
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.1

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

The Abstraction: The Abstraction: The Abstraction: The Abstraction:
The The The The Process, Process API,Process, Process API,Process, Process API,Process, Process API,
Limited Direct ExecutionLimited Direct ExecutionLimited Direct ExecutionLimited Direct Execution

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� What point(s) remain least clear...?

� Why CentOS? (for the programming assignments) Can I
get away with Debian?

� Difference between a thread and a process

� How to create threads, etc.?

� Concurrency- what is the main idea/concept?

� The example of the non-atomic threading
� What is atomic?

� Synchronization of the variable between threads

� EXAMPLE PROGRAM: How are the random incorrect values
determined when the counter is not in sync?

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.2

FEEDBACK FROM 1/4/2017

� What point(s) remain least clear...?

� Visualization of memory

� If one program has the same virtual memory – it still has

a different physical memory?

� Each program has its own virtual memory address space that is

the entire address space of the physical machine (e.g. 4GB)

� Yes, each program’s virtual memory address space map’s to a

different physical address location…

� If so, how does the OS map to this memory?

� Through address translation, a feature of the OS with hardware

(on CPU) support

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.3

FEEDBACK - 2

� What point(s) remain least clear...?

� What is a context switch?

� How is OS scheduling determined?

� OS abstraction

� Specifics of (the) OS

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.4

FEEDBACK - 3

� Process states

� Process data structures

� Process API – Ch. 5

� Limited Direct Execution – Ch. 6

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.5

OBJECTIVES

� How should the CPU be shared?

� Time Sharing:

Run one process, pause it, run another

� How do we SWAP processes in and out of the CPU

efficiently?

� Goal is to minimize overheadoverheadoverheadoverhead of the swap

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.6

CPU VIRTUALIZING

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.2

� Process comprises of:

� Memory

� Instructions (“the code”)

� Data (heap)

� Registers

� PC: Program counter

� Stack pointer

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.7

PROCESS

A process is a running program.

� Modern OSes provide a Process API for process suppor t

� Create

� Create a new process

� Destroy

� Terminate a process (ctrl-c)

� Wait

� Wait for a process to complete/stop

� Miscel laneous Control

� Suspend process (ctrl-z)

� Resume process (fg, bg)

� Status

� Obtain process statistics: (top)

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.8

PROCESS API

1. Load program code (and static data) into memory

� Program executable code (binary): loaded from disk

� Static data: also loaded/created in address space

� Eager loading: Load entire program before running

� Lazy loading: Only load what is immediately needed

� Modern OSes: Supports paging & swapping

2. Run-time stack creation

� Stack: local variables, function params, return address(es)

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.9

PROCESS API: CREATE

3. Create program’s heap memory

� For dynamically allocated data

4. Other initialization

� I/O Setup

� Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

� OS transfers CPU control to the new process

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.10

PROCESS API: CREATE

January 9, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.11

code

static data

heap

stack

Process

Memory

code

static data

heap

Program

Loading:

Reads program from

disk into the address

space of process

CPU

� Running

� Currently executing instructions

� Ready

� Process is ready to run, but has been preempted

� CPU is presently allocated for other tasks

� Blocked

� Process is notnotnotnot ready to run. It is waiting for another event

to complete:

� Process has already been initialized and run for awhile

� Is now waiting on I/O from disk(s) or other devices

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.12

PROCESS STATES

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.3

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.13

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

� OS provides data structures to track process information

� Process list

� Process Data

� State of process: Ready, Blocked, Running

� Register context

� PCB (Process Control Block)

� A C-structure that contains information about each

process

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.14

PROCESS DATA STRUCTURES

� xv6: pedagogical implementation of Linux

� Simplified structures

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.15

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.16

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

� struct task_struct, equivanelnt to struct proc

� Provides process description

� Large: 10,000+ bytes

� /usr/src/linux-headers-{kernel version}/include/linux/sched.h

� 1227 – 1587

� Struct thread_info, provides “context”

� thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.17

LINUX: STRUCTURES

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.18

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.4

� List of Linux data structures:

http://www.tldp.org/LDP/tlk/ds/ds.html

� Description of process data structures:

http://www.makelinux.net/books/lkd2/ch03lev1sec1

2nd edition is online (dated from 2005):

Linux Kernel Development, 2nd edition

Robert Love

Sams Publishing

January 9, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.19

LINUX STRUCTURES - 2

� Process API – Ch. 5

� Limited Direct Execution – Ch. 6

OBJECTIVES

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.20

� Creates a new process - think of “a fork in the road”

� “Parent” process is the original

� Creates “child” process of the program from the current current current current
execution execution execution execution pointpointpointpoint

� Book says “pretty odd”

� Creates a duplicateduplicateduplicateduplicate program instance (these are processes!processes!processes!processes!)

� CopyCopyCopyCopy of

� Address space (memory)

� Register

� Program Counter (PC)

� Fork returns

� child PID to parent

� 0 to child

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.21

fork()

� p1.c

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.22

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

� Non deterministic ordering of execution

or

� CPU scheduler determines which to run first

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.23

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.24

:(){ :|: & };:

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.5

� wait(), waitpid()

� Called by parent process

� Waits for a child process to finish executing

� Not a sleep() function

� Provides some ordering to multi -process execution

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.25

wait()

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.26

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid ());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n ",
rc, wc, (int) getpid());

}
return 0;

}

� Deterministic ordering of execution

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.27

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

� Linux example

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.28

FORK EXAMPLE

� Supports running an external program

� 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

� execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)

to strings provided as arguments… (arg0, arg1, . . argn)

� Execv(), execvp(), execvpe()

Array of pointers to strings as arguments

Strings are null -terminated

First argument is name of fi le being executed

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.29

exec()

� Common use case:

� Write a new program which wraps a legacy one

� Provide a new interface to an old system: Web services

� Legacy program thought of as “black box”

� We don’t want to know what is inside…

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.30

EXEC() - 2

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.6

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.31

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.32

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n ",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.33

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRW XU);
…

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.34

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.35

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

LIMITED DIRECT

EXECUTION

January 9, 2016
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L2.36

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.7

� How does the CPU support running so many jobs

simultaneously?

� Time SharingTime SharingTime SharingTime Sharing

� Tradeoffs:

� Performance

� Excessive overhead

� Control

� Fairness

� Security

� Both HW and OS support

is used

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.37

VIRTUALIZING THE CPU

� What if programs could directly control the CPU / system?

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.38

DIRECT EXECUTION

OS Program

1. Create entry for process list

2. Allocate memory for

program

3. Load program into memory

4. Set up stack with argc /

argv
5. Clear registers

6. Execute call main()

9. Free memory of process

10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,

the OS wouldn’t be in control of anything and

thus would be “just a library”

Computer BOOT Sequence:

OS with Direct Execution

� With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharingtime sharingtime sharingtime sharing?

How do programs share disks and perform I/O if they are

given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.39

DIRECT EXECUTION - 2

� Too much control:

� No security

� No time sharing

� Too little control:

� Too much OS overhead

� Poor performance for compute & I/O

� Complex APIs (system calls), difficult to use

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.40

CONTROL TRADEOFF

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.41

CONTEXT SWITCHING OVERHEAD

� OS implements LDE to support time/resource sharing

� Enabled by protected protected protected protected ((((safe) control transfersafe) control transfersafe) control transfersafe) control transfer

� CPU supported context switch

� Provides data isolation

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.42

LIMITED DIRECT EXECUTION

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

1/09/2017

Slides by Wes J. Lloyd L2.8

� Utilize CPU Privilege Rings (Intel x86)

� rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

� User modeUser modeUser modeUser mode:

Application is running, but w/o direct I/O access

� Kernel modeKernel modeKernel modeKernel mode:

OS kernel is running performing restricted operations

January 9, 2016
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L2.43

CPU MODES

access no access

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

