TCSS 422 A — Winter 2018
Institute of Technology

TCSS 422: OPERATING SYSTEMS
| |

Condition Variables,
Concurrency Problems,

Intro to Memory Virtualization &

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systel inter 2018]

(il 2 Institute of Technology, University of Washington - Tacoma

2/16/2018

OBJECTIVES

= Homework 2 Questions

= Ch. 30
= Condition Variables
= Ch. 32
= Concurrency Problems
=Ch. 13
= Address Spaces
=Ch. 14
= Memory API

TCSS422: Operating Systems [Winter 2018]

R E A S s 1 T, st G B e TP

u12

FEEDBACK FROM 2/12

= Are device drlvers Implemented as kernel modules?
= Device drivers are frequently built as kernel modules:

= See: http://derekmolloy.ie/writing-a-linux-kernel-module-part-
2-a-character-device/

= Required drivers can loaded on demand to support running on
various hardware configurations.

= To see list of device drivers:
= cd /lib/modules/$(uname -r)
= find . | grep ko

= To count the number of drivers:
= find . | grep ko | wc -1

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| u13

FEEDBACK - 2

= Alternatively, device drivers can be integrated into the Linux
kernel.

= Some drivers are Wlockrdevtoes
. . Arrow keys navigate the menu. <Enter> selects submenus --->.
provided natively Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes,
<M> modularizes features. Press <Esc><Esc> to exit, <2> for Help, </>
(e.g. loopback for Search. Legend: [*] bullt-in [ ] excluded <M> module < > module
device d river) <> Mylex DAC969/DAC1100 PCI RAID Controller support
Hcro Menory MNSE15 Battery Backed RAM support (EXPERTNENTAL
. 8 Number of [oop devices to pre-create at init time
= Linux kernel can <> Cryptoloop Support
. #++ DRBD disabled because PROC_FS, INET or CONNECTOR not sel
be rebuilt to <> Network block device support

automatically
include device
ciferes <Exit> <Help>

5> Lou perfornance Uss Block driver]]

TCSS422: Operating Systems [Winter 2018]

(EERE [See et Techolo syl niersity o Washinstoniecome!

14

FEEDBACK - 3

= Are kernel modules only run when accessed via the procflle
interface, or do they also have a main/background
thread/process?

= |t depends on the kernel module.

= A basic kernel module with only a read or write callback
function that doesn’t actively perform other tasks will sleep
until a user performs I/0 on the /proc file

= When I/0 is performed a [kworker] process traps the event
and calls the callback function

= See:

= https://www.ibm.com/developerworks/library/I-
proc/index.html

= Google search: “linux proc read callback”

TCS5422: Operating Systems [Winter 2018]

(iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

| uts

FEEDBACK - 4

= |f the bounded buffer example (signal.c) used a data structure
for multiple matrices (queue/stack), would you use that data
structure’s size as a “ready” variable?

= A bounded buffer is similar to a queue
= Elements are added at the front, and retrieved from the tail.
= |f the data structure is “bounded” (i.e. has a fixed size) then:
= We can only ADD items to QUEUE if there is free capacity
= Can only REMOVE items from QUEUE if there’s content to “consume”

TCSS422: Operating Systems [Winter 2018]

(R [nstueor TechnolosyUniversitylofWashinstonSTacoma!

116

Slides by Wes J. Lloyd

L11.1



TCSS 422 A — Winter 2018
Institute of Technology

CHAPTER 30 -

CONDITION VARIABLES

TCSS422: Operating Systems [Winter 2018]

ey U, 2000 Institute of Technology, University of Washington - Tacoma

2/16/2018

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma Lis

February 14, 2018

MATRIX GENERATOR

share a single matrix pointer.

coordinate exchange of the lock?

= Let’s try “nosignal.c”

= The main thread, and worker thread (generates matrices)

= What would happen if we don’t use a condition variable to

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

| ut9

SUBTLE RACE CONDITION:
WITHOUT A WHILE

void thr_exit() (
done = 1;
pthread cond signal (sc);
}

void thr_join() {
if (done == 0)
Pthread_cond wait (sc);

CEI e WN

}

= Parent thread calls thr_join() and executes the comparison
= The context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

= The signal is lost
= The parent deadlocks

TCS5422: Operating Systems [Winter 2018]

(EERE [See et Techolo syl niersity o Washinstoniecome!

