TCSS 422: Operating Systems [Winter 2017] 10/10/2016
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS FEEDBACK FROM 1/25/2017

= Makefile question:

= What is the “all” target?
“make all” - builds all targets defined in the makefile

target: a keyword that invokes a specific build (e.g. path in
the makefile) to compile and link a particular set of files

Locks

Wes J. Lloyd A y ! = What is the “clean” target?

Institute of Technology Clean delletes aI.I executable and link files leaving only
source files behind.

University of Washington - Tacoma

= Pthread_create(), pthread_join() example- can you
explain it again?

TCS5422: Operating Systems [Winter 2017]
TR R Institute of Technology, University of Washington - Tacoma 72

FEEDBACK - 2 FEEDBACK - 3

= Why wouldn’t we want an atomic update instruction for a B- ® How does test and set work?
Ee (@2, seedon B, FREe o) = What is the advantage provided by
“would we really want the hardware to support an ‘atomic testing and setting the old value?
update of B-tree’ instruction? Probably not, at least in a
sane instruction set

= Before we assume we have the lock, we test if the lock

= Here the author is pointing out that CPU designers can get carried wasn't already held.

away and have too many specialized instructions to do compound
operations.
= Complex instructions goes against CPU instruction set design

= In contrast to basic spin lock which just assumes that
principles

setting the lock int to 1 always works
= Regular, simple, compact, easy to program, implement

= Impacts compiler design and complexity

TC55422: Operating Systems [Winter 2017] TC55422: Operating Systems [Winter 2017]
LI, At Institute of Technology, University of Washington - Tacoma L3 (TR B, A Institute of Technology, University of Washington - Tacoma 7.4

= Explain what lock initialization does... (manpage)

= pthread_mutex_init: initializes the mutex object pointed
to by mutex according to the mutex attributes specified in
mutexattr.
If mutexattr is NULL, default attributes are used instead.

= Spin Locks - review
= Yielding

= Queues and User Control
=The LinuxThreads implementation supports only one
mutex attribute, the mutex kind, which is either
" “fast", " “recursive', or ~error checking". The kind of a
mutex determines whether it can be locked again by a
thread that already owns it. The default kind is ™~ fast'".

=See pthread_mutexattr_init(3) for more information on
mutex attributes.

Institute of Technology, University of Washington - Tacoma

TC55422: Operating Systems [Winter 2017] TC55422: Operating Systems [Winter 2017]
{ETETR £, A 7.5 TR R Institute of Technology, University of Washington - Tacoma 7.6

Slides by Wes J. Lloyd L5.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

FETCH-AND-ADD

= HW CPU Instruction

nt FetchAndadd (int *ptr) {
int old = *ptr;
*ptr = old + 1;
old;

s W e

)

= Fetch and return value
=Increment by 1

= Increment counter atomically-as a unit in one instruction

10/10/2016

TICKET LOCK

= Can build Ticket Lock using Fetch-and-Add
= Ensures progress of all threads (fairness)

1 typedef struct _ lock t {

2 int ticket;

3 int turn;

4} lock_t;

5

6 void lock_init (lock_t *lock) {

7 lock->ticket = 0;

8 lock->turn = 0;

9)

10

11 void lock(lock_t *lock) (

12 int myturn = FetchAndAdd (&lock->ticket);
13 (lock->turn != myturn)
14 i/ s

15)

16 void unlock(lock t *lock) {

17 FetchandAdd (slock->turn) ;

18)

TCS5422: Operating Systems [Winter 2017

TR R Institute of Technology, University of Washington - Tacoma ‘ 78 |

TCSS422: Operating Systems [Winter 2017)

{EETR £, A e e e R - | L7
1ty struct _ lock t {
2 t ticket;
3 int turn; B
4} lock s while (11=1)
5 i . acquire lock
6 d lock_init (lock_t *lock) {
7 lock->ticket = 0; TB myturn=1
8 lock->turn = 0; ticket=2 TA myturn=0
9 } ticket=1
10 turn=0
11 lock(lock_t *lock) {
12 =
13 < |while(0!=0)
14 acquire lock
15) B TA-unlock
16 i unlock(lock t *lock) { while (0 1= 1 myturn=0
17 FetchandAdd (slock->turn) ; s ;:(= ticket=2

— =
18 3} P turn=1
TC55422: Operating Systems [Winter 2017]
LI, At Institute of Technology, University of Washington - Tacoma | L9

YIELD() - SYSTEM CALL

void init() (
flag = 0;

1

2

3

4

5 void lock() {
6 (Testandset (sflag, 1)
5

8

yield(); give up the
}

9

10 void unlock() {

11 flag = 0;

12)

= Give up the CPU - instead of busy waiting...

