
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L8.1

Condition
Variables

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� From email- I 'm having a hard time understanding why Test-
and-Set is atomic. On page 7 in chapter 28, the code is:

int TestAndSet(int *old_ptr, int new) {

int old = *old_ptr; // fetch old value at old_ptr

*old_ptr = new; // store ’new’ into old_ptr

return old; // return the old value

}

� Assuming the lock is free, what i f thread A gets the old value, is
interrupted before i t can set the lock to 1 , and Thread B gets the
old value (sti l l 0) , sets the lock to 1 , and then Thread A resumes
control , setting the lock to 1 (though it is now 1 already) , and thus
both can now access the cr i tical section?

� TestAndSet is implemented with the atomic exchange instruction
(xchg) on x86, and load/store unsigned byte (ldstub) on x86

� The C code i tself does not compile to use these instructions…

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.2

FEEDBACK FROM 1/30

� Ch. 28, on page 16, why do they use a guard variable?

It seems to be doing the same job that the flag is.

� Here the guard with TestAndSet protects modifications to m->flag…

� No changes can be made to m->flag, and the thread can’t be

added to the queue without first acquiring the guard lock…

FEEDBACK - 2
Notice how the guard is used as a spin-lock around the flag and queue
manipulations the lock is using.

This approach doesn’t avoid spin-waiting entirely; a thread could be
interrupted acquiring or releasing the lock, causing other threads
to spin-wait for this one to run again.

However, the time spent spinning is limited (just a few instructions inside
the lock and unlock code, instead of the entire user-defined critical section).

This short spin-wait may be reasonable

� Sloppy counter, revisited

� Why do local counters of a sloppy counter implementation

require locks if they are isolated to one thread?

� They do not. Unless multiple threads try to change the same

variable in the array:

int local[NUMTHREADS];

then locking is not required. Removing the lock improves

performance…

� New demonstration with nmon …

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.4

FEEDBACK - 3

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L8.5

S LOPPY

COU N TER

PERFORMANCE

RAW

DATA:

Conclusions:
Pinning improves performance by 7.52%
Threshold (10 to 10,000) improves performance by 17.12%

threshold (s)

CPU pinning

� Condition variables

� Consumer/Producer

� Covering condition

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.6

OBJECTIVES

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L8.2

� There are many cases where a thread wants to

wait for another thread before proceeding with

execution

�Consider when a precondition must be fulfilled

before it is meaningful to proceed …

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.7

CONDITION VARIABLES

� Support a signaling mechanism to alert

threads when preconditions have been satisfied

� Eliminate busy waiting

� Alert one or more threads to “consume” a result, or

respond to state changes in the application

� Threads are placed on an explicit queue (FIFO) to wait

for signals

� Signal: wakes one thread

broadcast wakes all (ordering by the OS)

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.8

CONDITION VARIABLES - 2

� Condition variable

� Requires initialization

� Condition API calls

� wait() accepts a mutex parameter

� Releases lock, puts thread to sleep

� signal()

� Wakes up thread, awakening thread acquires lock

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.9

CONDITION VARIABLES - 3

pthread cond t c;

� Thread A continuously generates 2-D matrices

� Thread B computes the average value of 2-D matrices

� Thread B has nothing to do before Thread A generates a

matrix

� To simplify memory management, Thread A and Thread B

share a pointer to the most recently created matrix

� Thread A can’t generate a new array with the shared

pointer before Thread B completes calculating an average

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.10

EXAMPLE: MATRIX GENERATOR

�Solution ?

�Thread B could employ a spin lock to continuously

check a state variable

� Issues

�Continuously making a comparison to check a

state variable will occupy a CPU core

�And without hardware support ensuring atomicity

in critical sections can not be guaranteed

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.11

MATRIX GENERATOR - 2

Matrix generation example

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.12

MATRIX GENERATOR - 3

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/1/2017

Slides by Wes J. Lloyd L8.3

� Consider the importance of the state variable

� What will the code do if we remove it?

� Consider

rows = 1000

cols = 1000

� Consider

rows = 10

cols = 10

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.13

MATRIX GENERATOR - 4

� If the child thread is not created fast enough, or if there is a

OS context before the child obtains the lock to generate the

array, the program could deadlock…

� The program may stil l execute (no deadlock),

but shared data could be changed out of sequence leading to

errors

� Try adding printf statement to observe whether the child

thread or parent (int main) is deadlocking…

February 1, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L8.14

MATRIX GENERATOR - 5

QUESTIONS

February 1, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L8.15

