TCSS 422: Operating Systems [Winter 2017] 02/08/2017
Institute of Technology, UW-Tacoma

OBJECTIVES

TCSS 422: OPERATING SYSTEMS

= Condition variables

Condition
Variables

= Consumer/Producer

= Covering condition
Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

194

FEEDBACK CONDITION VARIABLES

= Questions regarding program #1:

=There are many cases where a thread wants to
= execlp wait for another thread before proceeding with

= execlp("ls","Is", "-1", "/bin/?2", (char *)NULL);
= Allows an indetermine number of arguments.
= 1st arg: command to run

execution

= Addtl args: arg[0]-arg[n], NULL terminated = Consider when a precondition must be fulfilled
= For exec w/o pointers: before it is meaningful to proceed ...

= execlp(arg[0],arg[0],arg[1],arg[2],arg[3],....,(char *)NULL);

= execvp
= First arg is address of string (char array) of first command
= Second argument is pointer to list of arguments

= The first argument is the command
TCSS422: Operating Systems [Winter 2017 | 02 |

TCS5422: Operating Systems [Winter 2017]
FebetaryBl2017 EcbgienvE 201 Institute of Technology, University of Washington - Tacoma Les

Institute of Technology, University of Washington - Tacoma

FEEDBACK - 2 CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Program 2
=Posted - Due

= Midterm: Monday February 13 " Eliminate busy waiting

=CPU Scheduling (Virtualizing the CPU) = Alert one or more threads to “consume” a result, or
=Chapters 4, 6,7, 8, 9 respond to state changes in the application
=Concurrency = Threflds are placed on an explicit queue (FIFO) to wait
for signals
=Chapters 26, 27, 28, 29, 30, 32*
* - deadlocks: common causes, how to avoid = Signal: wakes one thread

broadcast wakes all (ordering by the 0S)

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2017

Institute of Technology, University of Washington - Tacoma Lo6

February 8, 2017

February 8, 2017

Slides by Wes J. Lloyd L9.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

pthread_cond wait (pthread cond_t *c, pthread mutex t *m);
pthread_cond_signal (pthread_cond_t *c);

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Winter 2017)

February$8, 2017 Institute of Technology, University of Washington - Tacoma

02/08/2017

PRODUCER / CONSUMER

Work Queue

-l

‘TCS5422: Operating Systems [Winter 2017]

EebuienvE 201 Institute of Technology, University of Washington - Tacoma

1910 |

MATRIX GENERATOR

Matrix generation example

TCS5422: Operating Systems [Winter 2017]

FebetaryBl2017 Institute of Technology, University of Washington - Tacoma

PRODUCER / CONSUMER

= Producer
=Produces items - consider the child matrix maker
=Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Winter 2017]

EcbgienvE 201 Institute of Technology, University of Washington - Tacoma

1911

SUBTLE RACE CONDITION:

WITHOUT A WHILE

1 thr_exit() {
done = 1;
pthread_cond_signal (&c);
}

void thr_join() {
if (done == 0)
Pthread_cond wait (sc) ;

PR REI PR

}

= The context switches to the child

is not waiting yet.
= The signal is lost
= The parent deadlocks

= Parent thread calls thr_join() and executes the comparison

= The child runs thr_exit() and signals the parent, but the parent

TCS5422: Operating Systems [Winter 2017)

February8, 2017 Institute of Technology, University of Washington - Tacoma

IEN

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
=Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -1

=Synchronized access:
sends output from grep > wc as it is produced

= File stream

TCSS422: Operating Systems [Winter 2017

Institute of Technology, University of Washington - Tacoma Lo.12

February 8, 2017

Slides by Wes J. Lloyd

L9.2

TCSS 422: Operating Systems [Winter 2017] 02/08/2017
Institute of Technology, UW-Tacoma

PUT/GET ROUTINES

PRODUCER/CONSUMER - 4

= Buffer is a one element shared data structure (int)

20 it (count == 0) 2
= Producer “puts” data 21 Pt hread_cond_wai t (&ond, &mutex); 3
22 int tnp = get(); 4
= Consumer “gets” data 23 Pthread_cond_si gnal (&ond); Il c5
24 Pt hr ead_nut ex_unl ock(&mut ex) ; Il c6
i i i 25 rintf("%\n", t H

= Shared data structure requires synchronization =) p () Consumer

1 int buffer; 2 '

2 int count = 0; /1 initially, enpty

3

4 void put(int val ue]

5 o (asse,‘(cm}m{ == 0); = This code as-is works with just:

6 count = 1;

7 buffer = val ue; (1) Producer

8 }

9 (1) Consumer

10 int get() {

11 assert(count == 1);

12 count = 0; - .

