TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Process API,
Limited Direct Execution

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2017]

LB T 2 Institute of Technology, University of Washington - Tacoma|

FEEDBACK - 2

= Minimal CentOS Install w/ Developer Tools: though it works
the problem is not being able to easily have multiple windows
for dev & debug.
= https://lecturesnippets.com/lesson/setting-up-ssh-server-in-centos-
7-minimal-install/
= http://www.tecmint.com/things-to-do-after-minimal-rhel-centos-7-
installation/2/

= |s forked child that calls exec still considered a child of the
parent?
= YES

TCSS422: Operating Systems [Winter 2017 | s |

LAkl Al Institute of Technology, University of Washington - Tacoma

FEEDBACK - 4

= What determine a program’s access level to the underlying
system? Can a user process be escalated to run at a more
direct (privileged) level?
= The operating system controls the privilege level
= The OS will escalate from USER to KERNEL mode, for example, to
perform1/0

= What does the OS handle if we (user processes???) aren’t
allowed direct execution?

= White board positioning

TCS5422: Operating Systems [Winter 2017) | s |

[EETR) AR Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/11/2017

FEEDBACK FROM - 01/09

= Use of fork()

= How do parent and child processes interact with each
other?
=The parent starts the child, and can wait() until it finishes.
= Nothing prevents the parent from exiting while a child
continues to execute - they are separate processes

= |s there context switching time at the end of a process or
simply in the middle?
= When a process terminates its data structure would be
deallocated, but this is not a context switch per se

January 11,2017

TCS5422: Operating Systems [Winter 2017 132
Institute of Technology, University of Washington - Tacoma -

FEEDBACK - 3

= What are the differences between execl, execv, execvp?
= From the man pages:
execl,execlp,execle - the argument list is provided as a list of
one or more pointers to null terminated string (const char
*). The list must be null terminated.
execy, execvp,execvpe - the argument list is provided as an
array:
of null terminated strings > const *char argv[]
= execle,execvpe - include an extra parameter to allow the
environment to be passed in
To see your environment try “pri ntenv” or “export”
= execl, execle, execv - allow the “path” which is searched to find
the executable program to be provided
To see your path, type echo $PATH

January 11, 2007 TCS5422: Operating Systems [Winter 2017] ‘ e |

Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Limited Direct Execution - Ch. 6
= Scheduling Introduction
= Scheduling Metrics

= Scheduling Methods

January 11, 2017 TCS5422: Operating Systems [Winter 2017] ‘ e |

Institute of Technology, University of Washington - Tacoma

L3.1

TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

LIMITED DIRECT

EXECUTION

TCS$422: Operating Systems [Winter 2017]

LT i 08 Institute of Technology, University of Washington - Tacoma

1/11/2017

CONTROL TRADEOFF

= Too much control:
= No security
=No time sharing

= Too little control:
=Too much OS overhead
= Poor performance for compute & I/0
=Complex APIs (system calls), difficult to use

TCS5422: Operating Systems [Winter 2017

(e, R Institute of Technology, University of Washington - Tacoma

Context Switching Total cost of

context switching

Multitasking N il

M 'm 'H

vs. Multitasking with context switching

IITGI i1Ti11i111
" ———

CONTEXT SWITCHING OVERHEAD

TCS5422: Operating Systems [Winter 2017]

LAkl Al Institute of Technology, University of Washington - Tacoma

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing
= Enabled by protected (safe) control transfer

= CPU supported context switch

= Provides data isolation

TCS5422: Operating Systems [Winter 2017]

T L AT Institute of Technology, University of Washington - Tacoma

1310 |

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access €—————— NO access
= User mode:
Application is running, but w/o direct 1/0 access

= Kernel mode:

0S kernel is running performing restricted operations

TCS5422: Operating Systems [Winter 2017)

January 11,2017 Institute of Technology, University of Washington - Tacoma

[EXEY

CPU MODES

= User mode: ring 3 - untrusted
=Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
=0S memory access
=]/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

TCSS422: Operating Systems [Winter 2017

(LR, R Institute of Technology, University of Washington - Tacoma

1312

Slides by Wes J. Lloyd

L3.2

TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

YSTEM CALLS

= Enable restricted “OS” operations
= Kernel exposes key functions through an API:
=Device I/0
= Task swapping: context switch
= Memory management/allocation: malloc()
= Creating/destroying processes

1/11/2017

TCS5422: Operating Systems [Winter 2017)

(EETR) AR Institute of Technology, University of Washington - Tacoma

[EXE}

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Wainine Code Interptsenvice outine
= Trap: any transfer to kernel mode p— 4
— s
= Three kinds of traps amodins i

instruction &

=Sys call (planned) user 2> kernel
SYSCALL for 1/0, etc.

