
TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.1Slides by Wes J. Lloyd

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems,

Intro to Memory Virtualization

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Homework 2 Questions

 Ch. 30

 Condition Variables

 Ch. 32
 Concurrency Problems

 Ch. 13
 Address Spaces

 Ch. 14
Memory API

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.2

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.2Slides by Wes J. Lloyd

 Are device drivers implemented as kernel modules?

 Device drivers are frequently built as kernel modules:

 See: http://derekmolloy.ie/writing-a-linux-kernel-module-part-
2-a-character-device/

 Required drivers can loaded on demand to support running on
various hardware configurations.

 To see list of device drivers:
 cd /lib/modules/$(uname –r)

 find . | grep ko

 To count the number of drivers:
 find . | grep ko | wc –l

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.3

FEEDBACK FROM 2/12

 Alternatively, device drivers can be integrated into the Linux
kernel.

 Some drivers are
provided natively
(e.g. loopback
device driver)

 Linux kernel can
be rebuilt to
automatically
include device
drivers:

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.4

FEEDBACK - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.3Slides by Wes J. Lloyd

 Are kernel modules only run when accessed via the procfile
interface, or do they also have a main/background
thread/process?

 It depends on the kernel module.

 A basic kernel module with only a read or write callback
function that doesn’t actively perform other tasks wil l sleep
unti l a user performs I/O on the /proc file

 When I/O is per formed a [kworker] process traps the event
and calls the callback function

 See:

 https://www.ibm.com/developerworks/library/l-
proc/index.html

 Google search: “l inux proc read callback”

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.5

FEEDBACK - 3

 If the bounded buffer example (signal.c) used a data structure
for multiple matrices (queue/stack), would you use that data
structure’s size as a “ready” variable?

 A bounded buffer is similar to a queue

 Elements are added at the front, and retrieved from the tail.

 If the data structure is “bounded” (i .e. has a fixed size) then:
 We can only ADD items to QUEUE if there is free capacity

 Can only REMOVE items from QUEUE if there’s content to “consume”

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.6

FEEDBACK - 4

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.4Slides by Wes J. Lloyd

CHAPTER 30 –
CONDITION VARIABLES

February 14, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L11.7

Matrix generation example

Chapter 30

signal.c

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.8

MATRIX GENERATOR

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.5Slides by Wes J. Lloyd

 The main thread, and worker thread (generates matrices)
share a single matrix pointer.

 What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

 Let’s try “nosignal.c”

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.9

MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

 The signal is lost

 The parent deadlocks

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.10

SUBTLE RACE CONDITION:
WITHOUT A WHILE

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.6Slides by Wes J. Lloyd

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L11.11

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically
generated matrices and performs an operation on them
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.12

PRODUCER / CONSUMER

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.7Slides by Wes J. Lloyd

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep wc as it is produced

 File stream

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.13

PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.14

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.8Slides by Wes J. Lloyd

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.15

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.16

PRODUCER / CONSUMER - 3

Producer

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.9Slides by Wes J. Lloyd

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it fails
 How can it be fixed ?

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.17

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.18

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.10Slides by Wes J. Lloyd

 When producer threads awake, they do not check if there is
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.19

PRODUCER/CONSUMER
SYNCHRONIZATION

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.20

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.11Slides by Wes J. Lloyd

 Tc2 runs, no data to consume

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.21

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.22

TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.12Slides by Wes J. Lloyd

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.23

FINAL PRODUCER/CONSUMER

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.24

FINAL P/C - 2

full

(&full);

&full,

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.13Slides by Wes J. Lloyd

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.25

FINAL P/C - 3

 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory

allocation/deallocation on the heap
 Access to the heap must be managed when memory is

scarce

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.26

COVERING CONDITIONS

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.14Slides by Wes J. Lloyd

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.27

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting
memory

 Each thread evaluates if there’s enough memory:
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.28

COVER CONDITIONS - 3

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.15Slides by Wes J. Lloyd

CHAPTER 32 –
CONCURRENCY

PROBLEMS

February 14, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L11.29

 Chapter 32:
 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.30

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.16Slides by Wes J. Lloyd

 “Learning from Mistakes – A Comprehensive Study on
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.31

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition
before use

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.32

NON-DEADLOCK BUGS

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.17Slides by Wes J. Lloyd

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

 Simple example:

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.33

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.34

ATOMICITY VIOLATION - SOLUTION

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.18Slides by Wes J. Lloyd

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.35

ORDER VIOLATION BUGS

 Use condition variable to enforce order

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.36

ORDER VIOLATION - SOLUTION

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.19Slides by Wes J. Lloyd

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.37

ORDER VIOLATION – SOLUTION 2

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these
bugs in code

Desire for automated tool support (IDE)

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.38

NON-DEADLOCK BUGS - 1

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.20Slides by Wes J. Lloyd

Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized (non-atomic) uses be legal?

