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 Are device drivers implemented as kernel modules?

 Device drivers are frequently built as kernel modules:

 See: http://derekmolloy.ie/writing-a-linux-kernel-module-part-
2-a-character-device/

 Required drivers can loaded on demand to support running on 
various hardware configurations.

 To see list of device drivers:
 cd /lib/modules/$(uname –r)

 find . | grep ko

 To count the number of drivers:
 find . | grep ko | wc –l
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FEEDBACK FROM 2/12

 Alternatively, device drivers can be integrated into the Linux 
kernel.

 Some drivers are 
provided natively 
(e.g. loopback 
device driver)

 Linux kernel can 
be rebuilt  to 
automatically 
include device 
drivers:
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 Are kernel modules only run when accessed via the procfile
interface, or do they also have a main/background 
thread/process?

 It depends on the kernel module.

 A basic kernel module with only a read or write callback 
function that doesn’t actively perform other tasks wil l  sleep 
unti l a user performs I/O on the /proc file

 When I/O is per formed a [kworker] process traps the event 
and calls the callback function

 See:

 https://www.ibm.com/developerworks/library/l-
proc/index.html

 Google search: “l inux proc read callback”
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FEEDBACK - 3

 If the bounded buffer example (signal.c) used a data structure 
for multiple matrices (queue/stack), would you use that data 
structure’s size as a “ready” variable?

 A bounded buffer is similar to a queue

 Elements are added at the front, and retrieved from the tail.

 If the data structure is “bounded” (i .e. has a fixed size) then:
 We can only ADD items to QUEUE if there is free capacity

 Can only REMOVE items from QUEUE if there’s content to “consume”
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CHAPTER 30 –
CONDITION VARIABLES
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Matrix generation example

Chapter 30

signal.c
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 The main thread, and worker thread (generates matrices) 
share a single matrix pointer.

 What would happen if we don’t use a condition variable to 
coordinate exchange of the lock?

 Let’s try “nosignal.c”
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MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 
is not waiting yet.  

 The signal is lost

 The parent deadlocks
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PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically 
generated matrices and performs an operation on them 
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process
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 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream
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PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization
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PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }
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 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer  2. Consumer
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PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!
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 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it  fails 
 How can it be fixed ?
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PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads
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EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock
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 When producer threads awake, they do not check if there is 
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2
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PRODUCER/CONSUMER 
SYNCHRONIZATION

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.20

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock
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 Tc2 runs, no data to consume
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EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer
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TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);
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 Change buffer from int, to int buffer[MAX]

 Add indexing variables

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.23

FINAL PRODUCER/CONSUMER
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FINAL P/C - 2

full

(&full);

&full,
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 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty
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FINAL P/C - 3

 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory 

allocation/deallocation on the heap
 Access to the heap must be managed when memory is 

scarce 

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?
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COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting 
memory

 Each thread evaluates if there’s enough memory: 
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute
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CHAPTER 32 –
CONCURRENCY 

PROBLEMS
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 Chapter 32:
 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention 
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 “Learning from Mistakes – A Comprehensive Study on 
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and 
Operating Systems (ASPLOS 2008), Seattle WA
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CONCURRENCY BUGS IN 
OPEN SOURCE SOFTWARE

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition 
before use
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 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate 
threads is not enforced  (e.g. non-atomic)

 Simple example:
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ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically… 

 Add locks for all uses of: thd->proc_info
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Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?
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ORDER VIOLATION BUGS

 Use condition variable to enforce order
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ORDER VIOLATION – SOLUTION 2

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these 
bugs in code

Desire for automated tool support (IDE)
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Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized (non-atomic) uses be legal?  

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order
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NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless 
one manages to acquire both locks
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 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time 
deadlock could result
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REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur
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 Build wait-free data structures

 Eliminate locks altogether 

 Build structures using CompareAndSwap atomic CPU (HW) 
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically
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PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until 
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)
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Consider list insertion
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MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation
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Wait free (no lock) implementation

Assign &head to n  (new node ptr)

Only when head = n->next
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MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

 Four conditions are required for dead lock to occur
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 Problem: acquire all  locks atomically

 Solution: use a “lock” “lock”… ( l ike a guard lock)

 Effective solution – guarantees no race conditions while 
acquiring L1, L2, etc.  

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…
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PREVENTION – HOLD AND WAIT

 Four conditions are required for dead lock to occur

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.50

CONDITIONS FOR DEADLOCK



TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.26Slides by Wes J. Lloyd

When acquiring locks, don’t BLOCK forever if 
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks
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PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

Add random delay

Allows one thread to win 
livelock race!
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 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition 
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 
program
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Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario: 

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:
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DEADLOCK AVOIDANCE 
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:
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 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 
difficulty having intimate lock knowledge about every 
thread
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INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some 
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?

 Many database systems employ deadlock detection and 
recovery techniques.

February 14, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L11.58

DETECT AND RECOVER
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CHAPTER 13: 
ADDRESS SPACES
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 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation
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 What is memory virtualization?

 This is not “virtual” memory, 

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently
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MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire 
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox
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MEMORY VIRTUALIZATION - 2

Process A Process B Process C
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 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage 
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)
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MOTIVATION FOR 
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction
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 Later machines supported running multiple 
processes

 Swap out processes during I/O waits to 
increase system uti lization and ef ficiency

 Swap entire memory of a process to disk 
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory 
accesses in a multiprocessing environment
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MULTIPROGRAMMING 
WITH SHARED MEMORY

Easy-to-use abstraction of physical 
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space
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 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()
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ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS
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Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4
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 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the 
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another 
(or the OS)
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GOALS OF 
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluation memory 
virtualization schemes
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CHAPTER 14: THE 
MEMORY API
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 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given 
datatype or struct is
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MALLOC
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 Not safe to assume 
data type sizes using 
different compilers, 
systems

 Dynamic array of 10 ints

 Static array of 10 ints
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SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing
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FREE()



TCSS 422 A – Winter 2018
Institute of Technology

2/16/2018

L11.39Slides by Wes J. Lloyd

 Pointer is a local variable on the stack

 Malloc returns space on the heap
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VIRTUAL ADDRESS SPACE

 Releases heap space pointed to
by the pointer on the stack
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VIRTUAL ADDRESS SPACE - 2
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 Forgetting to malloc memory

Unterminated string

Uninitialized memory

Memory leak

Dangling pointer
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COMMON MEMORY ERRORS

 C is not Java

 When forgetting to maloc: 
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FORGETTING TO MALLOC

char *src = “hello”; //character string constant 
char *dst; //unallocated
strcpy(dst, src);    //segfault and die

dst has not been initialized.
It has no place to store anything

Segmentation fault (core dumped)
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 Why do we malloc length + 1 ?
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CORRECTION
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UNTERMINATED STRING

Malloc too little memory
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February 14, 2018 TCSS422: Operating Systems [Winter 2018]
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FORGETTING TO INITIALIZE
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MEMORY LEAK

Program runs out of memory
and eventually dies…
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85

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

86

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but 
the value has changed!!

Why?
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QUESTIONS


