TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

1/23/2017

TCSS 422: OPERATING SYSTEMS

Scheduling:
Multi-level Feedback Queue,
Proportional Share

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

FEEDBACK FROM 1/18

= Can you work an example for calculating average run time
(ART) and average turnaround time (ATT) for the Shortest Job
to Completion First (SJCF) scheduler?
= With preemption...
= Without preemption...

= How are time slices (quantums) defined? Are jobs in control
of the time slice, or is it the system?
= Generally it is the system / scheduler. For MLFQ, each queue
has a different time quantum. As jobs are moved up and down
into different queue levels, the quantum changes.
= We will later see how jobs in a ticket scheduler can try to
receive a larger time slice...

TCS5422: Operating Systems [Winter 2017

Ranianias 2L Institute of Technology, University of Washington - Tacoma ‘ 152 |

FEEDBACK - 2

= How is a lower priority queue shared if all queues are

round-robin? For example, with a high number of

interactive jobs?

=You're right, higher level queues --if full-- can starve jobs in
lower queues from receiving any execution time! For a job
on a lower level queue to execute there must be a context
switch and no job scheduled in the top most queue. Once
a job in a lower level queue starts to execute it will receive
its full time slice unless interrupted.

=We need the priority boost to avoid this problem.

January 23, 2017 TCSS422: Operating Systems [Winter 2017 | 53 |

Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Finish - Multi-level Feedback Queue (Ch. 8)

= Proportional Share Scheduler (Ch. 9)

TCS5422: Operating Systems [Winter 2017]

T 2 AR Institute of Technology, University of Washington - Tacoma

MULTI-LEVEL FEEDBACK QUEUE

= Objectives:

=Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

TCS5422: Operating Systems [Winter 2017) | 55 |

[ETIETR) 2R R Institute of Technology, University of Washington - Tacoma

= Multiple job queues

= Adjust job priority based on [High Priority] Qs —’®—’®
observed behavior

Q7
= Interactive Jobs Q6
= Frequent I/0 > keep priority high Qs
= Interactive jobs require fast
response time (GUI/UI) Q4 —>©
= Batch Jobs Q3
= Require long periods of CPU
P Q2
utilization
= Keep priority low [Low Priority] Q1 —>®

TCSS422: Operating Systems [Winter 2017

Ranianias 2L nstitute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L5.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced ()

= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

TCS5422: Operating Systems [Winter 2017]
[ETETR) 2R AR Institute of Technology, University of Washington - Tacoma L7

1/23/2017

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

=
e

Boost
i

100 150 200

Without(Left) and With(Right) Priority Boost A] B <8

TCS5422: Operating Systems [Winter 2017]
Ranianias 2L Institute of Technology, University of Washington - Tacoma 58

PREVENTING GAMING

= I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

0 0 |
HRRNNRRRRNUNRINY NN | |
o 50 100 150 200 o

Without(Left) and With(Right) Gaming Tolerance

| January 23,2017

TC55422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

MLFQ: TUNING

= Consider the tradeoffs:

= How many queues?

= What is a good time slice?

= How often should we “Boost” priority of jobs?

= What about different time slices to different queues?
N

g o
Example) 10ms for the highest queue, 20ms for the middle,
ms for the lowest

TCS5422: Operating Systems [Winter 2017]
I 2 A Institute of Technology, University of Washington - Tacoma

15.10 |

PRACTICAL EXAMPLE

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)

=Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
=Nice command > Linux

TCS5422: Operating Systems [Winter 2017)
[ETIETR) 2R R Institute of Technology, University of Washington - Tacoma

1511

MLFQ RULE SUMMARY

= The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

January 23,2017 TCSS422: Operating Systems [Winter 2017

Institute of Technology, University of Washington - Tacoma Ls12

Slides by Wes J. Lloyd

L5.2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

PROPORTIONAL SHARE
SCHEDULER

TCS$422: Operating Systems [Winter 2017]

LR 25 250 Institute of Technology, University of Washington - Tacoma

1/23/2017

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantee each job receives some percentage of CPU time
based on share of “tickets”

=Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
= CPU, disk I/0, memory

TCS5422: Operating Systems [Winter 2017

fanian2e R0l Institute of Technology, University of Washington - Tacoma

1514

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
= Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
=Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCS5422: Operating Systems [Winter 2017]

LTy) Al Institute of Technology, University of Washington - Tacoma

1515 |

LOTTERY SCHEDULER IMPLEMENTATION

head

NULL
1 Il counter: used to track if we've found the winner yet
2 int counter= 0
3
4 i1 winner: u: random number generat orto
5 11 get a val and the total # of ticket s
6 int winner (0, totaltickets);
7
8 I current: use this to walk through the list of jo bs
9 node_t *current = head;
10
11 //100p until the sum of ticket values is > the win ner
12 while(current) {
13 ‘counter = counter + current->tickets;
14 T (counter > winner)
15 break : // found the winner
16 current = current->next;
17
18 Il current'is the winner: schedule it

TCS5422: Operating Systems [Winter 2017]

T 2 AR Institute of Technology, University of Washington - Tacoma

1516 |

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to AL > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B's currency) to Bl > 100 (global currency)

TCS5422: Operating Systems [Winter 2017)

January 23,2017 Institute of Technology, University of Washington - Tacoma

1517

Slides by Wes J. Lloyd

TICKET MECHANISMS - 2

= Ticket transfer

=Temporarily hand off tickets to another process

= Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= |f a process needs more CPU time, it can boost tickets.

TCSS422: Operating Systems [Winter 2017

TRk Rk Institute of Technology, University of Washington - Tacoma

1518

L5.3

TCSS 422: Operating Systems [Winter 2017] 1/23/2017
Institute of Technology, UW-Tacoma

OTTERY SCHEDULING COIN FLIPPING
= Scheduler picks a winning ticket = Equality of distribution (fairness) requires a lot of flips!
= Load the job with the winning ticket and run it 100

® All heads
= Example:
= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler's winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 Similarly, : . . .
. Lottery scheduling requires lots of “rounds” to achieve fairness.
Scheduledjob: A B A A B A A AAAAB AB A 5 I

|

= But what do we know about probability of a coin flip? Inereasing number of con osses

TCS5422: Operating Systems [Winter 2017)

[ETETR) 2R AR Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

1519

January 23,2017

1520

LOTTERY FAIRNESS LOTTERY SCHEDULING CHALLENGES

= With two jobs
= Each with the same number of tickets (t=100)

10

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

0t = How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?

i) 150 1000 =Ticket assignment is really an open problem...

Job Length

When the job length is not very long,
average unfairness can be

TCssa: rating Systems [Winter 2017]
Instit fechnology, University of Washington - Tacoma

Unfairness (Average)

January 23,2017 1521 January 23,2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

1522 |

STRIDE SCHEDULER STRIDE SCHEDULER - 2
= Addresses statistical probability issues with = Jobs have a “stride” value
lottery scheduling = A stride value describes the counter pace when the job should

give up the CPU

= Stride value is inverse in proportion to the job’s number of
= |Instead of guessing a random number to select a tickets (more tickets = smaller stride)

job, simply count...
= Total system tickets = 10,000
=Job A has 100 tickets > A4, = 10000/100 = 100
= Job B has 50 tickets > Byqe = 10000/50 = 200
= Job C has 250 tickets > Cgyqo = 20000/250 = 40

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCS5422: Operating Systems [Winter 2017) TCS5422: Operating Systems [Winter 2017]
[ETIETR) 2R R Institute of Technology, University of Washington - Tacoma o238 flanuanvze 201z nstitute of Technology, University of Washington - Tacoma 524

Slides by Wes J. Lloyd L5.4

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

STRIDE SCHEDULER - 3

= Basic algorithm:
starts running
3. Stride scheduler increments a counter

new job (go to 1)

the scheduler passes on to the next job...

