TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Concurrency:
An Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

10/10/2016

FEEDBACK FROM 1/23

= Are there larger overhead costs for any particular type of
scheduler?

= Certainly! Great question, there are various types of overhead:
= Time required to make a scheduling decision
= Memory required for process and thread data structures
= Time to manage these data structures
When processes/threads are created/destroyed

= Consider a lottery scheduler, what is the overhead to choose the
next job? The overhead for tracking tickets?

= Consider the Linux Completely Fair Scheduler, what is the
overhead required to track vr unt i me in ns for every process?

= For MLFQ, what is the overhead to maintain 60 queues vs. 3?

TCS5422: Operating Systems [Winter 2017]
TR Institute of Technology, University of Washington - Tacoma 162

FEEDBACK - 2

= For lottery scheduling, wouldn’t you need to have prior
knowledge of how long it would take to run a process in order
to allocate a correct # of tickets?

= Not necessarily. The ownership of tickets relates to scheduling
priority more so than job execution time.

= |f 1 ticket = 1 time slice (e.g. 10ms), if there are 2 processes
requiring job,=50ms and jobz=50ms, how does the scheduler
figure out that 10 tickets are needed?

= It doesn’t. Tickets map to scheduling priority. The job with more
tickets gets more opportunities to execute in the CPU. If job, has 8
tickets, and jobg has 2 tickets, then probability of random numbers
suggests job, will complete before jobg. (..most of the time)

TCS5422: Operating Systems [Winter 2017]
Ly A, Ak Institute of Technology, University of Washington - Tacoma te3

FEEDBACK - 3

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING: There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

coca data tias =) data fles
Process Process 1|
Process w wogisters | gsters [gsters
— ‘ stack. | stack || sl |
T) S| 2
2 therad — € < o thraad
* é < s
S p— e —
7C55422: Operating Systems [Winter 2017]
| Raniapas R Institute of Technology, University of Washington - Tacoma o4

FEEDBACK - 4

= Why does the thread concurrency counter program

successfully execute more often than a fork counter

program?

= Well, we didn’t actually try a fork counter program?

=Could we write a C program that forks into two processes
and increments a shared counter to reach a set value?

= Let’s say two processes collectively try to count to
16,000,000

= What happens when we fork the process?
=The thread version doesn’t work because of the lack of

mutual exclusion in the critical section due to a race
condition

TCS5422: Operating Systems [Winter 2017)
{ETIETR) 2, A Institute of Technology, University of Washington - Tacoma L6s

Slides by Wes J. Lloyd

OBJECTIVES

= Race condition
= Critical section
= Thread API

= Locks

TCS5422: Operating Systems [Winter 2017]
Raniapas R nstitute of Technology, University of Washington - Tacoma 166

L6.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

THREADS

Process Multithreaded Process

Process State: Process State: PC, Thread Theead
registers, SP, etc. registers, SP, elc... Bl Eess

Single Multi
ultiple
Data Segment
Threaded Threaded
ocess Process
@Alfred Park, htp:/randu.orghutorials/threads
TCSS422: Operating Systems [Winter 2017]
| Ly A, Ak Institute of Technology, University of Washington - Tacoma | L7 |

10/10/2016

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= |If synchronized, counter will = 52
(after instruction)
os Thread1 Thread2 C 9%eax counter
before critical section 100 o 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

Save TI's state

restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, seax 108 51 50
mov %eax, 0x8049alc 113 51 51

restore T1's state 108 51
mov $eax, 0x8049alc 113 51

{ Hve s state

TCS5422: Operating Systems [Winter 2017

LR, R Institute of Technology, University of Washington - Tacoma

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produces a
race condition.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections

= These sections must be mutually exclusive

TCS5422: Operating Systems [Winter 2017]

Ly A, Ak Institute of Technology, University of Washington - Tacoma

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (smitex) :
lbalance = balance + 1; |
unlock (emutex) ;

Critical section

(S SRR

= Counter example revisited

TCS5422: Operating Systems [Winter 2017]

T 2 AR Institute of Technology, University of Washington - Tacoma

‘ 16.10 |

LINUX

THREAD API

TCS$422: Operating Systems [Winter 2017]

January 25, 2017 Institute of Technology, University of Washington - Tacoma

THREAD CREATION

= pthread_create

#include <pthread.h>

int

pthread create(pthread_t* thread,

const pthread_attr_t* attr,

(*start_routine) (void*),
arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Winter 2017