= running >ready
= Ready relinquishes the CPU for another thread (ctxt. switch)
= How does the thread get the CPU back?

= 0S must opportunistically reschedule it: ready - running

TCS5422: Operating Systems [Winter 2017]

(I, A Institute of Technology, University of Washington - Tacoma ‘ L7100 |

HARDWARE SPIN LOCKS - SUMM

= Simple, correct

= Slow

= With long locks, waiting threads spin for entire t
= Repeat comparison continuously
= Busy waiting

HW & OS Support

ARY

imeslice

TCS5422: Operating Systems [Winter 2017)

{ETETR £, A Institute of Technology, University of Washington - Tacoma

o |

THREAD QUEUES

= Don’t allow the OS to control your program
= Use internal Thread Queues

= Allows programmer to maintain control
= Ensure fairness, prevent starvation
= Better for synchronizing large #'s of threads

= Require OS support to add/remove threads to/from
queue(s)

= Solaris API:
= park(): puts thread to sleep
=unpark(threadID): wakes specified thread
= Linux API: futex()

TCSS422: Operating Systems [Winter 2017

TR R nstitute of Technology, University of Washington - Tacoma ‘ 2

Slides by Wes J. Lloyd

L5.2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

THREAD QUEUES - 2

1 typedef struct _lock_t { int flag; int guard; queue_t *q; } lock_t;
2
3 void lock_init(lock_t *m) {
4 m->flag = 0;
5 » m->guard R
6 queue_init (m->g) Guard uses a spin-lock to protect the
7 critical sections in lock() and unlock()
8
9 vgid lock(lock_t *m) {
10‘ TestAndset (&m- d, 1) =1 .
o , estandset lmvguard, 1 Obtain guard lock
12 » i o i
13 lock is try to obtain actual lock
14
15 :
16 queue_add (m->q, gettid()); lock unavailable; add thread to queue
17 m->guard = 0; " .
18 park() ; potential wakeup/waiting race
19 }
20}
21
TCSS422: Operating Systems [Winter 2017)
| e Insttute of Technology, University of Washington - Tacoma L3 |

10/10/2016

THREAD QUEUES - 3

= Unlock

22 void unlock(lock_t *m) {
2» (Te: dset (&m->gua.
24 : ire guard
25 (queue_empty (m->q))
26 m->flag = 0; let go of

Obtain guard lock (spin)

one wan

w;ké up thread from queue
;/ old ck (for next thread!

28 » unpark (queue_remove (m->q))
29 m->quard = 07
30 release guard lock

= Note: no change to m->flag if unparking a thread
= Lock is passed to the unparked thread “directly”

TCS5422: Operating Systems [Winter 2017]
TR R Institute of Technology, University of Washington - Tacoma

| o]

WAKEUP/WAITING RACE

= Thread B: context switch occurs immediately before call to
park()

= Thread A: releases lock, calls unpark, queue is empty

= Thread B: regains context, proceeds to lock itself forever

= Need new system call
= setpark()- informs OS about soon to be parked thread
= Subsequent calls to unpark() are aware that ThreadB is about to park
= ThreadB’s call to park() immediately returns

TC55422: Operating Systems [Winter 2017]
LI, At Institute of Technology, University of Washington - Tacoma 1715

)

S
FUTEX !ﬂ:
= Fast Userspace MuTEX

= Linux futex system calls similar to park() and unpark()
® Linux uses an in-kernel queue
= Provides a futex() system call

= Provides atomic-as a unit compare-and-block operation

= Futex is a lower-level construct

= Used as building blocks for:
mutex, condition variables, semaphores

= Objective: reduce the number of system calls

TCS5422: Operating Systems [Winter 2017]
(I, A Institute of Technology, University of Washington - Tacoma 1716

FUTEX: WRITE YOUR OWN MUTEX LOCK

= futex_wait(addr, expected)

= Put calling thread to sleep

= If value @ addr != expected > return immediately
= futex_wake(addr)

= Wake one thread that is waiting on the queue

" These are not exposed as C library calls directly
= Call futex() with FUTEX_WAIT or FUTEX_WAKE