13 return buffer; = |f we scale to (2+) consumer’s it fails

14 . .

’ = How can it be fixed ?

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017]
February$8, 2017 .13 February 8, 2017 Institute of Technology, University of Washington - Tacoma

| o]

T, | State |T,| State [T, | State |Count| Comment
= Producer adds data = Two threads L | Running Ready Ready 0
= Consumer removes data (busy waiting) €2 | Running Ready Ready 0
» 3| slep Ready Ready 0 Nothing to get
= Will this code work (spin locks) with 2-threads? Legend Sleep Ready | pl | Rumning 0
1. Producer 2. Consumer c1/p1- lock Sleep Ready | p2 | Running 0
T ST —— : ¢2/p2- check var Sleep Readh o4 R\mnfng 1 Buffer now full
> int i c3/p3- wait Ready Ready p5 | Running 1 7,4 awoken
3 int loops t c4- put() Ready Ready p6 | Running 1
4 for (1= { p Ready Ready | pl | Running 1
5 put(i); p4- get()
s)) Ready Ready p2 | Running 1
7) c5/p5- signal Ready Readh 03 | Sleep 1 Buffer full: sleep
8
M Joie *consumer (void *arg) { ¢6/p6- unlock ReacyliPcl | Running Sleep 1 T,y sneaks in ..
10 int iz Ready | c2 | Running Sleep 1
11 while (1) { Ready] c4 | Running Sleep 0 and grabs data
12 int tmp = get();
5 pllntfs"%d%n", tmp) s Ready | c5 | Running Ready 0 T, awoken
14) ReadylPc6 | Running Ready 0
15 ! » 4 | Running Ready Ready 0 Oh oh! No data
TCSS422: Operating Systems [Winter 2017] TCSS422: Operating Systems [Winter 2017]
FebetaryBl2017 Institute of Technology, University of Washington - Tacoma | Lo14 (L 2R Institute of Technology, University of Washington - Tacoma ‘ L7 |

= The shared data structure needs synchronization! = When producer threads awake, they do not check if there is
any data in the buffer...
1 cond_t cond:
2 mutex_t mutex;
3
4 s0id *producer (void *arg) { = Need while, not if
5 i . . Producer
6 (i =0; i< loops; i++) [
7 Pth: d 1t lock(itex) ; // pl .
. » it ot =D ‘ = What if T, puts a value, wakes T,; whom consumes the value
5 put(ff{."eadfcc’"d*w“t(“°"d’ smutex) ; ' i, = Then T, has a value to put, but T.,’s signal on &cond wakes T,
11 Pthread_cond_signal (&cond) ; PS5 . .
1 Pthread mutex unlock (smutex) ; 17 e = There is nothing for T , consume, so T, sleeps
13
n) ! " T¢q, Tep, and T, all sleep forever
15
16 void *consumer(void *arg) {
17 iz) = T,y needs to wake T, to T ,
18 (i =207 i< loops; i++) {
19 : Pthread_mutex_lock (smutex); // cl
TCSS422: 0 ting Syste [Winter 2017] TCSS422: Of iting Syste [Winter 2017]
February8, 2017 Insti(u(eof::\r:r\;lgogyyfjxjersilxc :;Washington-Tacoma Lo1s February 8, 2017 Institute nf';:;:n::fngviﬁ::ersig:;Washingmn»Tacnma ‘ Lo.18

Slides by Wes J. Lloyd L9.3

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

02/08/2017

EXECUTION TRACE - 2

T, | State |T,| State |T, | State |Count Comment
| Running Ready Ready [}
c2 | Running Ready Ready 0

3| Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1 /p1 - lock Sleep. <2 | Running Ready 0

c2/p2- check var Sleep | 3 | Sleep Ready 0 Nothing to get
c3/p3- wait Sleep Sleep pl | Running 0
c4- put() zteep Sleep p2 | Running 0

leep Sleep p4 | Running 1 Buffer now full

p4' get(). » Ready Sleep pS | Running 1 T,y awoken

¢5/p5- signal Ready Sleep 6 | Running 1
c6/p6- unlock Ready Sleep | pt | Running 1
Ready Sleep p2 | Running 1

Ready Sleep p3 | Sleep 1 Must sleep (full

» 2 | Running Sleep Sleep 1 Recheck condition

c4 | Running Sleep Sleep 0 T,y grabs data

‘ 5 | Running Ready Sleep 0 Oops! Woke T,

Februany 8, 2017 | ety Unarsty of Wasnigion - Tacoma

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= Typo: two variables named fill, need separate namespaces