IR, R Institute of Technology, University of Washington - Tacoma

[en

Slides by Wes J. Lloyd

L6.2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

PTHREAD_CREATE - PASS ANY DAT

#include <pthread.h>

—myarg t {

) myarg_t;

void *mythread(void *arg) {
= (myarg_t *) arg;

myarg_t ©
‘ printf(“ad d\n”, m->a, m->b);
NULL:

}
int main(int arge, char *argv(]) {
pthread t p;
int re;
myarg_t args;
» args.a = 107
args.b = 20

rc = pthread_create(sp, NULL, mythread, &args):

}

TCS5422: Operating Systems [Winter 2017)

| [ETIETR) 2, A Institute of Technology, University of Washington - Tacoma

w |

10/10/2016

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

IOt TC, m;

pthread create (6p, NULL, mythread, 100) ;

pthread_join(p, **) &m) ;
12 printf (“returned %d\n”, m);
13 0;
14 3

TCS5422: Operating Systems [Winter 2017]

T 2 AR Institute of Technology, University of Washington - Tacoma

| o

WAITING FOR THREADS TO FINISH

int pthread join(pthread_t thread, void **value ptr):

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCS5422: Operating Systems [Winter 2017]

Ly A, Ak Institute of Technology, University of Washington - Tacoma

1615 |

struct myarg {
int a;
int b;

b

What will this code do?

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
Zﬁzgﬁi_zyir%;wtp“' Data on thread stack
output.b = 2;
return (void *) &output; $./pthread_struct

} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b ; 20;

pthread_4

B How can this code be fixed?
return 0

TCSS422: Operating Systems [Winter 2017]

REnavi28 207 Institute of Technology, University of Washington - Tacoma 16.16

struct myarg {)
e How about this code?
i

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a 1;

input->b = 2;

return (void *) &input;

$.Ipthread_struct
a=10 b=20

int main (int argc, char * argv[])
{

returned 1 2

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Winter 2017]

Qanarvias 2017 Insttute of Technology, University of Washington - Tacoma L6.17

ADDING CASTS

= Casting
= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **'

extern int pthread_join (pthread_t __th, void **__thread_return);

TCSS422: Operating Systems [Winter 2017

Raniapas R Institute of Technology, University of Washington - Tacoma

[e

Slides by Wes J. Lloyd

L6.3

TCSS 422: Operating Systems [Winter 2017] 10/10/2016
Institute of Technology, UW-Tacoma

ADDING CAST LOCK

= pthread_join = pthread_mutex_t data type
int * plval; = /usr/include/bits/pthread_types.h
int * p2val;
- q // Global Address Space
pthread_join(pl, (void *)&plval); static volatile ‘intpcounter‘ =0;
pthread_join(p2, (void *)&p2val);

void *worker(void *arg)

= return from thread function { int i
int * counterval = malloc(sizeof(int)); for (i=0;1<10000000;i++) {
*counterval = counter;

. assert(rc==0);
return (void *) counterval;

counter = counter + 1;

}
return NULL;

TCS5422: Operating Systems [Winter 2017]

[ETIETR) 2, A Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

1619 January 25, 2017

=

LOCKS - 2 LOCK INITIALIZATION

= Ensure critical sections are executed atomically-as a unit

= Assigning the constant
= Provides implementation of “Mutual Exclusion”

[pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;

= API = API call:

int rc = pthread mutex_init (&lock, NULL);
assert (rc == 0); // alu

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_unlock (pthread mutex_t *mutex);

heck success

= Example w/o initialization & error checking

= |nitializes mutex with attributes specified by 2"¢ argument
pthread mutex_t lock;

pthread mutex_lock (slock) ;
x=x+1; // or e

= |f NULL, then default attributes are used

pthread mutex_unlock(&lock) ;

= Upon initialization, the mutex is initialized and unlocked
= Blocks forever until lock can be obtained

= Enters critical section once lock is obtained
* Releases lock

January 25, 2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma | 621

TCS5422: Operating Systems [Winter 2017]
I 2 A Institute of Technology, University of Washington - Tacoma

‘ 1622 |

LOCKS - 3 CONDITIONS AND SIGNALS

= Error checking wrapper = Condition variables support “signaling”
between threads

