
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.1

LocksLocksLocksLocks

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Makefile question:

� What is the “all” target?

“make all” - builds all targets defined in the makefile

target:target:target:target: a keyword that invokes a specific build (e.g. path in

the makefile) to compile and link a particular set of files

� What is the “clean” target?

Clean deletes all executable and link files leaving only

source files behind.

� Pthread_create(), pthread_join() example– can you

explain it again?

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.2

FEEDBACK FROM 1/25/2017

� Why wouldn’t we want an atomic update instruction for a B-

tree (Ch.26, section 5, page 10)

“would we really want the hardware to support an ‘atomic

update of B-tree’ instruction? Probably not, at least in a

sane instruction set

� Here the author is pointing out that CPU designers can get carried

away and have too many specialized instructions to do compound

operations.

� Complex instructions goes against CPU instruction set design

principles

� Regular, simple, compact, easy to program, implement

� Impacts compiler design and complexity

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.3

FEEDBACK - 2

�How does test and set work?

� What is the advantage provided by

testing and setting the old value?

� Before we assume we have the lock, we test if the lock

wasn’t already held.

� In contrast to basic spin lock which just assumes that

setting the lock int to 1 always works

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.4

FEEDBACK - 3

� Explain what lock initialization does… (manpage)

� pthread_mutex_init: initializes the mutex object pointed
to by mutex according to the mutex attributes specified in
mutexattr.
If mutexattr is NULL, default attributes are used instead.

� The LinuxThreads implementation supports only one
mutex attribute, the mutex kind, which is either
``fast'', ``recursive'', or ``error checking''. The kind of a
mutex determines whether it can be locked again by a
thread that already owns it. The default kind is ``fast''.

� See pthread_mutexattr_init(3) for more information on
mutex attributes.

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.5

FEEDBACK - 4

� Spin Locks - review

� Yielding

� Queues and User Control

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.6

OBJECTIVES

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.2

� HW CPU Instruction

� Increment counter atomically-as a unit in one instruction

� Fetch and return value

� Increment by 1

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.7

FETCH-AND-ADD

� Can build Ticket Lock using Fetch-and-Add

� Ensures progress of all threads (fairness)

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.8

TICKET LOCK

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.9

TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock

� Give up the CPU – instead of busy waiting…

� running �ready

� Ready relinquishes the CPU for another thread (ctxt. switch)

� How does the thread get the CPU back?

� OS must opportunistically reschedule it: ready � running

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.10

YIELD() – SYSTEM CALL

� Simple, correct

� Slow

� With long locks, waiting threads spin for entire timeslice

� Repeat comparison continuously

� Busy waiting

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.11

HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?

Need both HW & OS Support !

� Don’t allow the OS to control your program

� Use internal Thread QueuesThread QueuesThread QueuesThread Queues

� Allows programmer to maintain control

� Ensure fairness, prevent starvation

� Better for synchronizing large #’s of threads

� Require OS support to add/remove threads to/from
queue(s)

� Solaris API:
� park(): puts thread to sleep

� unpark(threadID): wakes specified thread

� Linux API: futex()

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.12

THREAD QUEUES

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.3

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.13

THREAD QUEUES - 2

lock unavailable; add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race

� Unlock

� Note: no change to m->flag if unparking a thread

� Lock is passed to the unparked thread “directly”

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.14

THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

� Thread B: context switch occurs immediately before call to

park()

� Thread A: releases lock, calls unpark, queue is empty

� Thread B: regains context, proceeds to lock itself forever

� Need new system call

� setparksetparksetparksetpark()()()() ---- informs OS about soon to be parked thread

� Subsequent calls to unpark() are aware that ThreadB is about to park

� ThreadB’s call to park() immediately returns

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.15

WAKEUP/WAITING RACE

� FFFFast UUUUserspace MuTEXTEXTEXTEX

� Linux futex system calls similar to park() and unpark()

