
TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.1

File Systems andFile Systems andFile Systems andFile Systems and

RAIDRAIDRAIDRAID

Wes J. Lloyd

Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Chapter 38, 39

� Introduction to RAID

� File systems – structure

� File systems – inodes

� File systems - indexing

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.2

OBJECTIVES

� Redundant array of inexpensive disks (RAID)

� Enable multiple disks to be grouped together to:

� Provide the il lusion of one giant disk

� For performance improvements

� Striping: For mirrored disks we can increase read speeds splitting 

read transactions to run in parallel across two physical disks

� For redundancy

� Mirroring: duplication of data

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.3

RAID

� Special hardware RAID controllers offer

� Microcontroller

� Provides firmware to direct RAID operation

� Volatile memory

� Non-volatile memory

� Buffers writes in case of power loss

� Specialized logic to perform parity calculations

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.4

RAID CONTROLLER

� RAID Level 0: Simplest form

� Stripe blocks across disk in a round-robin fashion

� Excellent performance and capacity

� Capacity

� Capacity is equal to the sum of all disks

� Performance

� R/W are distributed in round-robin fashion across all disks

� Reliability

� No redundancy

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.5

RAID LEVEL 0 - STRIPING

� RAID 1 tolerates HDD failure

� Two copies of each block across disks

� RAID 10  (RAID 1 + RAID 0):   Mirror then stripe data

� RAID 01  (RAID 0 + RAID 1):   Stripe then mirror data

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.6

RAID LEVEL 1 - MIRRORING



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.2

� Capacity:  RAID 1 is expensive

� The useful capacity is n/2

� Reliability:  RAID-1 does well

� Can tolerate the loss of disk(s)

� Up to n/2 disk failures can be tolerated depending on which RAID 

fails

� Performance: RAID-1 is slow at writing

� Must wait for writes to complete to all disk(s)

�RAID is not a backup!RAID is not a backup!RAID is not a backup!RAID is not a backup!

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.7

RAID 1 - EVALUATION

� Raid 5 – trades off space requirement for redundancy

� In a 5-disk array, you can only recover from the loss of 1 HDD

� 5 disk RAID 5: Capacity if 80% of 5 disks

� Writes rotate across bit,  distributing a parity bit

� To rebuild data blocks you only need data from 4 disks

� Any drive can fail, as long 

as it is only 1

� Only need:

3 blocks + 1 parity block

-or-

4 blocks

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.8

RAID 5 – PARITY DISK

� Capacity:  Useful capacity is (n-1) disks

� A HDD must be dedicated as a parity disk

� Performance

� Writes are very slow: roughly = n/4

� Reads are equivalent to a single disk

� Reliability

� In RAID 5, a disk may fail, and the RAID keeps running

� Rebuilds are slow !!!

� Depending on disk size 8-24 hours is not unheard of

� RAID 6: Adds a second parity disk for increased resil ience

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.9

RAID 5 – EVALUATION

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.10

RAID COMPARISON

FILESYSTEMS

March 8, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L18.11

� Implemented by the OS as pure software

� Provide:

� Data structures: to describe disk content

� Arrays of blocks, index-nodes, trees

� Access methods: provides mapping for OS calls open(), 

read(), write(), etc.

� Which structures are read? written? For each call?

� How efficiently does the structure support file operations?

� Many available fi le systems (A-Z)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.12

FILE SYSTEMS



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.3

� Numerous fi le systems abound (A-Z)

� ADFA, AdvFS, AFS, AFS, AosFS, AthFS, BFS, BFS, Btrfs,  CFS, 

CMDFS, CP/M, DDFS, DTFS, DOS 3.x,  EAFS, EDS, ext,  etx2, 

etx3, ext4, ext3cow, FAT, VFAT, FATX, FFS, Fossil ,  Files-11, 

Felx,  HFS, HPFS, HTFS, IceFS, ISO 9660, JFS, JXFS, Lisa FS, 

LFS, MFS, Minix FS, NILFS, NTFS, NetWare FS, OneFS, OFS, OS-

9, PFS, ProDOS, Qnx5fs, Qnx6fs, ReFS, ReiserFS, Reiser4, 

Reliance, Reliance Nitro, RFS, S51K, SkyFS, SFS, Soup (Apple),  

SpadFS, STL, TRFS, Tux3, UDF, UFS, UFS2, VxFS, VLIR, WAFL, 

XFS, FS, ZFS

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.13

FILE SYSTEMS - 2

� Disk is divided into blocks

� Block size supported by most HDDs is 512 bytes

� Typical FS block size is 4 KB

� An instance of a fi le system is typically called a par titionpartitionpartitionpartition

� A single physical disk can have multiple partitions (fi le 

systems)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.14

FILE SYSTEM ORGANIZATION

� Consider a 64 block (4096KB block size) 

disk, aka. a 256 KB disk

� Legacy low density 5-¼“ floppy had 

160KB single side, 360KB double sided 

capacity

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.15

FILE SYSTEM EXAMPLE

� File system is stored using blocks on the disk

� This is considered a “reserved” region of the disk

� Corruption of the reserved region can destroy the file 

tables causing data on the disk to by unaddressable

� File system tracks:

� Which blocks comprise a file

� Where the blocks reside (are they contiguous?)