110

PRODUCER / CONSUMER

Work Queue

0

TCSS422: Operating Systems [Winter 2018]

(I A A Institute of Technology, University of Washington - Tacoma

[EERE]

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma tia2

February 14, 2018

Slides by Wes J. Lloyd

L11.2



TCSS 422 A — Winter 2018
Institute of Technology

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wec -1
= Synchronized access:
sends output from grep > wc as it is produced
= File stream

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

11113

2/16/2018

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data

= Consumer “gets” data

= Shared data structure requires synchronization

1 int buffer;

2 int count = 0;

3

4 put (int value) {

5 assert (count == 0);
6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert (count == 1);
12 count = 0;

13 buffer;

14 )

TCSS422: Operating Systems [Winter 2018]

R E A S s 1 T, st G B e TP

| utia

PRODUCER / CONSUMER - 3

= Producer adds data

= Consumer removes data (busy waiting)

= Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

2 void *producer(void *arg) {

2 int is

3 int loops = (int) arg;

4 for (i = 0; i < loops; i++) (
5 put(i);

6 )

2 )

8

9

10

L

12 int tmp = get();

13 printf("sd\n", tmp);
14 )

15 )

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

1115

PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

T cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

= int 13

6 for (i = 0; i < loops; i++) { Producer
g » Pthread_mutex_lock (amutex) ; 1
8 if (count == 1)

9 Pthread_cond wait(&cond, smutex);

10 put (i) D

11 Pthread_cond_signal (scond) ;

12 Pthread mutex_unlock (smutex);

13 )

14 i

15

16 void *consumer(void *arg) {

13 int i;

18 for (i = 0; i < loops; i++) {

19 9 Pthread_mutex_lock (smutex) ; c1

TCSS422: Operating Systems [Winter 2018]

(EERE [See et Techolo syl niersity o Washinstoniecome!

| 1116

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread_cond_wait (scond, &mutex);

22 int tmp = get();

23 Pthread_cond_signal (&cond) ;

24 Pthread mutex_unlock (&mutex) ;

25 printf("sd\n", tmp);

26 } Consumer
27 i

= This code as-is works with just:
(1) Producer
(1) Consumer

= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCSS422: Operating Systems [Winter 2018]

(iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

1117

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Slides by Wes J. Lloyd

T, | State |T,| State [T, | State |Count Comment
= Two threads <1 | Running Ready Ready 0
2 | Running Ready Ready 0
* 3| Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Rumning 0
c1/p1 - lock Sleep Ready p2 | Running 0
¢2/p2- check var Sleep Read! p4 | Running 1 Buffer now full
¢3/p3- wait §eajy §eajy pz :unnmg 1 7, awoken
eady eady | p unning
c4- put() Ready Ready | pl | Running 1
p4- get() Ready Ready | p2 | Running 1
c5/p5- signal Ready Rsady» p3 Sleep 1 Buffer full; sleep
c6/p6- unlock Reacy[lPcl | Running Sleep 1 T,q sneaks in ..
Ready | <2 | Running Sleep 1
Ready[lPc4 | Running Sleep 0 ..and grabs data
Ready | <5 | Running Ready 0 7, awoken
Ready[lPc6 | Running Ready 0
» 4 | Running Ready Ready 0 Oh oh! No data

TCSS422: Operating Systems [Winter 2018]

(R [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| 1118

L11.3



TCSS 422 A — Winter 2018
Institute of Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need while, not if
= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" Te4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

1119 ‘

2/16/2018

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty | state |r,| state |7, | state [Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1 /p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
c3/p3- wait Sleep Sleep pl | Running 0
4- put() Sleep Sleep | p2 | Ruming | 0
E= ol Sleep Sleep | p4 | Ruming | 1 Bufer now ful
p4- get() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (ful
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 T,, grabs data
» 5 | Running Ready Sleep 0 Oops! Woke T,
by 0,2018 | 1S5 Speing e et [ i |

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

Ta| state |r,| state |7, | state |cCount| Comment
Legend - - - - - : oty

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
c3/p3- wait 2 | Running Ready Sleep 0
c4- put() =) Sleep Ready Sleep 0 Nothing to get
p4- get() S:eep <2 | Running Sleep 0
¢5/p5- signal Sleep| =) Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

