes J. Lloyd

2/16/2018

L11.35

TCSS 422 A — Winter 2018
Institute of Technology

Slides by Wes J.

GOALS OF

OS MEMORY VIRTUALIZATION

® Transparency
= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the
scenes

® Protection
= [solation among processes
= OS itself must be isolated

= One program should not be able to affect another
(or the 0S)

TCSS422: Operating Systems [Winter 2018]

L11.71
Institute of Technology, University of Washington - Tacoma

February 14, 2018

GOALS - 2

= Efficiency
*Time
Performance: virtualization must be fast

=Space
Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

= Goals considered when evaluation memory
virtualization schemes

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L11.72

February 14, 2018

Lloyd

2/16/2018

L11.36

TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 14: THE
MEMORY API

TCSS422: Operating Systems [Winter 2018]

bebruaryyle 12018 Institute of Technology, University of Washington - Tacoma

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
Esize_t unsigned integer (must be +)
m sjze size of memory allocation in bytes

= Returns
m SUCCESS: A void * to a memory address
= FAIL: NULL

m sizeof() often used to ask the system how large a given
datatype or struct is

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

L11.74

Slides by Wes J. Lloyd

2/16/2018

L11.37

TCSS 422 A — Winter 2018
Institute of Technology

® Dynamic array of 10 ints

® Static array of 10 ints |

SIZEOF()

® Not safe to assume int *x = malloc (10 * sizeof (int)):
data type sizes using printf (*$d\n”, sizeof(x));
different compilers, | a
systems

int x[10];

printf (*$d\n”, sizeof (X))

40

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.75

FREE()

#include <stdlib.h>

void free(void* ptr)

® Free memory allocated with malloc()
® Provide: (void *) ptr to malloc’d memory

® Returns: nothing

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.76

Slides by Wes J. Lloyd

2/16/2018

L11.38

TCSS 422 A — Winter 2018
Institute of Technology

VIRTUAL ADDRESS SPACE

| int *pi; // local variable |

® Pointer is a local variable on the stack

(free)

16KB 5P
Address Space
2KB
= Malloc returns space on the heap 28 + 4 | Allocated a
+ i
| pi = (int *)malloc(sizeof(int)* 4); 2KB + 8 a::ocatz i
28 + 12 [onocat i
allocated !
(free) i
2KB e wpi
16KB
TCSS422: Operating Systems [Winter 2018]
February 14,2018 Institute of Technology, University of Washington - Tacoma L7

VIRTUAL ADDRESS SPACE -

. 2KB <1
®m Releases heap space pointed to S s freed |
by the pointer on the stack 2B + 8 :fee: |
2KB + 12 freed |
| free(pi): e i
(free) i
16KB 2KB(invalid) |--! *pj
Address Space
2KB
(free)
= = —
ek 2KB(invalid) |[&— *pi
Address Space
TCSS422: Operating Systems [Winter 2018]
February 14, 2018 Institute of Technology, University of Washington - Tacoma L1178

Slides by Wes J. Lloyd

2/16/2018

L11.39

TCSS 422 A — Winter 2018
Institute of Technology

® Forgetting to malloc memory
= Unterminated string

® Uninitialized memory

=" Memory leak

" Dangling pointer

COMMON MEMORY ERRORS

TCSS422: Operating Systems [Winter 2018]

February 14,2018 Institute of Technology, University of Washington - Tacoma

L11.79

® Cis not Java
® When forgetting to maloc:

FORGETTING TO MALLOC

char *src = “hello”; //character string constant
char *dst; //unallocated
strcpy (dst, src); //segfault and die
e ale e hello¥#0 |-
dst has not been initialized. e
It has no place to store anything
heap
strcpy(d‘st, src) ; {free) una\\icated
| stack i
i
i
i
*dst i
SR *Src -
Segmentation fault (core dumped) | Address Space

TCSS422: Operating Systems [Winter 2018]

February 14, 2018 Institute of Technology, University of Washington - Tacoma

L11.80

Slides by Wes J. Lloyd

2/16/2018

L11.40

TCSS 422 A — Winter 2018
Institute of Technology

CORRECTION

char *src = “hello”;
char *dst (char *)malloc(strlen(src) + 1); // allocatec
strepytdst;,. srcli

//character string constant

//work properly

= Why do we malloc length + 1 ?

hello¥0 - hello¥0 ==+

allocated € hello0 €

strcpy(dlst, erC) ; heap E — heap E

| i (free) ! (free) !

: ' stack ! stack !

1 1 1

- : | A |

—mmmmdeeee- *dst - *dst -
B i (- ¢ o< *sre P

Address Space

Address Space

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.81

UNTERMINATED STRING

char *src = “hello”; //character string constant
char *dst (char *)malloc(strlen(src)): // too small
strepy(dst, src): //work properly
A A h -~
€
H |
Malloc too little memory 6 bytes | Stren :
Y o
A4 WO
WO is omitted 5 bytes hellot0 -+
Y ¢
strcpy(dst, src): heap
: : (free)
i | stack
I
. 1
Bames R st b
it o s o o G T -

Address Space

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.82

Slides by Wes J. Lloyd

2/16/2018

L11.41

TCSS 422 A — Winter 2018
Institute of Technology

FORGETTING TO INITIALIZE

int *x = (int *)malloc{sizeof(int)); // allocated
printf (" *xi= Sd\n". *xY: A
value used allocated
before with value used<-
(free) before
heap heap
(free) (free)
stack stack
’I(I(k-

Address Space

Address Space

February 14, 2018

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Wash

ington - Tacoma

L11.83

MEMORY L

: unused, but not freed

allocated

|

heap

(free)

stack

I

*a

- —

EAK

Program runs out of memory
and eventually dies...

Address Space

unused

allocated

v

heap
(free)
stack

1

*b

*a

Address Space

unused

unused

unused

allocated

d

el

*

*b

*a

Address Space

N
i

run out of memory]

February 14, 2018

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

L11.84

Slides by Wes J. Lloyd

2/16/2018

L11.42

TCSS 422 A — Winter 2018
Institute of Technology

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;

return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()

{
int * X = NULL;
X = set_magic_number_a();
printf("The magic number
set_magic_number_b();
printf(“The magic number
return 0;

What will this code do?

is=%d\n“, *x) ;
is=%d\n“, *x) ;

85

#include<stdio.h>

int * set_magic_number_a()
{
int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main(Q)

{
int * X = NULL;
X = set_magic_number_a();
printf("The magic number
set_magic_number_bQ) ;
printf("The magic number
return O;

What will this code do?

Output:

$./pointer_error

The magic number is=53247
The magic number is=11111

We have not changed *x but

the value has changed!!
Why?

is=%d\n“, *x);

is=%d\n“, *x) ;

86

Slides by Wes J. Lloyd

2/16/2018

L11.43

TCSS 422 A — Winter 2018 2/16/2018
Institute of Technology

QUESTIONS

Slides by Wes J. Lloyd L11.44