1. Stride scheduler picks a job with the lowest pass value
2. Scheduler increments job’s pass value by its stride and

4. When counter exceeds pass value of current job, pick a

= When the counter reaches a job’s “PASS” value,

1/23/2017

TCS5422: Operating Systems [Winter 2017)

[ETETR) 2R AR Institute of Technology, University of Washington - Tacoma

1525

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCS5422: Operating Systems [Winter 2017

Ranianias 2L Institute of Technology, University of Washington - Tacoma

1526

= Randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

= Increment counter until > 100

= Pick a new job

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0
100 200 0 c
100 200 40 C
100 200 80 [9
100 200 120 A
200 200 120 C
200 200 160 [9
200 200 200

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C =250
A =100
B = 50

4 initial job selection
is random. All @ 0

« C has the most tickets
and receives a lot of
opportunities to run...

TCS5422: Operating Systems [Winter 2017]

LTy) Al Institute of Technology, University of Washington - Tacoma

I

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority receives
exactly 1/n th of the CPU time

= Scheduling classes (runqueues)
= Each has specific priority: default, real-time

= Scheduler picks highest priority task in highest scheduling
class

= Time quantum based on proportion of CPU time (%), not fixed
time allotments

= Quantum calculated using NICE value

TCS5422: Operating Systems [Winter 2017]

I 2 A Institute of Technology, University of Washington - Tacoma

1528 |

= Time slice: Linux “Nice value”
= Nice value predates the CFS scheduler
=Top shows nice values

= Nice Values: from -20 to 19
= Lower is higher priority, defaultis O

= Target latency:

COMPLETELY FAIR SCHEDULER - 2

= Process command: Ps ax -0 pid, ni,cnd, %pu

=Scheduling quantum is calculated using nice value

Interval during which task should run at least once
Automatically increases as number of jobs increases

TCS5422: Operating Systems [Winter 2017)

[ETIETR) 2R R Institute of Technology, University of Washington - Tacoma

1529

COMPLETELY FAIR SCHEDULER - 3

= Challenge:
=How do we map a nice value to an actual CPU timeslice
(ms)
=What is the best mapping?
0(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

Linux completely fair scheduler
- maps nice value based on time proportion

TCSS422: Operating Systems [Winter 2017

Ranianias 2L nstitute of Technology, University of Washington - Tacoma

1530

Slides by Wes J. Lloyd

L5.5

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

COMPLETELY FAIR SCHEDULER - 4

= Nice values become relative for determining time slices

= Proportion of CPU time to allocate is relative to other
queued tasks

= Scheduler tracks virtual run time in vruntime variable

= The task on a given runqueue (nice value) with the lowest
vrunti me is scheduled text

mstruct sched_entity containsvrunti me parameter
= Describes process execution time in nanoseconds

= Perfect scheduler >
achieve equal vr unt i me for all processes of same priority

1/23/2017

TCS5422: Operating Systems [Winter 2017)

January 23,2017 Institute of Technology, University of Washington - Tacoma

1531

COMPLETELY FAIR SCHEDULER - 5

= CFS uses weighted fair queueing

= Runqueues are stored using a linux rbtree
= Self balancing binary search tree
=The leftmost node will have the lowest vr unt i me

= Walking the tree to find the left most node is only O(log N)
for N nodes

= |f tree is balanced, left most node can be cached

= Key takeaway
identifying the next job to schedule is really fast!

TCS5422: Operating Systems [Winter 2017

fanian2e R0l Institute of Technology, University of Washington - Tacoma

15.32

CONCURENC
AN INTRODUCTION

TCSS422: Operating Systems [Winter 2017]

I 2R R Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Introduction to threads
= Race condition
= Critical section

= Thread API

TCS5422: Operating Systems [Winter 2017]

T 2 AR Institute of Technology, University of Washington - Tacoma

1634 |

THREADS

Process Multithreaded Process
Process State: PC, Process State: PC, Theead Theesd.
registers, SP, et registers, SP, el Bl Eess
Single i . > b,
> - Multiple
Threaded vawses SHARED [STRSY, B
Process ' g’ || Threaded

» ‘ oY ¢ € ,|l Process
_"—JJ

1 + ¢ ¢ ¢ .