= Exception (error) user > kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCS5422: Operating Systems [Winter 2017

TR, 2R Institute of Technology, University of Washington - Tacoma

B

EXCEPTION TYPES

Coerced

Asynchronous Nonmaskable.

Synchronous User request Nonmaskable. Between

Between

m P e U winin P—
Pamrn [T Coercad Nonmaskable Within Rosume
m e e U wiin —
m P e =D winin P
[Powortams [T Coerced Nonmasiable Within Terminate
[ey [T e e e o T ws |

05 @ boot Hardware

(kernel mode)
- initialize trap table
remember address of ..
syscall handler
05 @ run Hardware Program

(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack witl

Computer BOOT Sequence:

OS with Limited Direct Execution

move to kernel mode
Jump to trap handler

Handle trap
- Do work of syscall
retun-from-trap
restore regs from kernel stack
move to user mode

jump to PC after trap

) et from main
trap (via exit)
- Free memory of process

Remove from process list

TCSS422: Operating Systems [Winter 2017]

Sanait 201 Insitute of Technology, University of Washington - Tacoma 1316

MULTITASKING

Illegal operations

= How/when should the OS regain control of the CPU to
switch between processes?

= What problems could you for see with this approach?

TCS5422: Operating Systems [Winter 2017)

[EETR) AR Institute of Technology, University of Washington - Tacoma

1317

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2017

TR, 2 Institute of Technology, University of Washington - Tacoma

[o

Slides by Wes J. Lloyd

L3.3

TCSS422: Operating Systems [Winter 2017] 1/11/2017
Institute of Technology, University of Washington - Tacoma

CONTEXT SWITCH CONTEXT SWITCH - 2

= Preemptive multitasking initiates “trap”

1. Save register values of the current process to its kernel
into the OS code to determine: stack
= General purpose registers
+ Whether to continue running the current process, = PC: program counter (instruction pointer)
or switch to a different one.

= kernel stack pointer
+ If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one. 2. Restore soon-to-be-executing process from its kernel
stack
3. Switch to the kernel stack for the soon-to-be-executing
process
January 11,2017 mﬁﬁ:o‘?mﬂ’ﬂ‘ﬁ‘;“jﬁxg‘gsﬂsﬁm U 1319 January 11,2017 WSSO s T A 1320

Institute of Technology, University of Washington - Tacoma

05 @ boot Hardware
(kernel mode)
initialize trap table
- d — INTERRUPTED INTERRUPTS
q syscall handler
timer handler
q start interrupt timer
- start timer
interrupt CPU in X ms

= What happens if during an interrupt (trap to kernel
oros mode), another interrupt occurs?
Hardware rogram

Context Switch R

=< 2.6 kernel: non-preemptive kernel
=>= 2.6 kernel: preemptive kernel

Call switch() routine
save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(8)
move to user mode
jump to B PC

- Process B

TCSS422: Operating Systems [Winter 2017] o D TCS5422: Operating Systems [Winter 2017]
January 11,2017 Institute of Technology, Universiy of Washington - Tacoma 1321 IR, Institute of Technology, University of Washington - Tacoma

1322 |

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preenpt _count)
= begins at zero

SCHEDULING:
=increments for each lock acquired (not safe to preempt)
=decrements when locks are released I NTROD U CTI o N

= |nterrupt can be interrupted when preenpt _count =0
= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

January 11,2017 TCS5422: Operating Systems [Winter 2017)

Institute of Technology, University of Washington - Tacoma 123

TCSS422: Operating Systems [Winter 2017]
L i 2K nstitute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.4

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

SCHEDULING INTRODUCTION

= For simplicity, consider job scheduling with limitations:
= Each job requires the same CPU time
= All jobs arrive at the same time
= All jobs only use the CPU (no 1/0)
= The run-time of each job is known a priori

TCS5422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma 125

January 11,2017

SCHEDULING METRICS - 2

= Scheduling Metric: Fairness
= Jain’s fairness index
= Quantifies if jobs receive a fair share of system resources