� Linux uses an in-kernel queue

� Provides a futex() system call

� Provides atomic-as a unit compare-and-block operation

� FutexFutexFutexFutex is a loweris a loweris a loweris a lower ---- level constructlevel constructlevel constructlevel construct

� Used as building blocks for:

mutexmutexmutexmutex , condition variables, semaphores, condition variables, semaphores, condition variables, semaphores, condition variables, semaphores

� Objective: reduce the number of system calls

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.16

FUTEX

� futex_wait(addr, expected)

� Put calling thread to sleep

� If value @ addr != expected � return immediately

� futex_wake(addr)

� Wake one thread that is waiting on the queue

� These are not exposed as C l ibrary cal ls directly

� Call futex() with FUTEX_WAIT or FUTEX_WAKE

� Use a 32-bit integer

� The leftmost bit (the +/- sign) tracks the lock state

� 0 – free

� 1 – locked

� Remaining 31 bits: identifies thread

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.17

FUTEX: WRITE YOUR OWN MUTEX LOCK

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.18

FUTEX: MUTEX_LOCK PSUEDO CODE

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the /* Bit 31 was clear, we got the /* Bit 31 was clear, we got the /* Bit 31 was clear, we got the mutexmutexmutexmutex (this is a fast lock!)(this is a fast lock!)(this is a fast lock!)(this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” // “adds” // “adds” // “adds” mutexmutexmutexmutex to queueto queueto queueto queue
atomic_increment (mutex);
while (1) {

// is lock available?// is lock available?// is lock available?// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove // remove // remove // remove mutexmutexmutexmutex from queue from queue from queue from queue –––– it has the lock nowit has the lock nowit has the lock nowit has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure // Have to wait. Make sure // Have to wait. Make sure // Have to wait. Make sure futexfutexfutexfutex value is locked (negative)value is locked (negative)value is locked (negative)value is locked (negative)
v = *mutex;
iv (v >= 0)
continue;

// wait to be woken up when lock is available// wait to be woken up when lock is available// wait to be woken up when lock is available// wait to be woken up when lock is available
// this is not a spin lock… (signal)// this is not a spin lock… (signal)// this is not a spin lock… (signal)// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.4

� Interesting note: Futex bug in Redhat Linux

� https://www.infoq.com/news/2015/05/redhat-futex

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.19

FUTEX: MUTEX UNLOCK PSUEDO CODE

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if// Adding 0x80000000 to counter results in 0 if and only if// Adding 0x80000000 to counter results in 0 if and only if// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads// there are no other interested threads// there are no other interested threads// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (// There are other threads waiting for this lock (// There are other threads waiting for this lock (// There are other threads waiting for this lock (mutexmutexmutexmutex))))
// wake one of them up..// wake one of them up..// wake one of them up..// wake one of them up..
// (e.g. // (e.g. // (e.g. // (e.g. dequeuedequeuedequeuedequeue it)it)it)it)
futex_wake (mutex);

}

� Hybrid between spin-locks and yielding

� Useful if lock is about to be released

� First phase – spin lock

� Spin for some time waiting for the lock to be released

� If lock is not acquired after time expires enter phase two.

� Second phase - yield

� Thread sleeps (yields)

� Is awoken when the lock becomes free

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.20

HYBRID - TWO PHASE LOCKS

LOCK BASED

DATA STRUCTTURES

January 30, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L7.21

� Concurrent Data Structures

� Performance

� Lock Granularity

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.22

OBJECTIVES

�Adding locks to data structures make them

thread safethread safethread safethread safe.

