
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/11/2017

Slides by Wes J. Lloyd L3.1

Process API,Process API,Process API,Process API,

Limited Direct ExecutionLimited Direct ExecutionLimited Direct ExecutionLimited Direct Execution

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

January 11, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L3.1

� Use of fork()

� How do parent and child processes interact with each

other?

� The parent starts the child, and can wait() until it finishes.

� Nothing prevents the parent from exiting while a child

continues to execute – they are separate processes

� Is there context switching time at the end of a process or

simply in the middle?

� When a process terminates its data structure would be

deallocated, but this is not a context switch per se

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.2

FEEDBACK FROM - 01/09

� Minimal CentOS Install w/ Developer Tools: though it works

the problem is not being able to easily have multiple windows

for dev & debug.

� https://lecturesnippets.com/lesson/setting-up-ssh-server-in-centos-

7-minimal-install/

� http://www.tecmint.com/things-to-do-after-minimal-rhel-centos-7-

installation/2/

� Is forked child that calls exec stil l considered a child of the

parent?

� YES

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.3

FEEDBACK - 2

� What are the differences between execl, execv, execvp?

� From the man pages:
execl,execlp,execleexecl,execlp,execleexecl,execlp,execleexecl,execlp,execle – the argument list is provided as a list of
one or more pointers to null terminated string (const char
*). The list must be null terminated.
execvexecvexecvexecv, , , , execvp,execvpeexecvp,execvpeexecvp,execvpeexecvp,execvpe – the argument list is provided as an
array:
of null terminated strings � const *char argv[]

� execle,execvpeexecle,execvpeexecle,execvpeexecle,execvpe –––– include an extra parameter to allow the
environment to be passed in
� To see your environment try “printenv” or “export”

� execlexeclexeclexecl, , , , execleexecleexecleexecle, , , , execvexecvexecvexecv – allow the “path” which is searched to find
the executable program to be provided
� To see your path, type echo $PATH

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.4

FEEDBACK - 3

� What determine a program’s access level to the underlying

system? Can a user process be escalated to run at a more

direct (privileged) level?

� The operating system controls the privilege level

� The OS will escalate from USER to KERNEL mode, for example, to

perform I/O

� What does the OS handle if we (user processes???) aren’t

allowed direct execution?

� White board positioning

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.5

FEEDBACK - 4

� Limited Direct Execution – Ch. 6

� Scheduling Introduction

� Scheduling Metrics

� Scheduling Methods

OBJECTIVES

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.6

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/11/2017

Slides by Wes J. Lloyd L3.2

LIMITED DIRECT

EXECUTION

January 11, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L3.7

� Too much control:

� No security

� No time sharing

� Too little control:

� Too much OS overhead

� Poor performance for compute & I/O

� Complex APIs (system calls), difficult to use

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.8

CONTROL TRADEOFF

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.9

CONTEXT SWITCHING OVERHEAD

� OS implements LDE to support time/resource sharing

� Enabled by protected protected protected protected ((((safe) control transfersafe) control transfersafe) control transfersafe) control transfer

� CPU supported context switch

� Provides data isolation

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.10

LIMITED DIRECT EXECUTION

� Utilize CPU Privilege Rings (Intel x86)

� rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

� User modeUser modeUser modeUser mode:

Application is running, but w/o direct I/O access

� Kernel modeKernel modeKernel modeKernel mode:

OS kernel is running performing restricted operations

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.11

CPU MODES

access no access

� User mode: ring 3 - untrusted

� Some instructions and registers are disabled by the CPU

� Exception registers

� HALT instruction

� MMU instructions

� OS memory access

� I/O device access

� Kernel mode: ring 0 – trusted

� All instructions and registers enabled

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.12

CPU MODES

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/11/2017

Slides by Wes J. Lloyd L3.3

� Enable restricted “OS” operations

� Kernel exposes key functions through an API:

� Device I/O

� Task swapping: context switch

� Memory management/allocation: malloc()

� Creating/destroying processes

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.13

SYSTEM CALLS

� Trap: any transfer to kernel mode

� Three kinds of traps

� Sys call (planned) user � kernel
� SYSCALL for I/O, etc.