1121 ‘

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

L

2 mutex_t mutex;

3

4 oid *producer (void *arg) {

5 int i;

6 (i = 0; i < loops; i++) {

7 Pthread mutex_lock (smutex) ;

8 (count == 1)

9 Pthread_cond_wait (&empty, &mutex);
10 put (i)

11 Pthread_cond_signal(. &full);
12 Pthread mutex_unlock (smutex);
13 }

14 }

15

TCSS422: Operating Systems [Winter 2018]

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

£

2

- |

4

=

6 void put(int value) {

£ buffer[fill] = value;
8 £ill = (£ill + 1) % MAX;
9 count++;

10 )

11

12 et () (

13 tmp = buffer[use];
14 = (use + 1) % MAX;
15 count--;

16 tmp;

17 )

TCSS422: Operating Systems [Winter 2018]

(iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

11123 ‘

Institute of Technology, University of Washington - Tacoma

(EERE [See et Techolo syl niersity o Washinstoniecome! | 1122
!
2 mutex_t mutexs
|
4 void *producer(void *arg) {
5 int
6 £ ;i< loops; i+ {
7 Pthread_mutex_lock (smutex) ; pl
8 while (count == MAX) p2
9 Pthread_cond_wait (sempty, smutex): p3
10 put (i) ; pd
i1 Pthread_cond signal (&full); p5
12 Pthread_mutex_unlock (smutex); pé
13 }
14 }
15
16 void *consumer(void *arg) {
g ¥ ] (o
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock (&mutex) ; c1
20 while (count == 0) c2
21 Pthread_cond wait( sfull, smutex): c
22 int tmp = get () ) c4
February 14, 2018 TCSS422: Operating Systems [Winter 2018] | 11124

Slides by

Wes J. Lloyd

L11.4



TCSS 422 A — Winter 2018
Institute of Technology

FINAL P/C - 3

(cont.)

23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex);
25 printf("sd\n", tmp);

26 )

27 )

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

11125

2/16/2018

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

TCS5422: Operating Systems [Winter 2018]

GEERERTEL L2 S s 1 T, st G B e TP | 1126

COVERING CONDITIONS - 2

i / w many bytes of the heap are free?
2 int bytesLeft = MAX HEAP_SIZE;

3

4 / need lock an too

5 cond_t c;

6 mutex_t m;

7

8 void *

9 allocate (int size) {

10 Pthread mutex lock (em) ;
»-mnc (bytesLeft < size)

Check available memory

12 Pthread_cond wait (&c, &m);

13 void *ptr = ...; // get mem from
14 bytesLeft -= size;

15 pthread mutex_unlock(sm) ;

16 return ptr;

17 )

18

19 void free(void *ptr, int size) {

20 Pthread mutex_lock(sm) ;

21 bytesLeft ze

22 <Tthread cond signal (6c1T
23

Pthread mutex_unlock (sm)
24 }

:

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

127

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting
memory

= Each thread evaluates if there’s enough memory:
(bytesLeft < size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

TCS5422: Operating Systems [Winter 2018]

(EERE [See et Techolo syl niersity o Washinstoniecome!

| 1128

CHAPTER 32 -
CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018

OBJECTIVES

= Chapter 32:
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Winter 2018]

(R [nstueor TechnolosyUniversitylofWashinstonSTacoma!

| 11130

Slides by Wes J. Lloyd

L11.5



TCSS 422 A — Winter 2018
Institute of Technology

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

2/16/2018

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
Open Office Office Suite 6 2
Total 74 31
February 14, 2018 TCS5422: Operating Systems [Winter 2018] 11

Institute of Technology, University of Washington - Tacoma

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Qrder violation: failure to initialize lock/condition
before use

TCSS422: Operating Systems [Winter 2018]
R E A S s 1 T, st G B e TP 132

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

ENULLisOinC

= Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

= Simple example:

: Threadl::
2 (thd->proc_info) {
3
. 4 fputs (thd->proc_info , ..);

Programmer intended 5

variable to be accessed 6 }

atomically... 7
8 Thread2::
9 thd->proc_info = NULL;

February 14, 2018 TCSS422: Operating Systems [Winter 2018] 1133

Institute of Technology, University of Washington - Tacoma

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

1  pthread mutex_t lock = PTHREAD _MUTEX INITIALIZER;
2

3 Threadi::

4 pthread mutex_lock(slock);

