
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.1

Concurrency:Concurrency:Concurrency:Concurrency:
An IntroductionAn IntroductionAn IntroductionAn Introduction

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Are there larger overhead costs for any particular type of

scheduler?

� Certainly! Great question, there are various types of overhead:

� Time required to make a scheduling decision

� Memory required for process and thread data structures

� Time to manage these data structures

� When processes/threads are created/destroyed

� Consider a lottery scheduler, what is the overhead to choose the

next job? The overhead for tracking tickets?

� Consider the Linux Completely Fair Scheduler, what is the
overhead required to track vruntime in ns for every process?

� For MLFQ, what is the overhead to maintain 60 queues vs. 3?

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.2

FEEDBACK FROM 1/23

� For lottery scheduling, wouldn’t you need to have prior

knowledge of how long it would take to run a process in order

to allocate a correct # of tickets?

� Not necessarily. The ownership of tickets relates to scheduling

priority more so than job execution time.

� If 1 ticket = 1 time slice (e.g. 10ms), if there are 2 processes

requiring jobA=50ms and jobB=50ms, how does the scheduler

figure out that 10 tickets are needed?

� It doesn’t. Tickets map to scheduling priority. The job with more

tickets gets more opportunities to execute in the CPU. If jobA has 8

tickets, and jobB has 2 tickets, then probability of random numbers

suggests jobA will complete before jobB. (…most of the time)

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.3

FEEDBACK - 2

� What’s the difference between forks and threads?

� Forks: duplicate a process

� Think of CLONING: There will be two identical processes at the end

� Threads: no duplicate of code/heap, lightweight execution threads

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.4

FEEDBACK - 3

� Why does the thread concurrency counter program

successfully execute more often than a fork counter

program?

� Well, we didn’t actually try a fork counter program?

� Could we write a C program that forks into two processes

and increments a shared counter to reach a set value?

� Let’s say two processes collectively try to count to

16,000,000

� What happens when we fork the process?

� The thread version doesn’t work because of the lack of

mutual exclusionmutual exclusionmutual exclusionmutual exclusion in the critical sectioncritical sectioncritical sectioncritical section due to a race race race race

conditionconditionconditioncondition

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.5

FEEDBACK - 4

� Race condition

� Critical section

� Thread API

� Locks

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.6

OBJECTIVES

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.2

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.7

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

� What is happening with our counter?

� When counter=50, consider code: counter = counter + 1

� If synchronized, counter will = 52

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.8

RACE CONDITION

� Code that accesses a shared variable must not be

concurrentlyconcurrentlyconcurrentlyconcurrently executed by more than one thread

� Multiple activeactiveactiveactive threads inside a critical section produces a

race conditionrace conditionrace conditionrace condition .

� Atomic execution Atomic execution Atomic execution Atomic execution (all code executed as a unit) must be

ensured in criticalcr iticalcr iticalcr itical sections

� These sections must be mutually exclusivemutually exclusivemutually exclusivemutually exclusive

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.9

CRITICAL SECTION

� To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce locks

� Counter example revisited

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.10

LOCKS

LINUX

THREAD API

January 25, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L6.11

� pthread_create

� thread: thread struct

� attr: stack size, scheduling priority… (optional)

� start_routine: function pointer to thread routine

� arg: argument to pass to thread routine (optional)

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.12

THREAD CREATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.3

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.13

PTHREAD_CREATE – PASS ANY DATA

� Here we “cast” the pointer to pass/return a primitive data type

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.14

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

� thread: which thread?

� value_ptr: pointer to return value

type is dynamic / agnostic

� Returned values *must* be on the heap

� Thread stacks destroyed upon thread termination (join)

� Pointers to thread stack memory addresses are invalid

� May appear as gibberish or lead to crash (seg fault)

� Not all threads join – What would be Examples ??What would be Examples ??What would be Examples ??What would be Examples ??

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.15

WAITING FOR THREADS TO FINISH

January 25, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L6.16

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

January 25, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L6.17

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

� Casting

� Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

� Example: uncasted capture in pthread_join
pthread_int.cpthread_int.cpthread_int.cpthread_int.c : In function ‘main’:: In function ‘main’:: In function ‘main’:: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_int.c:34:20: warning: passing argument 2 of ‘ pthread_joinpthread_joinpthread_joinpthread_join ’ ’ ’ ’
from incompatible pointer type [from incompatible pointer type [from incompatible pointer type [from incompatible pointer type [---- WincompatibleWincompatibleWincompatibleWincompatible ---- pointerpointerpointerpointer ---- types]types]types]types]

pthread_joinpthread_joinpthread_joinpthread_join (p1, &p1val(p1, &p1val(p1, &p1val(p1, &p1val););););

� Example: uncasted return
In file included from pthread_int.c:3:0:In file included from pthread_int.c:3:0:In file included from pthread_int.c:3:0:In file included from pthread_int.c:3:0:

