
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.1

Scheduling: Scheduling: Scheduling: Scheduling:
MultiMultiMultiMulti---- level Feedback Queue,level Feedback Queue,level Feedback Queue,level Feedback Queue,

Proportional ShareProportional ShareProportional ShareProportional Share

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Can you work an example for calculating average run time

(ART) and average turnaround time (ATT) for the Shortest Job
to Completion First (SJCF) scheduler?

� With preemption…

� Without preemption…

� How are time slices (quantums) defined? Are jobs in control
of the time slice, or is it the system?

� Generally it is the system / scheduler. For MLFQ, each queue
has a different time quantum. As jobs are moved up and down

into different queue levels, the quantum changes.

� We will later see how jobs in a ticket scheduler can try to

receive a larger time slice…

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.2

FEEDBACK FROM 1/18

� How is a lower priority queue shared if all queues are
round-robin? For example, with a high number of
interactive jobs?

� You’re right, higher level queues --if full-- can starve jobs in
lower queues from receiving any execution time! For a job
on a lower level queue to execute there must be a context
switch and no job scheduled in the top most queue. Once
a job in a lower level queue starts to execute it will receive
its full time slice unless interrupted.

� We need the priority boost to avoid this problem.

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.3

FEEDBACK - 2

� Finish - Multi - level Feedback Queue (Ch. 8)

� Proportional Share Scheduler (Ch. 9)

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.4

OBJECTIVES

�Objectives:

� Improve turnaround time:

Run shorter jobs first

�Minimize response time:
Important for interactive jobs (UI)

�Achieve without a priori knowledge of job length

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.5

MULTI-LEVEL FEEDBACK QUEUE

� Multiple job queues

� Adjust job priority based on

observed behavior

� Interactive Jobs

� Frequent I/O � keep priority high

� Interactive jobs require fast
response time (GUI/UI)

� Batch Jobs

� Require long periods of CPU

utilization

� Keep priority low

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.6

MLFQ - 2 Round-Robin
within a Queue

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.2

� New arriving jobs are placed into highest priority queue

� If a job uses its entire time slice, priority is reduced (↓)↓)↓)↓)

� Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

� If a job relinquishes the CPU for I/O priority stays the same

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.7

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

� With priority boost

� Prevents starvation

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.8

RESPONDING TO BEHAVIOR CHANGE - 2

� Improved time accounting:

� Track total job execution time in the queue

� Each job receives a fixed time allotment

� When allotment is exhausted, job priority is lowered

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.9

PREVENTING GAMING

� Consider the tradeoffs:

� How many queues?

� What is a good time slice?

� How often should we “Boost” priority of jobs?

� What about different time slices to different queues?

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.10

MLFQ: TUNING

� Oracle Solaris MLFQ implementation

� 60 Queues �
w/ slowly increasing time slice (high to low priority)

� Provides sys admins with set of editable table(s)

� Supports adjusting time slices, boost intervals, priority
changes, etc.

� Advice

� Provide OS with hints about the process

� Nice command � Linux

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.11

PRACTICAL EXAMPLE

� The refined set of MLFQ rules:

� Rule 1:Rule 1:Rule 1:Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

� Rule Rule Rule Rule 2:2:2:2: If Priority(A) = Priority(B), A & B run in RR.

� Rule Rule Rule Rule 3:3:3:3: When a job enters the system, it is placed at the
highest priority.

� Rule Rule Rule Rule 4:4:4:4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

� Rule Rule Rule Rule 5:5:5:5: After some time period S, move all the jobs in the
system to the topmost queue.

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.12

MLFQ RULE SUMMARY

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.3

PROPORTIONAL SHARE

SCHEDULER

January 23, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L5.13

� Also called fair-share scheduler
or lottery scheduler

� Guarantee each job receives some percentage of CPU time
based on share of “tickets”

� Each job receives an allotment of tickets

� % of tickets corresponds to potential share of a resource

� Can conceptually schedule any resource this way

� CPU, disk I/O, memory

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.14

PROPORTIONAL SHARE SCHEDULER

� Simple implementation

� Just need a random number generator

� Picks the winning ticket

� Maintain a data structure of jobs and tickets (list)

� Traverse list to find the owner of the ticket

� Consider sorting the list for speed

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.15

LOTTERY SCHEDULER

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.16

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generat or to
5 // get a value, between 0 and the total # of ticket s
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jo bs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the win ner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break ; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

� Ticket currency / exchange

� User allocates tickets in any desired way

� OS converts user currency into global currency

� Example:

� There are 200 global tickets assigned by the OS

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.17

TICKET MECHANISMS

� Ticket transfer

� Temporarily hand off tickets to another process

� Ticket inflation

� Process can temporarily raise or lower the number of
tickets it owns

� If a process needs more CPU time, it can boost tickets.

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.18

TICKET MECHANISMS - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.4

� Scheduler picks a winningwinningwinningwinning ticket

� Load the job with the winning ticket and run it

� Example:

� Given 100 tickets in the pool

� Job A has 75 tickets: 0 - 74

� Job B has 25 tickets: 75 – 99

� But what do we know about probability of a coin flip?

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.19

LOTTERY SCHEDULING

Scheduled job:

� Equality of distribution (fairness) requires a lot of fl ips!