5  if (thd->proc_info) {

6 ,A

7 fputs (thd->proc_info , ..);
8

9 &

10 pthread mutex_unlock (slock) ;

11

12 Thread2::

13 pthread _mutex_lock(&lock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCSS422: Operating Systems [Winter 2018]
(EERE [See et Techolo syl niersity o Washinstoniecome! 1134

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

mState = mThread->State

1  Threadi::

2 d init({

3 mThread = PR CreateThread (mMain, ..);
4 }

5

6  Thread2::

7 void mMain(..) {

8

9

}

= What if mThread is not initialized?

February 14, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L35

ORDER VIOLATION - SOLUTION

= Use condition variable to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD_COND_INITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
6  void init(){
7
8 mThread = PR_CreateThread(mMain,..):
9
10 signal that the thread has
11 pthread_mutex_lock (emtLock) ;
12 mtInit = 1;
13 pthread cond_signal (smtcond) ;
14 pthread mutex_unlock (&mtLock) ;
15
16}
17
18 Thread2::
19 void mMain(..){
20
TC55422: Operating Systems [Winter 2018
(R |nsxi(u(euf?rechno?o; Univs[rsi(y uVWash]ing(on—Ta:oma L1136

Slides by Wes J. Lloyd

L11.6



TCSS 422 A — Winter 2018
Institute of Technology

ORDER VIOLATION - SOLUTION 2

21 jait for the thread to be initialized
22 pthread mutex_lock (smtLock) ;

23 while (mtInit == 0)

24 pthread cond wait (smtCond, &mtLock);
25 pthread mutex_unlock(&mtLock);

26

27 mState = mThread->State;

28

29 )

2/16/2018

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

11137

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code

mDesire for automated tool support (IDE)

February 14, 2018 TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma | e

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?
Before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must known desired order

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

11139

DEADLOCK BUGS

&

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock(L1): lock (L2); = | Lock L1
lock (L2) ; lock (L1);

z g
<
= Both threads can block, unless g g
one manages to acquire both locks 2 g
Lock L2
Holds

February 14, 2018 TCSS422: Operating Systems [Winter 2018]

a
Institute of Technology, University of Washington - Tacoma | tdo

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;
v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive control of resources that they requi

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

TCSS422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L

February 14, 2018

Slides by Wes J. Lloyd

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Winter 2018]
(R [nstueor TechnolosyUniversitylofWashinstonSTacoma! 14z

L11.7



TCSS 422 A — Winter 2018
Institute of Technology

= Build wait-free data structures
= Eliminate locks altogether

instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

PREVENTION - MUTUAL EXCLUSION

if (*address == expected)
*address = new;
eturn 1; success

Qo e wn R

i

int CompareAndswap(int *address, int expected, int new)({

= Build structures using CompareAndSwap atomic CPU (HW)

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

11143

= Consider list insertion

MUTUAL EXCLUSION: LIST INSERTION

void insert(int value){
node_t * n = malloc(sizeof (node_t)):
assert( n != NULL );
n->value = value ;
n->next = head;
head =n;

Sauewn e

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

L1145

= Wait free (no lock) implementation

oid insert (int value) {

node_t *n = malloc(sizeof (node_t));

assert(n != NULL);

n->value = value;

{
n->next - head;

} (CompareAndSwap (shead, n->next, n));

}

@ o W

m Assign &head to n (new node ptr)
=0Only when head = n->next

MUTUAL EXCLUSION - LIST INSERTION - 3

TCSS422: Operating Systems [Winter 2018]

(iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

L1147

Slides by Wes J. Lloyd

2/16/2018

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

void AtomicIncrement (int *value, int amount) {

int old = *value;
}while( CompareAndswap (value, old, old+amount)==0);

EFS

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
= When it runs it is ALWAYS atomic (at HW level)

TCSS422: Operating Systems [Winter 2018]

“
Institute of Technology, University of Washington - Tacoma L144

February 14, 2018

MUTUAL EXCLUSION - LIST INSERTION - 2

®Lock based implementation

id insert(int value){
node_t * n = malloc(sizeof (node_t)):
assert( n != NULL );
n->value = value ;
lock(Listlock) ; begin critical section
n->next = head;
head =n;
unlock(listlock) ; end critical sectio

oo wn e

TCSS422: Operating Systems [Winter 2018]