� The size of files

� The owner of files

� File permissions (e.g. R/W/X)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.16

FILE SYSTEM STORAGE

� Below the reserved region is at the front on a 64-block disk 

partition

� There are 56 blocks to track using “index-nodes” (inodes)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.17

FILE SYSTEM LOCATION

� Consider 256kb disk, with 56 free data blocks

� i -node size 256 bytes each

� 4KB block can contain 16 inodes

� Minimum of 4 – 4KB blocks required

� Here reserve 5 – 4KB blocks for fi les

� Provides some spare inodes

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.18

FILE SYSTEM EXAMPLES - 2



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.4

� Allocation structures:

� “Free list” of free inodes and blocks

� Example stores free list using bitmaps

� Array of bits indicate if inode or FS block is in use (0/1)

� Inode bitmap: 80 bits for inode table

� Data bitmap: 56 bits for data blocks

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.19

FILE SYSTEM - FREE LIST

� Contains information about the fi le system, “S”:

� How many inodes?

� How many data blocks?

� Location of inode table

� File system identity code(s)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.20

SUPERBLOCK

� Every inode has an inode number (index value)

� Based on inode number, disk location can be calculated

� Example: inode number=32

� Offset into inode region = 32

� Size of inode=256 bytes

� Inode number x inode size = 8192

� Inode location = inode start addr + (inode no. x inode size)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.21

INODE EXAMPLE

What is the inode location?

12KB + (32 x 256)

12KB + 8KB = 20 KB

� Disks are addressed by sectors, not bytes

� Disk stores large number of addressable sectors

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.22

INODE EXAMPLE - 2

� Inodes store all  information about a fi le:

� File type (e.g. directory, fi le,  other)

� Size, and the number of blocks allocated to a fi le on disk

� R/W/X permissions

� Time information

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.23

INODE EXAMPLE - 3

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.24

INODES – EXT2 LINUX FS



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.5

� Inodes use multi - level index

� First level:  include 12-direct block pointers

� Second level:  include 1 indirect block pointer

� Points to an entire block (4096 KB / 4 bytes) = 1,024 block 

pointers

� Indirect pointerIndirect pointerIndirect pointerIndirect pointer: one level

� Maximum file size

� (12 + 1,024) * 4KB = (1,036 x 4KB) = 4,144 KB

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.25

MULTI-LEVEL INDEX

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.26

MULTI-LEVEL INDEX - 2

� Double indirect pointerDouble indirect pointerDouble indirect pointerDouble indirect pointer

� First level:  include 12-direct block pointers

� Second level:  include 1 indirect block pointer

� Third level:  include 1 indirect block pointer

� Maximum file size:

� 12 + 1,024 + (1,024 x 1,024) * 4KB

� 1,049,612 x 4KB = 4,198,448 KB 

� > 4GB

� Triple indirect pointerTriple indirect pointerTriple indirect pointerTriple indirect pointer

� Maximum file size:

� 12 + 1,024 + (10242) + (10243) * 4KB = > 4TB

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.27

MULTI-LEVEL INDEX - 3

� Extents have a pointer with a stored length

� Each fi le has multiple extents

� A single extent would require contiguous fi le allocation

� In contrast to block pointers

� Extents conserve space better than multi - level indexes, but 

are less agile at representing fi le allocations scattered across 

the disk

� Multi-level indexes excel for scattered file allocations

� File indexing presents a space vs. flexibility tradeoff

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.28

EXTENTS

� Multi-level indexing

� Ext2, ext3

� Extents

� Ext4 (default Ubuntu 16.04), XFS (default CentOS 7)

� NTFS, Btrfs (b-tree fs)

� Exhaustive file systems feature comparison

� https://en.wikipedia.org/wiki/Comparison_of_file_systems

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.29

FILE INDEXING

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.30

COMMON FILE CHARACTERISTICS



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.6

� Directory contains fi le name and i number (index)

� Extra fi les for the parent parent parent parent dirdirdirdir and pwdpwdpwdpwd

� Can store dirs as l inear l ist,  often stored in inodes

� XFS uses B-trees to eliminate sequential search of fi lenames 

for duplicates when creating a new file

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.31

DIRECTORIES

� Consider reading a fi le called “/foo/bar”

� Traverse starting at root “/” (inumber = 2) to find fi le

� Read each inode to dereference fi le block location on disk

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.32

FILE I/O - READ

� 3 block fi le:  11 reads, 3 writes (last access time)

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.33

FILE I/O – READ OPERATIONS

� At least Five I/Os to update an existing file

� one to read the data bitmap

� one to write the bitmap (to reflect its new state to disk)

� two more to read and then write the inode

� one to write the actual block itself.

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.34

FILE I/O - WRITE

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.35

FILE I/O – WRITE - 2

� Free Lists

� Linked list of free blocks

� Head node tracks first free block, each subsequent block 

is linked with a pointer

� Bitmaps

� Bit-wise arrays of free blocks

� B-trees (XFS)

� Represents free list in a more compact form, with better search 

performance

� Free list design impacts efficiency of finding free blocks

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.36

FREE SPACE MANAGEMENT



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

03/08/2017

Slides by Wes J. Lloyd L18.7

� Two approaches to cache allocation

� Static partitioning

� Allocate a fixed size cache at system boot time

� For example: dedicate 10% of memory for disk R/W cache

� Dynamic partitioning 

� Linux has a unified page cache

� Pages are cached to a unified page cache for multiple purposes 

� Memory virtualization pages

� Inodes, disk pages

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.37

CACHING READS AND WRITES

� Subsequent fi le opens to a cache fi le can eliminate reads

� Benefits of write caching

� Batch updates together to reduce HDD requests

� Writes can be scheduled intelligently in the future

� Some writes can be avoided altogether

� For example: short lived tmp files

� Typical write buffering is from 5 to 30 seconds

� Risk of data loss

� Fsync(): force synchronization to disk

� Some apps such as database use to ensure immediate writes

March 8, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L18.38

FILE CACHING

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

November 30, 2016
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L21.39