EXECUTION TRACE - 3

= T, runs, no data to consume

Ta| state |To| State |7, | State |Count| Comment
Legend = } - (cont)

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var 1| Running Ready Sleep o
c3/p3- wait <2 | Running Ready Sleep 0
c4- put() =) Sleep Ready Sleep 0 Nothing to get
p4- get() Sleepl <2 | Running Sleep. 0
¢5/p5- signal Sleep| 3 Sleep Sleep 0 Everyone asleep
c6/p6- unlock

TCS5422: Operating Systems [Winter 2017]

FebetaryBl2017 Institute of Technology, University of Washington - Tacoma

| 1920

TWO CONDITIONS

= Add a second condition
= One condition handles the producer
=the other the consumer

' mut exit—nu ®

1

2

3

4 voi d *producer (voi d *arg) {

5 int i;

6 for (i =0, i <loops; i++) {
7 Pthread_mut ex_| ock(&mut ex) ;
8
9

Institute of Technology, Uni

ity of Washington - Tacoma

while (count == 1)
Pt hr ead_cond_wai t (&enpty, &nmutex);
10 put(i);
11 Pt hr ead_cond_si gnal (&fil1);
12 Pt hr ead_mut ex_unl ock(&mut ex) ;
13 }
14 }
15
February 8, 2017 TCSS422: Operating Systems [Winter 2017] 021

1 buffer [MAX] ;
2 £ill = 0;
3 use = 0;
4 int count = 07
5
3 d put(int value) {
7 buffer[fill] = value;
8 fill (£fi11 + 1) % MAX;
9 count++;
10 }
11
12 int get() {
13 int tmp = bufferfuse];
14 use = (use + 1) % MAX;
15 count—;
16 I tmps
17 }
TCSS422: Operating Systems [Winter 2017
February 8, 2017 Institute nfgechnofng‘\’/, Unive[rsi(yofWash]ingmn»Tacnma ‘ Lo.22 |
1
2 mutex t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock (&mutex);
8 while (count == MAX)
9 Pthread cond wait(gempty, &mutex);
10 put (i)
11 Pthread_cond_signal (sfill):
12 Pthread _mutex_unlock (smutex) ; // pé
13 }
14 }
15
16 void *consumer (void *arg) {
17 int i;
18 for (i = 0; i < loops: i++) {
19 Pthread_mutex_lock (smutex);
20 while (count == 0
21 Pthread cond wait(&fill, &mutex);
22 tmp = get();
TCSS422: Operating Systems [Winter 2017]
EcbgienvE 201 Institute of?rechnofog‘;, Unive[lsi!vofWash]ingtomTacoma ‘ 1023 |
(cont.)
23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex) ; /
25 printf("$d\n", tmp);
26 }
27 }
= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty
February 8, 2017 TCSS422: Operating Systems [Winter 2017] ‘ l024

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.4

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

= What if a program deals with huge memory
allocation/deallocation on the heap

scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Access to the heap must be managed when memory is

02/08/2017

TCS5422: Operating Systems [Winter 2017]
February$8, 2017 Institute of Technology, University of Washington - Tacoma

1925

QUESTIONS

TCS8422: Operating Systems Winter 2017]
FEan 201 nstitute of Technology, University of Washington - Tacoma

COVERING CONDITIONS - 2

1 // w many bytes of the heap are free?
2 int bytesLeft = MAX HEAP SIZE,
3
4 need
5 cond_t <.
6 mutex_t m;
7
8 void *
9 allocate(int size) {
10 Ppthread mutex_lock(&m) ;
11 »Ai ile (bytesleft < size) Check available memory
12 Pthread_cond_wait(sc, &m);
13 void *ptr = ...; // get mem from heap
14 bytesieft -= size;
15 Pthread mutex_unlock (sm);
16 return ptr;
17 3
18
19 void free(void *ptr, int size) {
20 Pthread mutex_lock(&m)
21 bytesleft += size:
23 Pthread_mutex_unlock (&m) ;
24)
TCSS422: Operating Systems [Winter 2017
FebetaryBl2017 Instiiu(eofzchnolgog‘;, Unive[rsity uVWash]ington-Ta:oma Le.26 |

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting
memory

= Each thread evaluates if there’s enough memory:
(bytesLeft < size)

= Insufficient memory
= Run: requests which can be fulfilled
= with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

= Reject: requests that cannot be fulfilled- go back to sleep

TCS5422: Operating Systems [Winter 2017)
February8, 2017 Institute of Technology, University of Washington - Tacoma

1927

Slides by Wes J. Lloyd

L9.5