B
Institute of Technology, University of Washington - Tacoma tde

February 14, 2018

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Winter 2018]
(R [nstueor TechnolosyUniversitylofWashinstonSTacoma! u148

L11.8



TCSS 422 A — Winter 2018
Institute of Technology

PREVENTION - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock(L1);
lock(L2);

S

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

L11.49

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
mpthread_mutex_timedlock() - try and wait awhile

1 top:
L T———— NO
Py STOPPING
ANY
= Eliminates deadlocks TIME

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

1151

2/16/2018

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

»No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Winter 2018]
R E A S s 1 T, st G B e TP 11150

NO PREEMPTION - LIVELOCKS PROBLEM

ECan lead to livelock

1 top:

2 lock(Ll)

3 if( trylock(12) == -1 ){
4 unlock (L1) 7

5 goto top;

6

}

=Two threads execute code in parallel >
always fail to obtain both locks

= Add random delay

=Allows one thread to win
livelock race!

TCSS422: Operating Systems [Winter 2018]

(EERE [See et Techolo syl niersity o Washinstoniecome!

u1s2

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

*C\'rcu\arwa\'t

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Winter 2018]

| (iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

11153

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

TCSS422: Operating Systems [Winter 2018]

Instituteof Technology, University of Washington - Tacoma L1154

‘ February 14, 2018

Slides by Wes J. Lloyd

L11.9



TCSS 422 A — Winter 2018
Institute of Technology

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

2/16/2018

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

L1155

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

= No deadlock can occur

= Consider:

TCS5422: Operating Systems [Winter 2018]

R E A S s 1 T, st G B e TP

L1156

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

CPU 1

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

thread

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

L1157

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?

= Many database systems employ deadlock detection and
recovery techniques.

TCS5422: Operating Systems [Winter 2018]

(EERE [See et Techolo syl niersity o Washinstoniecome!

L1158

CHAPTER 13:

ADDRESS SPACES

TCSS422: Operating Systems [Winter 2018]

EeCa vt ZUIE Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Chapter 13
= Introduction to memory virtualization
= The address space
= Goals of O0S memory virtualization

= Chapter 14
= Memory API
= Common memory errors

= Chapter 15
= Address translation
= Base and bounds
= HW and OS Support
= Chapter 16
= Memory segments, fragmentation

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L1160

February 14, 2018

Slides by Wes J. Lloyd

L11.10



TCSS 422 A — Winter 2018
Institute of Technology

2/16/2018

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

= When available RAM was low

= Less common recently

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox

Process A Process B

Process C

TCS5422: Operating Systems [Winter 2018]

(el 2 e e T e G T e

161

R E A S s 1 T, st G B e TP

TCS$422: Operating Systems [Winter 2018] | L1162

MOTIVATION FOR

MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

= Abstraction enables sophisticated approaches to manage

EARLY MEMORY MANAGEMENT

®Load one process at a time into memory
0KB

" Poor memory utilization
= Little abstraction

Operating System
(code, data, etc.)

64KB

Current
Program
(code, data, etc)

Physical Memory

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

L1163

TCS$422: Operating Systems [Winter 2018] | L1164

(EERE [See et Techolo syl niersity o Washinstoniecome!

MULTIPROGRAMMING

WITH SHARED MEMORY

= Later machines supported running multiple 0Kk

for context switch
256KB

processes o R
= Swap out processes during 1/0 waits to
increase system utilization and efficiency 128K8 e
= Swap entire memory of a process to disk 102 |(0de data,etc)
Process B

(code, data, etc.)