� Exception (error) user � kernel
� Div by zero, page fault, page protection error

� Interrupt: (event) user � kernel
� Non-maskable vs. maskable

� Keyboard event, network packet arrival, timer ticks

� Memory parity error (ECC), hard drive failure

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.14

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception typeException typeException typeException type
Synchronous vs. Synchronous vs. Synchronous vs. Synchronous vs.

asynchronousasynchronousasynchronousasynchronous

User request vs. User request vs. User request vs. User request vs.

coercedcoercedcoercedcoerced

User maskable vs. User maskable vs. User maskable vs. User maskable vs.

nonmaskablenonmaskablenonmaskablenonmaskable

Within vs. between Within vs. between Within vs. between Within vs. between

instructionsinstructionsinstructionsinstructions
Resume vs. terminateResume vs. terminateResume vs. terminateResume vs. terminate

I/O device requestI/O device requestI/O device requestI/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating systemInvoke operating systemInvoke operating systemInvoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction executionTracing instruction executionTracing instruction executionTracing instruction execution Synchronous User request User maskable Between Resume

BreakpointBreakpointBreakpointBreakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflowInteger arithmetic overflowInteger arithmetic overflowInteger arithmetic overflow Synchronous Coerced User maskable Within Resume

FloatingFloatingFloatingFloating----point arithmetic overflow point arithmetic overflow point arithmetic overflow point arithmetic overflow

or underflowor underflowor underflowor underflow
Synchronous Coerced User maskable Within Resume

Page faultPage faultPage faultPage fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accessesMisaligned memory accessesMisaligned memory accessesMisaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violationMemory protection violationMemory protection violationMemory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instructionUsing undefined instructionUsing undefined instructionUsing undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunctionHardware malfunctionHardware malfunctionHardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failurePower failurePower failurePower failure Asynchronous Coerced Nonmaskable Within Terminate

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.15

EXCEPTION TYPES

January 11, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L3.16

Computer BOOT Sequence:

OS with Limited Direct Execution

� How/when should the OS regain control of the CPU to

switch between processes?

� Cooperative multitasking (mostly pre 32-bit)

� < Windows 95, Mac OSX

� Opportunistic: running programs must give up control

� User programs must call a special yieldyieldyieldyield system call

� When performing I/O

� Illegal operations

� What problems could you for see with this approach?

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.17

MULTITASKING

A process gets stuck in an infinite loop.

���� Reboot the machine

� Preemptive multitasking (32 & 64 bit OSes)

� >= Mac OSX, Windows 95+

� Timer interrupt

� Raised at some regular interval (in ms)

� Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

� What is a good interval for the timer interrupt?

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.18

MULTITASKING - 2

A timer interrupt gives OS the ability to

run again on a CPU.

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/11/2017

Slides by Wes J. Lloyd L3.4

� Preemptive multitasking initiates “trap”

into the OS code to determine:

� Whether to continue running the current processcurrent processcurrent processcurrent process,

or switch to a dif ferent onedif ferent onedif ferent onedif ferent one.

� If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one.

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.19

CONTEXT SWITCH

1. Save register values of the current process to its kernel

stack

� General purpose registers

� PC: program counter (instruction pointer)

� kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack

3. Switch to the kernel stack for the soon-to-be-executing

process

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.20

CONTEXT SWITCH - 2

January 11, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L3.21

Context Switch

� What happens if during an interrupt (trap to kernel

mode), another interrupt occurs?