Only use if g m is K n fai

void Pthread mutex lock (pthread mutex t *mutex) { nt prhread cond wait (pthread cond t *cond,
int re = pthread mutex lock (mutex) ; pthread mutex t *mutex);
assert (£o —= 0)7 = int pthread cond_signal (pthread cond _t *cond);

}

= pthread_cont_t datatype
= What if lock can’t be obtained?

int pthread mutex_trylock(pthread mutex_t *mutex); = pthread_cond_wait()
int pthread mutex_timelock (pthread mutex_ t *mutex, - -
struct timespec *abs_timeout); = Waits (sleeps)
. = Lj “si ”
= trylock - returns immediately (fails) if lock is unavailable R crorciias enal
q q p an . = Releases the lock until signaled
= timelock - tries to obtain a lock for a specified duration g
January 25, 2017 TCSS422: Operating Systems (Winter 2017) 623 TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma Raniapas R

[o

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L6.4

TCSS 422: Operating Systems [Winter 2017] 10/10/2016
Institute of Technology, UW-Tacoma

CONDITIONS AND SIGNALS - 3

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond); = Wait example

i * .

int pthread_cond_broadcast(pthread_cond_t * cond); pthread mutex_t lock = PTHREAD MUTEX_INITIALIZER;
pthread cond_t init = PTHREAD COND_INITIALIZER;

= pthread_cond_signal()

pthread mutex_lock (slock) ;

= Called to send a “signal” to all listeners > to wake them up (initialized — 0)
= The goal is to unblock (at least one) to respond to the signal * pthread_cond wait (&init, &lock)‘
pthFead mutex_unlock(&lock) ;

= pthread_cond_broadcast()
= Unblocks all threads currently blocked on the specified condition
= Used when all threads should respond to the signal = when awoken, lock reacquired (and released by this code)

i Code performs required
= Which thread is unblocked first? = Another thread signals the thread wofk beforeotﬂer

= Determined by OS scheduler (based on priority) pthread_mutex_lock (&lock) | thread(s) can continue
initialized = 1;

= wait puts thread to sleep, releases lock

= Thread(s) gain the lock individually (based on priority) othread cond signal (6init);
as if they called pthread_mutex_Tock () bthread mater unlock (s10ck)
TCSS422: Operating Systems [Winter 2017) TCSS422: Operating Systems [Winter 2017]
Rantany2s 2017 Institute of Technology, University of Washington - Tacoma L6.25 flanuanyzo2uly Institute of Technology, University of Washington - Tacoma ‘ 1626

CONDITION AND SIGNALS - 4 DO-IT-YOURSELF LOCK

pthread mutex_t lock = PTHREAD MUTEX_INITIALIZER; = “initialized” -- global variable shared by multiple threads
pthreadﬁcondﬁt init = PTHREAD_ COND_ INITIALIZER;
. Wit (el .

pthread mutex lock (&lock); Wait (client thread):
(initialized — 0) I ‘ 1o (initialized == 0)

pthread cond wait (&init, &lock); spin
pthread mutex_unlock (&lock) ;

= Signal (parent thread): when ready...

= Why do we wait inside a while loop? ‘ initialized = 1;
= The while ensures upon awakening the condition is rechecked = How is this “wait” different that pthread_cond_wait() ?
= A signal may have been raised, but the condition to proceed has = Wastes CPU cycles > effectively pegs a core at 100%

not been satisfied.
= Without checking the condition the thread may proceed to execute
when it should not.

= Potential synchronization errors with changing the value of
“initialized”

= Thread APl is provided to advance the DO-IT-YOURSELF approach

January 25, 2007 TCS5422: Operating Systems [Winter 2017] ‘ 628 |

TCS5422: Operating Systems [Winter 2017]
te.27 Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma

January 25,2017

PTHREADS LIBRARY SAMPLE MAKEFILE

Tt cc=gcc
= Compilation CFLAGS=-pthread -I. -wall
= gcc -pthread pthread.c -o pthread . . .
binaries=pthread pthread_int pthread_lock_cond pthread_struct

= Requires explicitly linking the library with compiler flag
all: $(binaries)

= List of pthread manpages pthread_mult: pthread.c pthread_int.c
(D 03 T $(CC) $(CFLAGS) $A -0 $@
clean:
$(RM) -f $(binaries) *.o
= Example builds multiple single file programs