= Too slow, especially for large processes
3208

384K8

. Process A
= Solution> (code, data, etc)

= Leave processes in memory

448KB

= Need to protect from errant memory

512KB
accesses in a multiprocessing environment

Physical Memory

ADDRESS SPACE

= Easy-to-use abstraction of physical

OKB
memory for a process Program Code
1KB
Heap
. 2KB
" Main elements: l
=Program code o
=Stack
.
Heap 15KB T
Stack
16KB

lExampIe: 16KB address space Address Space

TCSS422: Operating Systems [Winter 2018]

(iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

L1165

February 14, 2018 TCS$422: Operating Systems [Winter 2018] | L1166

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L11.11



TCSS 422 A — Winter 2018
Institute of Technology

2/16/2018

ADDRESS SPACE - 2

= Code
0KB
= Program code Program Code
1KB
Heap
= Stack 2B
= Program counter (PC) l
= Local variables
(free)
= Parameter variables -
= Return values (for functions) T
158
= Heap Stack
= Dynamic storage L6KE ‘Address Space

= Malloc() new()

ADDRESS SPACE - 3

= Program code

= Static size iy e el
K8
Heap
= Heap and stack 2B
= Dynamic size l
= Grow and shrink during program execution
= Placed at opposite ends e
= Addresses are virtual T
= They must be physically mapped by the 0S 1K8 Stack
16KB

Address Space

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 167

February 14, 2018

February 14, 2018 TCS$422: Operating Systems [Winter 2018] | L1168

Institute of Technology, University of Washington - Tacoma

VIRTUAL ADDRESSING

= Every address is virtual
=0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int arge, char *argv(l){
printf ("location of code : $p\n", (void *) main);
printf("location of heap : $p\n", (void *) malloc(l)):
int x = 3;
printf("location of stack : $p\n", (void *) &x);

=*EXAMPLE: virtual.c

VIRTUAL ADDRESSING - 2

Address Space

TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma L1169

February 14, 2018

= Qutput from 64-bit Linux: e e
" 0x401000 gext]
location of code: 0x400686 Data
location of heap: 0x1129420 0xcf2000 Hep
location of stack: 0x7ffe040d77e4 e l
heap
(free)
stack
0x7fff9ca28000 Stack
0x7ff9ca49000
TCSS422: O ting Systs [Winter 2018]
GEERER7EL L2 |ns(i(u(euf?r:£:\rl|:?o;Smjersi:r;:;Washingwn—ra:oma | L 70—I

GOALS OF

0S MEMORY VIRTUALIZATION

= Transparency
= Memory shouldn’t appear virtualized to the program
= 0S multiplexes memory among different jobs behind the
scenes

= Protection
= |solation among processes
= 0S itself must be isolated
= One program should not be able to affect another
(or the 0S)

GOALS - 2

= Efficiency
*Time
Performance: virtualization must be fast

=Space
Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

®Goals considered when evaluation memory
virtualization schemes

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

February 14, 2018 171

TCS5422: Operating Systems [Winter 2018] 172
Institute of Technology, University of Washington - Tacoma

February 14, 2018

Slides by Wes J. Lloyd

L11.12



TCSS 422 A — Winter 2018 2/16/2018

Institute of Technology

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap

" size_t unsigned integer (must be +)
CHAPTER 14: TH E = size size of memory allocation in bytes
MEMORY API = Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCSS422: Operating Systems [Winter 2018]
GEERERTEL L2 S s 1 T, st G B e TP 174

TCSS422: Operating Systems [Winter 2018]
ey U, 2000 Institute of Technology, University of Washington - Tacoma

SIZEOF() FREE()

int *x = malloc (10 * sizeof (int)): #include <stdlib.h>

= Not safe to assume
printf (“$d\n”, sizeof(x));

data type sizes using

void free(void+* ptr)

different compilers, | 4
systems .
= Free memory allocated with malloc()
. { = Provide: (void *) ptr to malloc’d memory
= Dynamic array of 10’ints int x[10];

printf (“$d\n”, sizeof (x));

= Returns: nothing

= Static array of 10 ints [ e

TCSS422: Operating Systems [Winter 2018]
GEERER7EL L2 [See et Techolo syl niersity o Washinstoniecome! 1176

TCS5422: Operating Systems [Winter 2018]

EEDpatI 2018 Inttute of Technoloay)Universitylor Washington=Tacomal t7s

[ int_*pis /7 local variable = Releases heap space pointed to o [
: - - i freed
= Pointer is a local variable on the stack (ree) by the pointer on the stack 26+ 82 i
2KB +12 i
(free) i
16KB [Pl 168 | 2<Binvalid)
‘Address Space it o
28 . %8
= Malloc returns space on the heap 2 + 4 | allocated
[ pi = (int *)malloc(sizeot (int)* 4)7] ks + ¢ [BESIGEIEE
26 + 12 (IR 0
allocated -
(free)
2KB 16k8 2KB(invalid) |«— *pi
16€8 Address Space
TCS5422: Operating Systems [Winter 2018] TCS5422: Operating Systems [Winter 2018]
February 14, 2018 Institute of Technology, University of Washington - Tacoma L RS EE Institute of Technology, University of Washington - Tacoma | 17