= Use a 32-bit integer
= The leftmost bit (the +/- sign) tracks the lock state
0 - free
1 - locked
= Remaining 31 bits: identifies thread

TCS5422: Operating Systems [Winter 2017)

{ETETR £, A Institute of Technology, University of Washington - Tacoma

v |

Slides by Wes J. Lloyd

FUTEX: MUTEX_LOCK PSUEDO CODE

void mutex_lock(int *mutex) {
int v;

if (atomic_bit_test_set (mutex, 31) == 0)
return;

atomic_increment (mutex);
while (1) {

if (atomic_bit_test_set (mutex, 31) ==0 {

atomic_decrement (mutex);

return;
vV = *mutex;
iv (v >= 0)

continue;

futex_wait (mutex, v);

TCS5422: Operating Systems [Winter 2017
TR R nstitute of Technology, University of Washington - Tacoma 1718

L5.3

TCSS 422: Operating Systems [Winter 2017]

Institute of Technology, UW-Tacoma

void mutex_unlock(int *mutex) {

if (atomic_add_zero (mutex, 0x80000000))
return;

futex_wake (mutex);

= Interesting note: Futex bug in Redhat Linux

FUTEX: MUTEX UNLOCK PSUEDO CODE

= https://www.infoq.com/news/2015/05/redhat-futex

10/10/2016

January 30,2017 TCS5422: Operating Systems [Winter 2017)

Institute of Technology, University of Washington - Tacoma

L1719

HYBRID - TWO PHASE LOCKS

= Hybrid between spin-locks and yielding
= Useful if lock is about to be released

= First phase - spin lock
=Spin for some time waiting for the lock to be released

= If lock is not acquired after time expires enter phase two.

= Second phase - yield
=Thread sleeps (yields)
=|s awoken when the lock becomes free

TCS5422: Operating Systems [Winter 2017

(e R, 2R Institute of Technology, University of Washington - Tacoma

17.20

January 30, 2017 TCSS422: Operating Systems [Winter 2017]

LOCK BASED
DATA STRUCTTURES

Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Concurrent Data Structures
= Performance

= Lock Granularity

TCS5422: Operating Systems [Winter 2017]

(TR, A Institute of Technology, University of Washington - Tacoma

17.22 |

LOCK-BASED
CONCURRENT DATA STRUCTURES

thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

= Adding locks to data structures make them

January 30,2017 TCS5422: Operating Systems [Winter 2017)

Institute of Technology, University of Washington - Tacoma

23

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe

1 typedef struct _ counter_t {
2 int value;

3 } counter_t;

4

5 void init (counter t *c) {

6 c->value = 0;

7)

8

9 void increment (counter t *c) {
10 c->value++;

11)

12

13 void decrement (counter_t *c) {
14 c->value--;

15)

16

17 int get(counter_t *c) {

18 return c->value;

19)

TCSS422: Operating Systems [Winter 2017

(e R, A Institute of Technology, University of Washington - Tacoma

17.24

Slides by Wes J. Lloyd

L5.4

TCSS 422: Operating Systems [Winter 2017] 10/10/2016
Institute of Technology, UW-Tacoma

CONCURRENT COUNTER

CONCURRENT COUNTER - 2

S ct _counter £ { = Decrease counter
nt value;
3 pthread lock_t lock: = Get value
4 } counter_t;
5
6 void init (counter_t *c) { (Cont.)
7 c->value = 0; 17 void decrement (counter_t *c) {
8 Pthread mutex_init(sc->lock, NUL 18 pthread_mutex_lock (&c->1lock) ;
9 } 19 c->value--;
10 20 Pthread mutex_unlock (sc->lock) 7
11 void increment (counter_t *c) { 21 }
12 Pthread mutex_lock (&c->lock) 22
13 c->value++; 23 nt get(counter_t *c) {
14 Pthread_mutex_unlock(&c->lock); 24 Pthread_mutex_lock(&c->lock);
15 } 25 int rc = c->value;
16 26 Pthread_mutex_unlock(&c->lock);
27 return rc;
= Add lock to the counter 28 }

= Require lock to change data

TCS5422: Operating Systems [Winter 2017)

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

January 30,2017 .25 TR R Institute of Technology, University of Washington - Tacoma

[e

CONCURRENT COUNTERS - PERFORMANCE PERFECT SCALING

= iMac: four core Intel 2.7 GHz i5 CPU = Achieve (N) performance gain with (N) additional resources
= Each thread increments counter 1,000,000 times
15 = Throughput:
385w