�Considerations:

�Correctness

�Performance

�Lock granularity

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.23

LOCK-BASED

CONCURRENT DATA STRUCTURES

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.24

COUNTER STRUCTURE W/O LOCK

� Synchronization weary - - - not thread safe

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.5

� Add lock to the counter

� Require lock to change data

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.25

CONCURRENT COUNTER

� Decrease counter

� Get value

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.26

CONCURRENT COUNTER - 2

� iMac: four core Intel 2.7 GHz i5 CPU

� Each thread increments counter 1,000,000 times

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.27

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

� Achieve (N) performance gain with (N) additional resources

� Throughput:

� Transactions per second

� 1 core

� N = 100 tps

� 10 core

� N = 1000 tps

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.28

PERFECT SCALING

� Provides single logical shared counter

� Implemented using local counters for each ~CPU core

� 4 CPU cores = 4 local counters & 1 global counter

� Local counters are synchronized via local locks

� Global counter is updated periodically

� Global counter has lock to protect global counter value

� Sloppiness threshold (S):

Update threshold of global counter with local values

� Small (S): more updates, more overhead

� Large (S): fewer updates, more performant, less synchronized

� Why this implementation?

Why do we want counters local to each CPU Core?

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.29

SLOPPY COUNTER

� Update threshold (S) = 5

� Synchronized across four CPU cores

� Threads update local CPU counters

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.30

SLOPPY COUNTER - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.6

� Consider 4 threads increment a counter 1000000 times each

� Low S � What is the consequence?

� High S � What is the consequence?

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.31

THRESHOLD VALUE S

� Example implementation

� Also with CPU affinity

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.32

SLOPPY COUNTER - EXAMPLE

� Simplification - only basic l ist operations shown

� Structs and initialization:

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.33

CONCURRENT LINKED LIST - 1

� Insert – adds item to l ist

� Everything is critical!

� There are two unlocks

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.34

CONCURRENT LINKED LIST - 2

� Lookup – checks list for existence of item with key

� Once again everything is critical

� Note - there are also two unlocks

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.35

CONCURRENT LINKED LIST - 3

� First Implementation:

� Lock everythingeverythingeverythingeverything inside Insert() and Lookup()

� If malloc() fails lock must be released

� Research has shown “exceptionexceptionexceptionexception----based control f lowbased control f lowbased control f lowbased control f low” to be error

prone

� 40% of Linux OS bugs occur in rarely taken code paths

� Unlocking in an exception handler is considered a poor coding

practice

� There is nothing specifically wrong with this example however

� Second Implementation …

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.36

CONCURRENT LINKED LIST

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.7

� Init and Insert

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.37

CCL – SECOND IMPLEMENTATION

� Lookup

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.38

CCL – SECOND IMPLEMENTATION - 2

� Using a single lock for entire l ist is not very performant

� Users must “wait” in l ine for a single lock to access/modify

any item

� Hand-over-hand-locking (lock coupling)

� Introduce a lock for each node of a list

� Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

� Improves lock granularity

� Degrades traversal performance

� Consider hybrid approach

� Fewer locks, but more than 1

� Best lock-to-node distribution?

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.39

CONCURRENT LINKED LIST PERFORMANCE

� Improvement beyond a single master lock for a queue (FIFO)

� Two locks:

� One for the headheadheadhead of the queue

� One for the tailtailtailtail

� Synchronize enqueue and dequeue operations

� Add a dummy node

� Allocated in the queue initialization routine

� Supports separation of head and tail operations

� Items can be added and removed by separate threads at the

same time

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.40

MICHAEL AND SCOTT CONCURRENT QUEUES

� Remove from queue

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.41

CONCURRENT QUEUE

� Add to queue

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.42

CONCURRENT QUEUE - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L5.8

�Consider a simple hash table

�Fixed (static) size

�Hash maps to a bucket

� Bucket is implemented using a concurrent linked list

� One lock per hash (bucket)

� Hash bucket is a linked lists

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.43

CONCURRENT HASH TABLE

� Four threads – 10,000 to 50,000 inserts

� iMac with four-core Intel 2.7 GHz CPU

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.44

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales

magnificently.

January 30, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.45

CONCURRENT HASH TABLE QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 30, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L7.46