2

(E=

n- 3L, @t

T(mimmassagn) =
" n processes
= x; is time share of each process
= worst case = 1/n
= best case = 1

= Consider n=3, worst case = .333, best case=1
= With n=3 and x,=.2, x,=.7, x5=.1, fairness=.62
= With n=3 and x,=.33, x,=.33, x3=.33, fairness=1

TCS5422: Operating Systems [Fall 2016]

LAkl Al Institute of Technology, University of Washington - Tacoma

| an

FIFO: CONVOY EFFECT

= FIFO with different jobs lengths
= Consider
* A.,=100sec, B,,=10sec, C,,,=10sec

Time (Second)

100 +110 + 120 _

Average turnaround time = 3

TCS5422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

1329

January 11,2017

Slides by Wes J. Lloyd

1/11/2017

SCHEDULING METRICS

= Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

® Scheduling Metric: Turnaround time
= The time at which the job completes minus the time at which
the job arrived in the system

‘ Tournaround = Tcompletion — Tarrival

= How is turnaround time different than execution time?

TCSS422: Operating Systems [Fall 2016]

TR, 2R Institute of Technology, University of Washington - Tacoma ‘ 1326

SCHEDULERS

= FIFO: first in, first out
= Very simple, easy to implement

= Consider
= 3 x 10sec jobs, arrival: AB C

Time (Second)

10 +20 + 30

Average turnaround time =

January 11, 2017 TCS5422: Operating Systems [Fall 2016] ‘ s

Institute of Technology, University of Washington - Tacoma

SJF: SHORTEST JOB FIRST

= Given that we know execution times in advance:
= Run in order of duration, shortest to longest
= Non preemptive scheduler
= This is not realistic
= Arrival: AB C

R S R vt
0 20 40 60 80 100 120

Time (Second)

10 +20 + 120
————— =50sec

Average turnaround time =

TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma ‘ 1330

January 11,2017

L3.5

TCSS422: Operating Systems [Winter 2017]

1/11/2017
Institute of Technology, University of Washington - Tacoma

SJF: WITH RANDOM ARRIVAL

STCF - SHORTEST TIME TO COMPLETION FIRST

= |f jobs arrive at any time:

= Add preemption to the Shortest Job First scheduler
= A @ t=0Osec, B @ t=10sec, C @ t=10sec

= Also called preemptive shortest job first (PSJF)
[B,C arrive]
= When a new job enters the system:

= Of all jobs, Which has the least time left?

= PREMPT job execution, and schedule the new shortest job

= More realistic, but how do we know execution time in
advance?

= Oracle: All knowing one
= Only schedule static (fixed size) batch workloads

Average turnaround time = Can we predict execution time?

sec

TCS5422: Operating Systems [Fall 2016]

| (EETR) AR Institute of Technology, University of Washington - Tacoma

1331

TCS5422: Operating Systems [Fall 2016]
(e, R Institute of Technology, University of Washington - Tacoma 1332

= Consider: = Scheduling Metric: Response Time
" Aien=100 A, i\ =0 = Time from when job arrives until it starts execution
* Bjn=10, B,1iya=10, C,=10, C, =10
‘ Tresponse = Tfirstrun — Tarrival ’
[B,C arrive] §
AlB C A

= STCF, SJF, FIFO

y o 2 A % 1% 15 can perform poorly with respect to response time

response ?

TCS5422: Operating Systems [Fall 2016] 3
Institute of Technology, University of Washington - Tacoma §

TC55422: Operating Systems [Fall 2016]
LAkl Al Institute of Technology, University of Washington - Tacoma

1333 | | January 11,2017

RR: ROUND ROBIN

QUESTIONS

= Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

= Scheduling Quantum | Process |
is called a time slice P1

RR is fair, but performs poorly on metrics
such as turnaround time

Burst Time
12

time
period
Round Robin scheduling algorithm
Gantt chart
Scheduling » [Pi]P2[P3]PapPs[PL[P2]P4] P1]
Quantum =5 seconds 0 5 10 14 19 24 29 32 37 3[}9

TCS5422: Operating Systems [Fall 2016]

January 11,2017 Institute of Technology, University of Washington - Tacoma

1335

TCS8422: Operating Systems [Winter 2017]
L i 2K nstitute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.6