= All target
= pthread_mult

= Example if multiple source files should produce a single executable

= clean target

TCS5422: Operating Systems [Winter 2017)

TCSS422: Operating Systems Winter 2017]
Institute of Technology, University of Washington - Tacoma 1629 January 25, 2017 1630

Institute of Technology, University of Washington - Tacoma

January 25,2017

Slides by Wes J. Lloyd L6.5

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

TCS$422: Operating Systems [Winter 2017]

LR 24 220 Institute of Technology, University of Washington - Tacoma

10/10/2016

= Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance = palance + 1;

= A “critical section”:

lock_t mutex; lly-allocated lock ‘mutex’
lock (&mutex) ;

balance = balance + 1;

unlock (&mutex) ;

Qs W

TCS5422: Operating Systems [Winter 2017

LR, R Institute of Technology, University of Washington - Tacoma

EE

LOCKS - 2

= Lock variables are called “MUTEX”
=Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock
= States
= Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

TCS5422: Operating Systems [Winter 2017]

Ly A, Ak Institute of Technology, University of Washington - Tacoma

1733 |

LOCKS - 3

= pt hread_nut ex_I| ock(&l ock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock

=Thread with lock enters critical section
= Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

TCS5422: Operating Systems [Winter 2017]

T 2 AR Institute of Technology, University of Washington - Tacoma

| s]

LOCKS - 4

FINE GRAINED?

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
= Fine grained - means just one grain of sand at a time through an
hour glass
=Similar to relational database transactions

= DB transactions prevent multiple users from modifying a table,
row, field

TCS5422: Operating Systems [Winter 2017)

January 25,2017 Institute of Technology, University of Washington - Tacoma

1735

Slides by Wes J. Lloyd

= |s this code a good example of “fine grained parallelism”?

pthread_mutex_lock(&lock) ;

a = b++;

b=a*c;

*d =a+ b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);

ListNode *node = mylist->head;

Int i=0

while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;

node->end *e;
node = node->next;
T4+

}

e=e-1;
pthread_mutex_unlock(&lock);

TCSS422: Operating Systems [Winter 2017

IR, R Institute of Technology, University of Washington - Tacoma

L6.6

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

GRANULAR PARALLELISM

10/10/2016

pthread_mutex_Tlock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_Tock(&lock_b);
b=a*c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_Tlock(&lock_d);
*d = a+ b +c;
pthread_mutex_unlock (&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_Tlock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . .

TCS5422: Operating Systems [Winter 2017)

[ETIETR) 2, A Institute of Technology, University of Washington - Tacoma

1737

EVALUATING LOCK IMPLEMENTATIONS

= Correctness
= Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness

= Are threads competing for a lock have a fair chance of
acquiring it?

= Overhead

TCS5422: Operating Systems [Winter 2017

TR Institute of Technology, University of Washington - Tacoma

[o

BUILDING LOCKS

= Locks require hardware support
=To minimize overhead, ensure fairness and correctness

=Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHG8B
CMPXCHG16B

TCS5422: Operating Systems [Winter 2017]

Ly A, Ak Institute of Technology, University of Washington - Tacoma

| 1739

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts () ;

}

void unlock() {
EnableInterrupts () ;

B

}

= Any thread could disable system-wide interrupt
= What if lock is never released?

® On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

While interrupts are disabled, they could be lost
= If not queued...

TCS5422: Operating Systems [Winter 2017]

I 2 A Institute of Technology, University of Washington - Tacoma

[o

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks
= |s this lock implementation: Correct? Fair? Performant?

struct _lock_t { int flagi } lock_ts

1

2

3 v init(lock_t *mutex) {
4 /0> 1 al
5

6

7

[

mutex->flag

lock(lock_t *mutex) {

9 (mutex->flag == 1) flag
10 i spin t
11 mutex->flag =
2}
13
14 void unlock(lock_t *mutex) {
15 mutex->flag = 0;
16}
January 25,2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma | 741

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call lock ()
while (flag == 1)
interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;
interrupt: switch to Thread 1
flag = 1; // set flag to 1 (too!)

= Here both threads have “acquired” the lock simultaneously

TCSS422: Operating Systems [Winter 2017

Raniapas R nstitute of Technology, University of Washington - Tacoma

EE

Slides by Wes J. Lloyd

L6.7

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

DIY: PERFORMANT?