= Transactions per second

= 1 core
= N =100 tps
Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024 = 10 core
= N = 1000 tps

Threads

scales poorly

TCS5422: Operating Systems [Winter 2017]

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

| January 30,2017 Institute of Technology, University of Washington - Tacoma

| 27 January 30, 2017

| o]

SLOPPY COUNTER SLOPPY COUNTER - 2

= Provides single logical shared counter = Update threshold (S) = 5
= Implemented using local counters for each ~CPU core = Synchronized across four CPU cores
4 CPU cores = 4 local counters & 1 global counter = Threads update local CPU counters
Local counters are synchronized via local locks Time | Lt | L ‘ L L 6
= Global counter is updated periodically 0 o o 0 0 0
Global counter has lock to protect global counter value 1 0 0 1 1 0
Sloppiness threshold (S): 2 1 0 2 1 0
Update threshold of global counter with local values 3 2 0 3 1 0
Small (S): more updates, more overhead 4 3 0 3 2 0
Large (S): fewer updates, more performant, less synchronized 5 4 1 3 3 0
. o 6 550 1 3 4 5 (from L.
= Why this implementation? (from L)
7 0 2 4 550 10 (from L,)

Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Winter 2017)

TCSS422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

January 30,2017 Institute of Technology, University of Washington - Tacoma

1729

January 30,2017 ‘ 1730

Slides by Wes J. Lloyd L5.5

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

THRESHOLD VALUE S

= Low S > What is the consequence?
= High S > What is the consequence?
15

Time (seconds)

1 2 4 8 16 32 64 128256 5121024
Sloppiness

= Consider 4 threads increment a counter 1000000 times each

10/10/2016

TCS5422: Operating Systems [Winter 2017)

{EETR £, A Institute of Technology, University of Washington - Tacoma

1731

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCS5422: Operating Systems [Winter 2017

TR R Institute of Technology, University of Washington - Tacoma ‘ 1732

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1
2
3 7
4 struct _ node_t *next;
5 } node_t;
6
7 ructure (one used per list)
8 y _list t (
9 node_t *head;
10 pthread mutex_t lock:
11 } list_t;
12
13 void List_Init(list_t *L) {
14 L->head = NULL;
15 pthread mutex_init (sL->lock, NULL);
16)
17
(cont.)
Janary 30,2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

| 1733 |

CONCURRENT LINKED LIST - 2

® Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)

18 int List_Insert(list_t *L, int key) {

19 pthread_mutex_lock (sL->lock) ;

20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {

22 perror ("malloc”) ;

23 pthread_mutex_unlock (&L->10ckK) ;
24 return -1;

26 new->key = ke

27 new->next = L->head;

28 L->head = new;

29 pthread_mutex_unlock (&L->1ock) ;

30 return 0;

31

(Cont.)

TCS5422: Operating Systems [Winter 2017]

(I, A Institute of Technology, University of Washington - Tacoma ‘ 1734

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(cont.)
32
32 int List_Lookup (list_t *L, int key) {
33 pthread mutex_lock (sL->lock) 7
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex_unlock (sL->lock)
38 returr success
39 i
40 curr = curr->next;
a1
12 pthread mutex_unlock (sL->lock) ;
43 return -1; failure
4)
January 30,2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

1735

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCSS422: Operating Systems [Winter 2017

TR R nstitute of Technology, University of Washington - Tacoma ‘ 1736

Slides by Wes J. Lloyd

L5.6

TCSS 422: Operating Systems [Winter 2017] 10/10/2016
Institute of Technology, UW-Tacoma

= |nit and Insert = Lookup
: sist Inic(ist £) ((cont.)
I->head = NULL; N ; P
3 pthread mutex_init (sL->lock, NULL); ii int pist_Lookup (List_t 2%, int key)
: , int v = -1;
: 24 pthread mutex_lock (sL->lock) ;
6 void List_Insert(list_t *L, int key) { 25 node_t *curr = L->head;
5 T enro e e 26 wnile (curr) {
8 node_t *new = malloc(sizeof (node t)); 27 if (curr->key == key) (
9 if (mew == NULL 28 rv = 0;
10 perror ("malloc”) ; 29
11 return; 30 }
12) 31 curr = curr->next;
13 new->key = key 32
14 33 pthread_mutex_unlock (sL->1ock) ;
15 / jus . x al se > 34 return rv; // now k
16 pthread mutex_lock (sL->lock) ; 35)
17 new->next = L->heads
18 L->head = new;
13 pthread mutex_unlock (sL->lock)
20)
21
TC55422: Operating Systems [Winter 2017 7C55422: Operating Systems [Winter 2017]
{EETR £, A Insti(u(eof:chnniagyy, Unive[rsi(y nfwash]ingmn-Taooma 1737 TR R Institute nv‘;echnofng‘c, Unive[rsi(yofWash]ingmn-Tacnma ‘ L7.38

