TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Condition
Variables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

FEEDBACK FROM 1/30

= From email- I'm having a hard time understanding why Test-
and-Set is atomic. On page 7 in chapter 28, the code is:
int TestAndSet (int *old_ptr, int new) {
int old = *old ptr; // fetch old value at old_ptr
*old_ptr = new; // store ’'new’ into old_ptr
return old; // return the old value
}

= Assuming the lock is free, what if thread A gets the old value, is
interrupted before it can set the lock to 1, and Thread B gets the
old value (still 0), sets the lock to 1, and then Thread A resumes
control, setting the lock to 1 (though it is now 1 already), and thus
both can now access the critical section?

= TestAndSet is implemented with the atomic exchange instruction
(xchg) on x86, and load/store unsigned byte (Idstub) on x86

= The C code itself does not compile to use these instructions...

TCS5422: Operating Systems [Winter 2017

February 1, 2017 Institute of Technology, University of Washington - Tacoma

[

Notice how the guard is used as a spin-lock around the flag and queue
manipulations the lock is using.

This approach doesn’t avoid spin-waiting entirely; a thread could be
interrupted acquiring or releasing the lock, causing other threads

to spin-wait for this one to run again.

However, the time spent spinning is limited (just a few instructions inside
the lock and unlock code, instead of the entire user-defined critical section).

This short spin-wait may be reasonable

1 struct _lock t { int flags inc guard; queue t *g; } lock_t;
2

3 lock_init (lock_t *m) {

4 n->fla

5 n->guard

6 quene_init (m->q) ;

7}

8

9 id lock (lock_t *m)

10 (Testandset (sm->guard, 1) == 1)
11 i //a 3 by spinning
12 (m->flag i

FEEDBACK - 3

= Sloppy counter, revisited

= Why do local counters of a sloppy counter implementation
require locks if they are isolated to one thread?

= They do not. Unless multiple threads try to change the same
variable in the array:

int local [NUMTHREADS] ;

then locking is not required. Removing the lock improves
performance...

= New demonstration with nmon ...

TCS5422: Operating Systems [Winter 2017]

EskgievRn Y Institute of Technology, University of Washington - Tacoma

13 n>flag :
1 n->guard
15)
16 queus_add (m->g, gettid());
7 >quaza - 07
1 pazk() ;
19 H
20
Count 100000000 100000000 100000000 100000000
Threshold 10000 10 10000 10
Trial Sloppy pin 1-8 Sloppy no pin Sloppy pin 1-8 Sloppy no pin
1 2.554 2.54 2.839 3.232
SLOPPY 2 2.229 2,603 2.832 3.152
COUNTER 3 2.361 2544 2726 3.156
PERFORMANCE 4 2601 2519 2853 3.198
5 2218 2533 2821 2924
6 2445 2531 3.069 3.128
7 2308 266 2971 314
RAW [} 2303 2719 2987 3139
DATA: 9 2641 2,685 2888 3.064
5
Conclusions: 3
Pinning improves performance by 7.52% 7
Threshold (10 to 10,000) improves performance by 17.12% |®
15 2233 2837 23871 3.187
16 2418 2826 23873 3133
17 2593 2803 3.088 3.086
18 2221 2521 3.061 3.073
19 2.308 265 2744 3.245
20
avg 2.4011 2.5935 2.8939 3.1328
tday 0123 KRR 0148 0.094
threshold () |% speedup 17.03% 17.21% |
CPU pinning |% speedup 7.42% | 7.63%

OBJECTIVES

= Condition variables
= Consumer/Producer

= Covering condition

TCS5422: Operating Systems [Winter 2017

February 1, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

2/1/2017

L8.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

CONDITION VARIABLES

= There are many cases where a thread wants to
wait for another thread before proceeding with
execution

= Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCS5422: Operating Systems [Winter 2017]
February1,2017 Institute of Technology, University of Washington - Tacoma 87

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on an expllcit queue (FIFO) to wait
for signals

= Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

TCS5422: Operating Systems [Winter 2017
February 1, 2017 Institute of Technology, University of Washington - Tacoma 188

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

pthread_cond_wait (pthread_cond_t *c, pthread_mutex_t *m); wait (
pthread_cond_signal (pthread_cond_t *c); // signal ()

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Winter 2017]
T Institute of Technology, University of Washington - Tacoma L8

EXAMPLE: MATRIX GENERATOR

= Thread A continuously generates 2-D matrices
= Thread B computes the average value of 2-D matrices

= Thread B has nothing to do before Thread A generates a
matrix

= To simplify memory management, Thread A and Thread B
share a pointer to the most recently created matrix

= Thread A can’t generate a new array with the shared
pointer before Thread B completes calculating an average

TCS5422: Operating Systems [Winter 2017]
EskgievRn Y Institute of Technology, University of Washington - Tacoma

1810 |

MATRIX GENERATOR - 2

= Solution ?

=Thread B could employ a spin lock to continuously
check a state variable

= |ssues

=Continuously making a comparison to check a
state variable will occupy a CPU core

=And without hardware support ensuring atomicity
in critical sections can not be guaranteed

TCS5422: Operating Systems [Winter 2017)

February 1, 2017 Institute of Technology, University of Washington - Tacoma

1811

MATRIX GENERATOR - 3

Matrix generation example

TCS5422: Operating Systems [Winter 2017

February 1, 2017 Institute of Technology, University of Washington - Tacoma

1812

Slides by Wes J. Lloyd

2/1/2017

L8.2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

MATRIX GENERATOR - 4

= Consider the importance of the state variable

= What will the code do if we remove it?

= Consider
rows = 1000
cols = 1000
= Consider
rows = 10
cols = 10

MATRIX GENERATOR - 5

= |f the child thread is not created fast enough, or if there is a
0S context before the child obtains the lock to generate the
array, the program could deadlock...

= The program may still execute (no deadlock),
but shared data could be changed out of sequence leading to
errors

= Try adding printf statement to observe whether the child
thread or parent (int main) is deadlocking...

TCS5422: Operating Systems [Winter 2017)

February1,2017 Institute of Technology, University of Washington - Tacoma

[o

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

February 1, 2017 1814

QUESTIONS

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

February 1, 2017

Slides by Wes J. Lloyd

2/1/2017

L8.3