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.39

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless
one manages to acquire both locks

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.40

DEADLOCK BUGS

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.21Slides by Wes J. Lloyd

 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.41

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.42

CONDITIONS FOR DEADLOCK

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.22Slides by Wes J. Lloyd

 Build wait-free data structures

 Eliminate locks altogether

 Build structures using CompareAndSwap atomic CPU (HW)
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.43

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.44

PREVENTION – MUTUAL EXCLUSION - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.23Slides by Wes J. Lloyd

Consider list insertion

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.45

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.46

MUTUAL EXCLUSION – LIST INSERTION - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.24Slides by Wes J. Lloyd

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.47

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

 Four conditions are required for dead lock to occur

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.48

CONDITIONS FOR DEADLOCK

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.25Slides by Wes J. Lloyd

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (l ike a guard lock)

 Effective solution – guarantees no race conditions while
acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.49

PREVENTION – HOLD AND WAIT

 Four conditions are required for dead lock to occur

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.50

CONDITIONS FOR DEADLOCK

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.26Slides by Wes J. Lloyd

When acquiring locks, don’t BLOCK forever if
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.51

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel
always fail to obtain both locks

Add random delay

Allows one thread to win
livelock race!

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.52

NO PREEMPTION – LIVELOCKS PROBLEM

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.27Slides by Wes J. Lloyd

 Four conditions are required for dead lock to occur

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.53

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire
program

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.54

PREVENTION – CIRCULAR WAIT

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.28Slides by Wes J. Lloyd

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario:

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.55

DEADLOCK AVOIDANCE
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.56

INTELLIGENT SCHEDULING - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.29Slides by Wes J. Lloyd

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.57

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?

 Many database systems employ deadlock detection and
recovery techniques.

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.58

DETECT AND RECOVER

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.30Slides by Wes J. Lloyd

CHAPTER 13:
ADDRESS SPACES

February 14, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L11.59

 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.60

OBJECTIVES

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.31Slides by Wes J. Lloyd

 What is memory virtualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.61

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.62

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.32Slides by Wes J. Lloyd

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.63

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.64

EARLY MEMORY MANAGEMENT

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.33Slides by Wes J. Lloyd

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system uti lization and ef ficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.65

MULTIPROGRAMMING
WITH SHARED MEMORY

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.66

ADDRESS SPACE

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.34Slides by Wes J. Lloyd

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.67

ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.68

ADDRESS SPACE - 3

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.35Slides by Wes J. Lloyd

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.69

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.70

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.36Slides by Wes J. Lloyd

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.71

GOALS OF
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluation memory
virtualization schemes

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.72

GOALS - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.37Slides by Wes J. Lloyd

CHAPTER 14: THE
MEMORY API

February 14, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L11.73

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.74

MALLOC

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.38Slides by Wes J. Lloyd

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.75

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.76

FREE()

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.39Slides by Wes J. Lloyd

 Pointer is a local variable on the stack

 Malloc returns space on the heap

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.77

VIRTUAL ADDRESS SPACE

 Releases heap space pointed to
by the pointer on the stack

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.78

VIRTUAL ADDRESS SPACE - 2

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.40Slides by Wes J. Lloyd

 Forgetting to malloc memory

Unterminated string

Uninitialized memory

Memory leak

Dangling pointer

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.79

COMMON MEMORY ERRORS

 C is not Java

 When forgetting to maloc:

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.80

FORGETTING TO MALLOC

char *src = “hello”; //character string constant
char *dst; //unallocated
strcpy(dst, src); //segfault and die

dst has not been initialized.
It has no place to store anything

Segmentation fault (core dumped)

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.41Slides by Wes J. Lloyd

 Why do we malloc length + 1 ?

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.81

CORRECTION

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.82

UNTERMINATED STRING

Malloc too little memory

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.42Slides by Wes J. Lloyd

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.83

FORGETTING TO INITIALIZE

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.84

MEMORY LEAK

Program runs out of memory
and eventually dies…

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.43Slides by Wes J. Lloyd

85

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

86

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.44Slides by Wes J. Lloyd

QUESTIONS