//// usrusrusrusr /include/pthread.h:250:12: note: expected ‘void **’ but argument /include/pthread.h:250:12: note: expected ‘void **’ but argument /include/pthread.h:250:12: note: expected ‘void **’ but argument /include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘is of type ‘is of type ‘is of type ‘ intintintint **’**’**’**’

extern extern extern extern intintintint pthread_joinpthread_joinpthread_joinpthread_join ((((pthread_tpthread_tpthread_tpthread_t ________ thththth , void **__, void **__, void **__, void **__ thread_returnthread_returnthread_returnthread_return););););

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.18

ADDING CASTS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.4

� pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)(void *)(void *)(void *)&p1val);

pthread_join(p2, (void *)(void *)(void *)(void *)&p2val);

� return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *)(void *)(void *)(void *) counterval;

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.19

ADDING CASTS - 2

� pthread_mutex_t data type

� /usr/include/bits/pthread_types.h

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.20

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_tpthread_mutex_tpthread_mutex_tpthread_mutex_t lock;lock;lock;lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

intintintint rcrcrcrc = = = = pthread_mutex_lockpthread_mutex_lockpthread_mutex_lockpthread_mutex_lock(&lock);(&lock);(&lock);(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlockpthread_mutex_unlockpthread_mutex_unlockpthread_mutex_unlock(&lock);(&lock);(&lock);(&lock);

}
return NULL;

}

� Ensure critical sections are executed atomically -as a unit

� Provides implementation of “Mutual ExclusionMutual ExclusionMutual ExclusionMutual Exclusion”

� API

� Example w/o initialization & error checking

� Blocks forever until lock can be obtained

� Enters critical section once lock is obtained

� Releases lock

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.21

LOCKS - 2

� Assigning the constant

� API call :

� Initializes mutex with attributes specified by 2nd argument

� If NULL, then default attributes are used

� Upon initialization, the mutex is initialized and unlocked

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.22

LOCK INITIALIZATION

� Error checking wrapper

� What if lock can’t be obtained?

� trylock – returns immediately (fails) if lock is unavailable

� timelock – tries to obtain a lock for a specified duration

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.23

LOCKS - 3

� Condition variables support “signaling”

between threads

� pthread_cont_t datatype

� pthread_cond_wait()

� Waits (sleeps)

� Listens for a “signal”

� Releases the lock until signaled

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.24

CONDITIONS AND SIGNALS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.5

� pthread_cond_signal()

� Called to send a “signal” to all listeners � to wake them up

� The goal is to unblock (at least one) to respond to the signal

� pthread_cond_broadcast()

� Unblocks all threads currently blocked on the specified condition

� Used when all threads should respond to the signal

� Which thread is unblocked first?

� Determined by OS scheduler (based on priority)

� Thread(s) gain the lock individually (based on priority)
as if they called pthread_mutex_lock()

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.25

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);
� Wait example

� wait puts thread to sleep, releases lock

� when awoken, lock reacquired (and released by this code)

� Another thread signals the thread

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.26

CONDITIONS AND SIGNALS - 3

Code performs required
work before other

thread(s) can continue

. . .

� Why do we wait inside a while loop?

� The while ensures upon awakening the condition is rechecked

� A signal may have been raised, but the condition to proceed has

not been satisfied.

� Without checking the condition the thread may proceed to execute

when it should not.

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.27

CONDITION AND SIGNALS - 4

� “initialized” - - global variable shared by multiple threads

� Wait (client thread):

� Signal (parent thread): when ready…

� How is this “wait” different that pthread_cond_wait() ?

� Wastes CPU cycles � effectively pegs a core at 100%

� Potential synchronization errors with changing the value of

“initialized”

� Thread API is provided to advance the DO-IT-YOURSELF approach

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.28

DO-IT-YOURSELF LOCK

� Compilation

� gcc –pthread pthread.c –o pthread

� Requires explicitly linking the library with compiler flag

� List of pthread manpages

� man –k pthread

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.29

PTHREADS LIBRARY

� Example builds multiple single fi le programs

� All target

� pthread_mult

� Example if multiple source files should produce a single executable

� clean target

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.30

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.6

LOCKS

January 25, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L6.31

� Ensure critical section(s) are executed atomically -as a unit

� Only one thread is allowed to execute a critical section at any given

time

� Ensures the code snippets are “mutually exclusive”

� Protect a global counter:

� A “critical section”:

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.32

LOCKS

� Lock variables are called “MUTEX”

� Short for mutual exclusion (that’s what they guarantee)

� Lock variables store the state of the lock

� States

� Locked Locked Locked Locked (acquired or held)

� Unlocked Unlocked Unlocked Unlocked (available or free)

� Only 1 thread can hold a lock

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.33

LOCKS - 2

� pthread_mutex_lock(&lock)

� Try to acquire lock

� If lock is free, calling thread will acquire the lock

� Thread with lock enters critical section

� Thread “owns” the lock

� No other thread can acquire the lock before the owner

releases it.

