
TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

02/08/2017

Slides by Wes J. Lloyd L9.1

ConditionConditionConditionCondition
VariablesVariablesVariablesVariables

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Questions regarding program #1:

� execlpexeclpexeclpexeclp

� execlp("ls","ls", "- l",  "/bin/??", (char *)NULL);

� Allows an indetermine number of arguments.

� 1st arg: command to run

� Addtl args: arg[0]-arg[n],  NULL terminated

� For exec w/o pointers:

� execlp(arg[0],arg[0],arg[1],arg[2],arg[3], . . . . ,(char *)NULL);

� execvpexecvpexecvpexecvp

� First arg is address of string  (char array) of first command

� Second argument is pointer to l ist of arguments

� The first argument is the command

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.2

FEEDBACK

�Program 2

�Posted – Due 

�Midterm: Monday February 13

�CPU Scheduling (Virtualizing the CPU)

�Chapters 4, 6, 7, 8, 9

�Concurrency

�Chapters 26, 27, 28, 29, 30, 32*

� * - deadlocks: common causes, how to avoid

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.3

FEEDBACK - 2

�Condition variables

�Consumer/Producer

�Covering condition

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.4

OBJECTIVES

� There are many cases where a thread wants to 

wait for another thread before proceeding with 

execution

�Consider when a precondition must be fulfilled 

before it is meaningful to proceed …

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.5

CONDITION VARIABLES

� Support a signaling mechanism to alert 

threads when preconditions have been satisfied

� Eliminate busy waiting

� Alert one or more threads to “consume” a result, or 

respond to state changes in the application

� Threads are placed on an explicit queueexplicit queueexplicit queueexplicit queue (FIFO) to wait 

for signals

� SignalSignalSignalSignal: wakes one thread

broadcastbroadcastbroadcastbroadcast wakes all (ordering by the OS)

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.6

CONDITION VARIABLES - 2



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

02/08/2017

Slides by Wes J. Lloyd L9.2

� Condition variable

� Requires initialization

� Condition API calls

� wait() accepts a mutex parameter

� Releases lock, puts thread to sleep

� signal()

� Wakes up thread, awakening thread acquires lock

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.7

CONDITION VARIABLES - 3

pthread cond t c;

Matrix generation example

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.8

MATRIX GENERATOR

� Parent thread calls thr_join() and executes the comparison

� The context switches to the child

� The child runs thr_exit() and signals the parent, but the parent 

is not waiting yet.   

� The s ignal is  lostThe s ignal is  lostThe s ignal is  lostThe s ignal is  lost

� The parent deadlocks

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.9

SUBTLE RACE CONDITION: 

WITHOUT A WHILE

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.10

PRODUCER / CONSUMER

� ProducerProducerProducerProducer

� Produces items – consider the child matrix maker

� Places them in a buffer

� Example: the buffer is only 1 element (single array pointer)

� ConsumerConsumerConsumerConsumer

� Grabs data out of the buffer

� Our example: parent thread receives dynamically 

generated matrices and performs an operation on them 

� Example: calculates average value of every element (integer)

� Multithreaded web server example

� Http requests placed into work queue; threads process

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.11

PRODUCER / CONSUMER

� Producer / Consumer is also known as Bounded BufferBounded BufferBounded BufferBounded Buffer

� Bounded buffer

� Similar to piping output from one Linux process to another

� grep pthread signal.c | wc –l

� Synchronized access:

sends output from grep � wc as it is produced

� File stream

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.12

PRODUCER / CONSUMER - 2



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

02/08/2017

Slides by Wes J. Lloyd L9.3

� Buffer is a one element shared data structure (int)

� Producer “puts” data

� Consumer “gets” data

� Shared data structure requires synchronization

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.13

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

� Producer adds data

� Consumer removes data (busy waiting)

� Will this code work (spin locks) with 2Will this code work (spin locks) with 2Will this code work (spin locks) with 2Will this code work (spin locks) with 2 ---- threads?threads?threads?threads?

1. Producer  2. Consumer

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.14

PRODUCER / CONSUMER - 3

� The shared data structure needs synchronization!

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.15

PRODUCER / CONSUMER - 3

Producer

� This code as-is works with just:

(1) Producer

(1) Consumer

� If we scale to (2+) consumer’s it fails 

� How can it be fixed ?

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.16

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

� Two threads

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.17

EXECUTION TRACE

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

� When producer threads awake, they do not check if there is 

any data in the buffer…

� Need while, not if

� What if Tp puts a value, wakes Tc1 whom consumes the value 

� Then Tp has a value to put,  but Tc1’s signal on &cond wakes Tc2

� There is nothing for Tc2 consume, so Tc2 sleeps

� Tc1 ,  Tc2,  and Tp all sleep forever

� Tc1 needs to wake Tp to Tc2

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.18

PRODUCER/CONSUMER 

SYNCHRONIZATION



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

02/08/2017

Slides by Wes J. Lloyd L9.4

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.19

EXECUTION TRACE - 2

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

� Tc2 runs, no data to consume

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.20

EXECUTION TRACE - 3

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

� Add a second condition

� One condition handles the producer

� the other the consumer

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.21

TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

� Change buffer from int,  to int buffer[MAX]

� Add indexing variables

� Typo: two variables named fil l ,  need separate namespaces

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.22

FINAL PRODUCER/CONSUMER

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.23

FINAL P/C - 2

� Producer: only sleeps when buffer is full

� Consumer: only sleeps if buffers are empty

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.24

FINAL P/C - 3



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

02/08/2017

Slides by Wes J. Lloyd L9.5

� A condition that covers allallallall cases (conditions):

� Excellent use case for pthread_cond_broadcast

� Consider memory allocation:

� What if a program deals with huge memory 

allocation/deallocation on the heap

� Access to the heap must be managed when memory is 

scarce 

PREVENT: Out of memory:

- queue requests until memory is free

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.25

COVERING CONDITIONS

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.26

COVERING CONDITIONS - 2

Broadcast

Check available memory

� Broadcast awakens all blocked threads requesting 
memory

� Each thread evaluates if there’s enough memory: 
(bytesLeft < size)

� Reject: requests that cannot be fulfilled- go back to sleep

� Insufficient memory

� Run: requests which cancancancan be fulfilled

� with newly available memory!

� OverheadOverheadOverheadOverhead

� Many threads may be awoken which can’t execute

February 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L9.27

COVER CONDITIONS - 3

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

February 8, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L9.28