10/10/2016

void lock(lock_t *mutex)
{

// while Tock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

TCS5422: Operating Systems [Winter 2017)

[ETIETR) 2, A Institute of Technology, University of Washington - Tacoma

1743

TEST-AND-SET INSTRUCTION

= C implementation: not atomic
= Adds a simple check to basic spin lock
= One a single core CPU system with preemptive scheduler:

= Try this...
1 int TestAndSet (int *ptr, int new) {
2 int old = *ptr; /
3 *ptr = new;
4 old;
5)

= |ock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller

= Single core systems are becoming scarce

= Try on a one-core VM

TCS5422: Operating Systems [Winter 2017]
TR Institute of Technology, University of Washington - Tacoma 1744

DIY: TEST-AND-SET - 2

= Requires a preemptive scheduler on single CPU core system
= Lock is never released without a context switch
= 1-core VM: occasionally will deadlock, doesn’t miscount

1 typed ct _lock t {
2 in
3} lock_ti
4
5 void init(lock_t *lock) {
6 0 indicates that lock is available,
7 // 1 that it is held
8 lock->flag = 0;
R
10
11 void lock(lock_t *lock) {
12 (Testandset (s10 =1
13 1 s
1)
15
16 void unlock(lock_t *lock) |
17 lock->flag = 0;
1@}
January 25,2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma | 74

SPIN LOCK EVALUATION

= Correctness:

= Spin locks guarantee: critical sections won’t be executed
simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting
= Performance is slow when multiple threads share a CPU
Especially for long periods

January 25, 2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma ‘ 17.46

COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value

= If so, make assignment
* Return value at location

= Adds a comparison to TestAndSet

= Useful for wait-free synchronization

= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

TCS5422: Operating Systems [Winter 2017)

{ETIETR) 2, A Institute of Technology, University of Washington - Tacoma

L1747

COMPARE AND SWAP

= Compare and Swap

int CompareAndSwap (
nt actual = *ptr;
(actual == expected)
*ptr
actual;

= Spin loc . 1-core VM:
Count is correct, no deadlock

*ptr, int epected, int new) {

1
2
3
4
5

3
4 ¥

= X86 provides “cnmpxchgl ” compare-and-exchange instruction
= cmpxchg8b
= cnmpxchgl6b

TCSS422: Operating Systems [Winter 2017

Raniapas R nstitute of Technology, University of Washington - Tacoma ‘ 1748

Slides by Wes J. Lloyd

L6.8

TCSS 422: Operating Systems [Winter 2017] 10/10/2016
Institute of Technology, UW-Tacoma

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS LL/SC LOCK

. . . 1 nt LoadLinked (int *ptr) {
= Cooperative instructions used together to support 2 i m;t:;n o
synchronization on RISC systems 2 }
= No support on x86 processors 5 int StoreConditional (int *ptr, int value) {
6 (no one has updated *ptr since the LoadLinked to this address) {
= Supported by RISC: Alpha, PowerPC, ARM 7 *ptr = value;
8 1; // s
. 9) (
= Load-linked (LL) 10 05 /7 update
a A 11 }
= Loads value into register 12)
=Same as typical load

= Used as a mechanism to track competition = LL instruction loads pointer value (ptr)

" = SC only stores if the load link pointer has not changed
= Store-conditional (SC) .
. - = Requires HW support
= Performs “mutually exclusive” store .
=C code is psuedo code
= Allows only one thread to store value
TCSS422: 0 ting Syste Winter 2017] TCSS422: Operating Syste [Winter 2017]
[ETIETR) 2, A Insﬂlmeof::\nrn‘ﬁagyy, Sm:e[rsn:;;wag‘]lngmn-mmma L7.49 LR, R Institute M‘;:;hn:fng‘s Smse[rsuy:;wash]mgmn-ramma ‘ L7.50

LL/SC LOCK - 2

QUESTIONS

1 void lock(lock_t *lock) (

2) {

3 (LoadLinked (slock->flag) == 1)

4 : // spin until it’s zero

5 (StoreConditional (slock->flag, 1) == 1)
3 ; £ a
7 otl

8 ¥

9 1}

10

11 void unlock(lock_t *lock) {

12 lock->flag = 0;

13}

= Two instruction lock

TC55422: Operating Systems [Winter 2017]
Ly A, Ak Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems Winter 2017]
1751 | s Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L6.9