CONCURRENT LINKED LIST PERFORMANCE MICHAEL AND SCOTT CONCURRENT QUEUES

= Using a single lock for entire list is not very performant = Improvement beyond a single master lock for a queue (FIFO)
= Users must “wait” in line for a single lock to access/modify = Two locks:

any item = One for the head of the queue
= Hand-over-hand-locking (lock coupling) = One for the tail

= Introduce a lock for each node of a list = Synchronize enqueue and dequeue operations

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= Consider hybrid approach

= [tems can be added and removed by separate threads at the
= Fewer locks, but more than 1

same time
= Best lock-to-node distribution?
TC55422: Operating Systems [Winter 2017] TC55422: Operating Systems [Winter 2017]
e Institute of Technology, University of Washington - Tacoma 1739 HERERD T Institute of Technology, University of Washington - Tacoma e

CONCURRENT QUEUE CONCURRENT QUEUE - 2

= Remove from queue = Add to queue
1 __node_t { (Cont.)
2 int value; N
3 struct node t *next; 21 Queue_Enqueue (queue_t *q, int value) {
1 } node_t; - 22 node_t *tmp = malloc(sizeof (node_t));
5 23 assert (tmp != NULL);
6 ty) struct _ queue_t { 24
7 node_t *head; 25 tmp->value = value;
8 node_t *tail; 26 tmp->next NULL;
9 pthread mutex_t headLock; 27
10 pthread mutex_t tailLock: 28 pthread mutex_lock(&g->tailLock) ;
11 } queue_t; 29 g->tail->next = tmp;
ig /0id Queue_Tnit (queue_t *q) { 30 g->tail = tmp;
12 node_t *tmp alloc (si2c07 (node_t)) g; pthread mutex_unlock(&g->tailLock);
15 tmp->next = NULL;
16 q->head = g->tail - tmp; (Cont.)
17 pthread mutex_init (sgq->headLock, NULL);
18 pthread mutex_init (sq->taillock, NULL);
19 }
20
(Cont.)

January 30,2017 TCSS422: Operating Systems [Winter 2017] a1 TCSS422: Operating Systems [Winter 2017]

January 30,2017

Institute of Technology, University of Washington - Tacoma ‘ 7.2

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L5.7

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket

= 0One lock per hash (bucket)
= Hash bucket is a linked lists

CONCURRENT HASH TABLE

= Bucket is implemented using a concurrent linked list

10/10/2016

TCS5422: Operating Systems [Winter 2017]
{EETR £, A Institute of Technology, University of Washington - Tacoma

1743

INSERT PERFORMANCE -
CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
O Simple Concurrent List
X Concurrent Hash Table
B0
2
s
g
4
&
2
£ 5
£
0+ 5 x " -
o 10 20 30 4

Inserts (Thousands)

scales
maghnificently

TCS5422: Operating Systems [Winter 2017]
(e R, 2R Institute of Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

1 #define BUCKETS (101)

2
3 typedef struct _ hash_t {
4 list_t lists[BUCKETS];
5 } hash_t;
3
7 void Hash_Init(hash_t *H) {
8 i
9 (1= 0; i < BUCKETS; i++) {
10 List_Init (sH->lists[i]);
11 }
12 }
13
14 int Hash_Insert(hash_t *H, int key) {
15 int bucket = key % BUCKETS;
16 return List_Insert (sH->lists[bucket], key):
17 }
18
19 int Hash_Lookup (hash_t *H, int key) {
20 int bucket = key % BUCKETS;
21 return List_Lookup (sH->lists[bucket], key):
22 }

January 30,2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

1745 |

Slides by Wes J. Lloyd

QUESTIONS

TCSS422: Operating Systems Winter 2017]
R Institute of Technology, University of Washington - Tacoma

L5.8