—T— -

©Alfred Park, hitp://randu.orgiutorials/threads

TCS5422: Operating Systems [Winter 2017]

| LTy) Al Institute of Technology, University of Washington - Tacoma

1635 |

THREADS - 2

= Enables a single process (program) to have multiple “workers”

= Supports independent path(s) of execution within a program

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

TCSS422: Operating Systems [Winter 2017

Institute of Technology, University of Washington - Tacoma L6.36

January 23,2017

Slides by Wes J. Lloyd

L5.6

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

PROCESS AND THREAD META

= Thread Control Block vs. Process Control Block

Thread identification Process identification
Thread state Process status
CPU information: Process state:
Program counter Process status word
Register contents Register contents

4 Main memory
Thread priority Resources
Pointer to process that created this thread Process priority

Pointers to all other threads created by this thread Accounting

TCS5422: Operating Systems [Winter 2017)

[ETETR) 2R AR Institute of Technology, University of Washington - Tacoma

1637

THREAD CREATION EXAMPLE

#include <stdic.h>
#include <assert.h>
#include <pthread.h>

void smythread(void arg) {
printf("ss\n", (char +) arg);
return NULL;

arge, char +argv[]) {

ad_t pl, p!

main: begin\n");

ead_create (spl, mythread, "A"); assert (rc == 0);
ead_create (2p2, mythread, "B"); assert(rc == 0);
saits for the threads to finish

ead_join (p1, ; assert(rc == 0);

ead_join(p2, NULL); assert(rc == 0);

printf("main: end\n");

return 0;

z

January 23,2017

TCS5422: Operating Systems [Winter 2017] 1639
Institute of Technology, University of Washington - Tacoma 8

POSSIBLE ORDERINGS OF EVENTS - 2

[mmem | vt | Twows2
Starts running
Prints ‘main: begin’
Creates Thread 1
Runs
Prints ‘A’
Returns
Creates Thread 2
Runs
Prints ‘B’
Returns
Waits for T1 Returns immediately
Waits for T2

Returns immediately
Prints ‘main: end’

TCS5422: Operating Systems [Winter 2017)

[ETIETR) 2R R Institute of Technology, University of Washington - Tacoma

1641

1/23/2017

= Every thread has it’s own stack / PC
OKB The code segment: OKB
Program Code | where instructions live Program Code
1KB The h " 1KB
e heap segment:
Heap contains mallocd data . Heap
2K8 dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15k8 contains local variables 15KB
Stack (1) arguments to routines, Stack (1)
168 return values, etc 16k8 J
A Single-Threaded Two threaded
Address Space Address Space
TCSS422: Operating Systems [Winter 2017]
flanuanvze 2uly Institute of Technology, University of Washington - Tacoma ‘ 1638

POSSIBLE ORDERINGS OF EVENTS
[mmeg | Tweat Throad 2
Starts running
Prints ‘main: begin’
»Creates Thread 1
Creates Thread 2
Waits for T1
Runs
» Prints ‘A"
Returns
» Waits for T2
Runs
Prints ‘B’
Returns
» Prints ‘main: end"
[o e eamngon-acoms | o]

POSSIBLE ORDERINGS OF EVENT

Thread 1

Starts running
Prints ‘main: begin"
Creates Thread 1
Creates Thread 2

What if execution order of

events in the program matters

Thread 2

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

Runs
Prints ‘A’
Returns
Waits for T2 Immediately returns
Prints ‘main: end”
January 23, 2017 ‘TCS5422: Operating Systems [Winter 2017]

‘ a2 |

L5.7

TCSS 422: Operating Systems [Winter 2017]

Institute of Technology, UW-Tacoma

COUNTER EXAMPLE

= Show example

= A + B: ordering
= Counter: incrementing global variable by two threads

1/23/2017

January 23,2017

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1643

Slides by Wes J. Lloyd

QUESTIONS

TCSS422: Operating Systems [Winter 2017]

LB £ 2 Institute of Technology, University of Washington - Tacoma

L5.8