Slides by Wes J. Lloyd L11.13



TCSS 422 A — Winter 2018
Institute of Technology

2/16/2018

COMMON MEMORY ERRORS

= Forgetting to malloc memory
= Unterminated string

= Uninitialized memory

= Memory leak

= Dangling pointer

TCS5422: Operating Systems [Winter 2018]

| (el 2 e e T e G T e

11179

FORGETTING TO MALLOC

= C is not Java
= When forgetting to maloc:

*src = “hello”; //character g constan
char *dst; 1110ce
strepy (dst, sre); gfault and die
— hellowo (<,
dst has not been initialized. bt
It has no place to store anything
heap
strepy (dst, src); (free) unallocated
A
stack

*dst

*src

l Segmentation fault (core dumped) ‘ Address Space

February 14, 2018 TCS$422: Operating Systems [Winter 2018] | 1180

Institute of Technology, University of Washington - Tacoma

CORRECTION

r *src = “hello”; //character string constar
ar *dst (char *)malloc(strlen(src) + 1 ); // a
strepy(dst, src); / /work properly

= Why do we malloc length + 1 ?

hellow0 hellow0
allocated hellowo
strepy(dst, szc); heap — i heap
H ] (free) (free)
1 ! stack stack
'
e A A
Srmmnedensne *dst *dst
E *src *src
Address Space Address Space

TCS5422: Operating Systems [Winter 2018]

(il 2 Inttute of Technoloay)Universitylor Washington=Tacomal

UNTERMINATED STRING

char *src = “hello”; //character string constant
char *dst (char *)malloc(strlen(src)); // too small
strcpy(dst, src):; //work properly
R J-
e
Malloc too little memory 6 bytes S"'Q“I !
o
,,,,,  E—m—

WO’ is omitted 5 hy‘ESI hello0 1«

v

stropy(dst, src); 0
i | (free)

stack

bemseesiaarnnasnannad]

*dst

*src -

Address Space

TCS$422: Operating Systems [Winter 2018] | 11182

(EERE [See et Techolo syl niersity o Washinstoniecome!

FORGETTING TO INITIALIZE

int *x =

printf(“*x = %d\n”, *x); un

value used allocated
before Wwith value used|
(free) before
heap heap i
(free) (free)
stack stack i
= o .
Address Space Address Space

MEMORY LEAK

Program runs out of memory
and eventually dies...

: unused, but not freed

TCSS422: Operating Systems [Winter 2018]

(iR, 2 Institute o Technoloay)Universitylof Washington®Tacomal

11183

allocated unused unused [
l allocated unused
heap V unused |«
heap
(free) (free) allocated
stack 5‘}“‘
! 5
a *a *a
Address Space Address Space Address Space
> run out of memory
TCS$422: Operating Systems [Winter 2018] | Lise

(R [nstueor TechnolosyUniversitylofWashinstonSTacoma!

Slides by Wes J. Lloyd

L11.14



TCSS 422 A — Winter 2018 2/16/2018
Institute of Technology

#include<stdio.h> #include<stdio.h>
What will this code do? What will this code do?
int * set_magic_number_aQ) int * set_magic_number_a()
{
int a =53247; int a =53247;
return &a; return &a; Output:
} 3 $ ./pointer_error
) ) ) ) The magic number is=53247
void set_magic_number_b() ¥o1d set_magic_number_b(Q) The magic number is=11111
int b = 11111; int b = 11111;
X We have not changed *x but
}nt main() int main() the value has changed!!
int * x = NULL; int * x = NULL; Why?
X = set_magic_number_a(); X = set_magic_number_a();
printf("The magic number is=%d\n“,*x); printf("The magic number is=%d\n"“,*x);
set_magic_number_b(); set_magic_number_b();
printf(“The magic number is=%d\n“,*x); printf("The magic number is=%d\n“,*x);
return 0; return 0;
} 85 } 86

QUESTIONS

Slides by Wes J. Lloyd L11.15