� Linux

� < 2.6 kernel: non-preemptive kernel

� >= 2.6 kernel: preemptive kernel

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.22

INTERRUPTED INTERRUPTS

�Use “locks” as markers of regions of non-

preemptibility (non-maskable interrupt)

�Preemption counter (preempt_count)

� begins at zero

� increments for each lock acquired (not safe to preempt)

� decrements when locks are released

� Interrupt can be interrupted when preempt_count=0

� It is safe to preempt (maskable interrupt)

� the interrupt is more important

January 11, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L3.23

PREEMPTIVE KERNEL

SCHEDULING:

INTRODUCTION

January 11, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L3.24

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/11/2017

Slides by Wes J. Lloyd L3.5

� For simplicity, consider job scheduling with l imitations:

� Each job requires the same CPU time

� All jobs arrive at the same time

� All jobs only use the CPU (no I/O)

� The run-time of each job is known a priori

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.25

SCHEDULING INTRODUCTION

� MetricsMetricsMetricsMetrics: A standard measure to quantify to what degree a

system possesses some property. Metrics provide repeatable

techniques to quantify and compare systems.

� MeasurementsMeasurementsMeasurementsMeasurements are the numbers derived from the application

of metrics

� Scheduling Metric: Turnaround t imeTurnaround t imeTurnaround t imeTurnaround t ime

� The time at which the job completes minus the time at which

the job arrived in the system

� How is turnaround time different than execution time?

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.26

SCHEDULING METRICS

����������� = �
�������� − �������

� Scheduling Metric: FairnessFairnessFairnessFairness

� Jain’s fairness index

� Quantifies if jobs receive a fair share of system resources

� n processes

� x i is time share of each process

� worst case = 1/n

� best case = 1

� Consider n=3, worst case = .333, best case=1

� With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62

� With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.27

SCHEDULING METRICS - 2

� FIFO: first in, first out

� Very simple, easy to implement

� Consider

� 3 x 10sec jobs, arrival: A B C

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.28

SCHEDULERS

�������	����������	���� =
��+ �� + ��

�
= ��	��

� FIFO with different jobs lengths

� Consider

� A len=100sec, B len=10sec, C len=10sec

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.29

FIFO: CONVOY EFFECT

�������	����������	���� =
��� + ���+ ���

�
= ���	��

� Given that we know execution times in advance:

� Run in order of duration, shortest to longest

� Non preemptive scheduler

� This is not realistic

� Arrival: A B C

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.30

SJF: SHORTEST JOB FIRST

�������	����������	���� =
�� + �� + ���

�
= ��	��

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/11/2017

Slides by Wes J. Lloyd L3.6

� If jobs arrive at any time:

� A @ t=0sec, B @ t=10sec, C @ t=10sec

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.31

SJF: WITH RANDOM ARRIVAL

�������	����������	���� =
��� + ���− �� + (��� − ��)

�
= ���.��	��

� Add preemption to the Shortest Job First scheduler

� Also called preemptive shortest job first (PSJF)

� When a new job enters the system:

� Of all jobs, Which has the least time left?

� PREMPT job execution, and schedule the new new new new shortest job

� More realistic, but how do we know execution time in

advance?

� Oracle: All knowing one

� Only schedule static (fixed size) batch workloads

� Can we predict execution time?

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.32

STCF – SHORTEST TIME TO COMPLETION FIRST

� Consider:

� A len=100 Aarrival=0

� B len=10, Barrival=10, C len=10, Carrival=10

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.33

STCF - 2

�������	����������	���� =
(���− �) + ��− �� + (��− ��)

�
= ��	��

� Scheduling Metric: Response TimeResponse TimeResponse TimeResponse Time

� Time from when job arrives until it starts execution

� STCF, SJF, FIFO

� can perform poorly with respect to response time

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.34

��������� = ��������� − �������

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help

minimize response time?

� Run each job awhile, then switch to another distributing the

CPU evenly (fairly)

� Scheduling Quantum

is called a time slice

� Time slice must be

a multiple of the

timer interrupt

period.

January 11, 2017
TCSS422: Operating Systems [Fall 2016]

Institute of Technology, University of Washington - Tacoma
L3.35

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics

such as turnaround time

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

January 11, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L3.36