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.34

LOCKS - 3

� Program can have many mutex (lock) variables to

“serialize” many critical sections

� Locks are also used to protect data structures

� Prevent multiple threads from changing the same data

simultaneously

� Programmer can make sections of code “granular”

� Fine grained – means just one grain of sand at a time through an

hour glass

� Similar to relational database transactions

� DB transactions prevent multiple users from modifying a table,

row, field

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.35

LOCKS - 4

� Is this code a good example of “fine grained parallelism”?

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.36

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.7

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.37

GRANULAR PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

� Correctness

� Does the lock work?

� Are critical sections mutually exclusive?

(atomic-as a unit?)

� Fairness

� Are threads competing for a lock have a fair chance of

acquiring it?

� Overhead

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.38

EVALUATING LOCK IMPLEMENTATIONS

� Locks require hardware support

� To minimize overhead, ensure fairness and correctness

� Special “atomic-as a unit” instructions to support lock

implementation

� Atomic-as a unit exchange instruction
� XCHG

� Compare and exchange instruction
� CMPXCHG

� CMPXCHG8B

� CMPXCHG16B

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.39

BUILDING LOCKS

� To implement mutual exclusion

� Disable interrupts upon entering critical sections

� Any thread could disable system-wide interrupt

� What if lock is never released?

� On a multiprocessor processor each CPU has i ts own interrupts

� Do we disable interrupts for all cores simultaneously?

� While interrupts are disabled, they could be lost

� If not queued…

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.40

HISTORICAL IMPLEMENTATION

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.41

SPIN LOCK IMPLEMENTATION

� Operate without atomic-as a unit assembly instructions

� “Do-it-yourself” Locks

� Is this lock implementation: Correct? Fair? Performant?

� Correctness requires luck… (e.g. DIY lock is incorrect)

� Here both threads have “acquired” the lock simultaneously

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.42

DIY: CORRECT?

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.8

� What is wrong with while(<cond>); ?

� Spin-waiting wastes time actively waiting for another thread

� while (1); will “peg” a CPU core at 100%

� Continuously loops, and evaluates mutex->flag value…

� Generates heat…

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.43

DIY: PERFORMANT?

void lock(lock_t *mutex)
{

while (while (while (while (mutexmutexmutexmutex---->flag == 1);>flag == 1);>flag == 1);>flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

� C implementation: not atomic

� Adds a simple check to basic spin lock

� One a single core CPU system with preemptive scheduler:

� Try this…

� lock() method checks that TestAndSet doesn’t return 1

� Comparison is in the caller

� Single core systems are becoming scarce

� Try on a one-core VM

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.44

TEST-AND-SET INSTRUCTION

� Requires a preemptive scheduler on single CPU core system

� Lock is never released without a context switch

� 1-core VM: occasionally will deadlock, doesn’t miscount

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.45

DIY: TEST-AND-SET - 2

� Correctness:Correctness:Correctness:Correctness:

� Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

� Fairness:Fairness:Fairness:Fairness:

� No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

� Performance:Per formance:Per formance:Per formance:

� Spin locks perform “busy waiting”

� Spin locks are best for short periods of waiting

� Performance is slow when multiple threads share a CPU

� Especially for long periods

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.46

SPIN LOCK EVALUATION

� Checks that the lock variable has the expected value FIRST,

before changing its value

� If so, make assignment

� Return value at location

� Adds a comparison to TestAndSet

� Useful for wait-free synchronization

� Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support

CompareAndSwap instruction

� Shared data structure updates become “wait-free”

� Upcoming in Chapter 32

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.47

COMPARE AND SWAP

� Compare and Swap

� Spin lock usage

� X86 provides “cmpxchgl” compare-and-exchange instruction

� cmpxchg8b

� cmpxchg16b

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.48

COMPARE AND SWAP

1-core VM:

Count is correct, no deadlock

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

10/10/2016

Slides by Wes J. Lloyd L6.9

� Cooperative instructions used together to support
synchronization on RISC systems

� No support on x86 processors

� Supported by RISC: Alpha, PowerPC, ARM

� Load-linked (LL)

� Loads value into register

� Same as typical load

� Used as a mechanism to track competition

� Store-conditional (SC)

� Performs “mutually exclusive” store

� Allows only one thread to store value

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.49

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

� LL instruction loads pointer value (ptr)

� SC only stores if the load link pointer has not changed

� Requires HW support

� C code is psuedo code

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.50

LL/SC LOCK

� Two instruction lock

January 25, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L7.51

LL/SC LOCK - 2 QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 25, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L6.52