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.20

COIN FLIPPING

Similarly,

Lottery scheduling requires lots of “rounds” to achieve fairness.

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.21

LOTTERY FAIRNESS

� With two jobs

� Each with the same number of tickets (t=100)

When the job length is not very long,

average unfairness can be quite severe.

� What is the best approach to assign tickets to jobs?

� Typical approach is to assume users know best

� Users are provided with tickets, which they allocate as
desired

� How should the OS automatically distribute tickets upon
job arrival?

� What do we know about incoming jobs a priori ?

� Ticket assignment is really an open problem…

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.22

LOTTERY SCHEDULING CHALLENGES

�Addresses statistical probability issues with
lottery scheduling

� Instead of guessing a random number to select a
job, simply count…

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.23

STRIDE SCHEDULER

� Jobs have a “stride” value

� A stride value describes the counter pace when the job should
give up the CPU

� Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

� Total system tickets = 10,000

� Job A has 100 tickets � Astride = 10000/100 = 100

� Job B has 50 tickets � Bstride = 10000/50 = 200

� Job C has 250 tickets � Cstride = 10000/250 = 40

� Stride scheduler tracks “pass” values for each job (A, B, C)

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.24

STRIDE SCHEDULER - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.5

� Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

� When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.25

STRIDE SCHEDULER - 3

�Stride values

�Tickets = priority to select job

�Stride is inverse to tickets

�Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.26

STRIDE SCHEDULER - EXAMPLE

� Randomly pick job A (all pass values=0)

� Set A’s pass value to A’s stride = 100

� Increment counter until > 100

� Pick a new job

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.27

STRIDE SCHEDULER EXAMPLE - 2

Tickets

C = 250

A = 100

B = 50

C has the most tickets
and receives a lot of
opportunities to run"

Initial job selection
is random. All @ 0

� Loosely based on the stride scheduler

� CFS models system as a Perfect Multi-Tasking System

� In perfect system every process of the same priority receives
exactly 1/n th of the CPU time

� Scheduling classes (runqueues)

� Each has specific priority: default, real-time

� Scheduler picks highest priority task in highest scheduling
class

� Time quantum based on proportion of CPU time (%), not fixed
time allotments

� Quantum calculated using NICE value

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.28

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

� Time slice: Linux “Nice value”“Nice value”“Nice value”“Nice value”

� Nice value predates the CFS scheduler

� Top shows nice values

� Process command: Ps ax -o pid,ni,cmd,%cpu

� Nice Values: from -20 to 19

� Lower is higherhigherhigherhigher priority, default is 0

� Scheduling quantum is calculated using nice value

� Target latency:

� Interval during which task should run at least once

� Automatically increases as number of jobs increases

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.29

COMPLETELY FAIR SCHEDULER - 2

� Challenge:

� How do we map a nice value to an actual CPU timeslice
(ms)

� What is the best mapping?

� O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

� Linux completely fair scheduler
- maps nice value based on time proportion

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.30

COMPLETELY FAIR SCHEDULER - 3

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.6

� Nice values become relative for determining time slices

� Proportion of CPU time to allocate is relative to other
queued tasks

� Scheduler tracks virtual run time in vruntime variable

� The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

� struct sched_entity contains vruntime parameter

� Describes process execution time in nanoseconds

� Perfect scheduler �
achieve equal vruntime for all processes of same priority

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.31

COMPLETELY FAIR SCHEDULER - 4

� CFS uses weighted fair queueing

� Runqueues are stored using a linux rbtree

� Self balancing binary search tree

� The leftmost node will have the lowest vruntime

� Walking the tree to find the left most node is only O(log N)
for N nodes

� If tree is balanced, left most node can be cached

� Key takeaway
identifying the next job to schedule is really really really really fast!

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L5.32

COMPLETELY FAIR SCHEDULER - 5

CONCURENCY:

AN INTRODUCTION

January 23, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L5.33

� Introduction to threads

� Race condition

� Critical section

� Thread API

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.34

OBJECTIVES

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.35

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

� Enables a single process (program) to have multiple “workers”

� Supports independent path(s) of execution within a program

� Each thread has its own Thread Control Block (TCB)

� PC, registers, SP, and stack

� Code segment, memory, and heap are shared

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.36

THREADS - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.7

� Thread Control Block vs. Process Control Block

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.37

PROCESS AND THREAD METADATA

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.38

SHARED ADDRESS SPACE

� Every thread has it’s own stack / PC

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.39

THREAD CREATION EXAMPLE

intintintint main()main()main()main() Thread 1Thread 1Thread 1Thread 1 Thread 2Thread 2Thread 2Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.40

POSSIBLE ORDERINGS OF EVENTS

intintintint main()main()main()main() Thread 1Thread 1Thread 1Thread 1 Thread 2Thread 2Thread 2Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.41

POSSIBLE ORDERINGS OF EVENTS - 2

intintintint main()main()main()main() Thread 1Thread 1Thread 1Thread 1 Thread 2Thread 2Thread 2Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.42

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

Slides by Wes J. Lloyd L5.8

� Show example

� A + B : ordering

� Counter: incrementing global variable by two threads

January 23, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L6.43

COUNTER EXAMPLE QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 23, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L5.44

