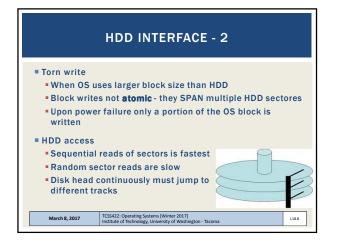

L18.2

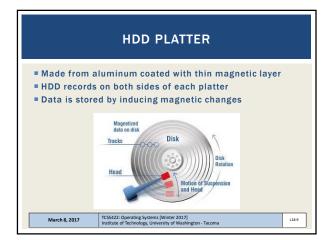
BLOCK SIZE IN LINUX EXT4

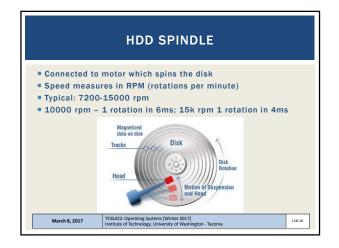
Specify the bytes/inode ratio. mke2fs creates an inode for every bytes-per-inode bytes of space on the disk. The larger the bytes-per-inode ratio, the fewer inodes will be created. This value generally shouldn't be smaller than the blocksize of the filesystem, since in that case more inodes would be made than can ever be used. Be warned that it is not possible to expand the number of inodes on a filesystem after it is created, so be careful deciding the correct value for this parameter.

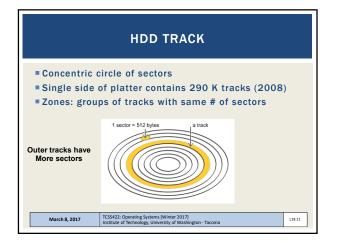
L18.5

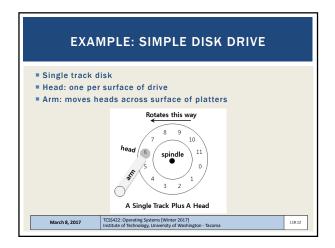
March 8, 2017 TCSS422: Operating Systems [Winter 2017] Institute of Technology, University of Washington - Tacoma

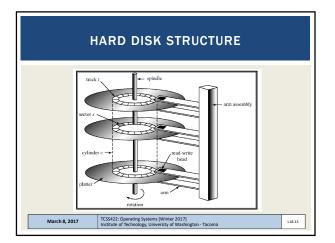

EXAMPLE: USDA SOIL EROSION MODEL WEB SERVICE (RUSLE2)

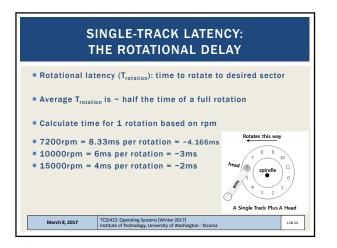

- Host ~2,000,000 files totaling 9.5 GB on a ~20GB filesystem on a cloud-based Virtual Machine
- With default inode ratio (4096 block size), only ~488,000 files will fit
- Drive less than half full, but files will not fit !
- HDDs support a minimum block size of 512 bytes
- OS filesystems such as ext3/ext4 can support "finer grained" management at the expense of a larger catalog size

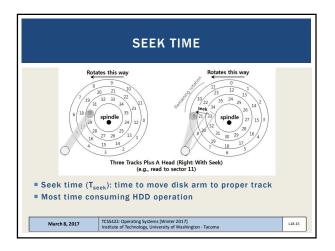

```
March 8, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma
```

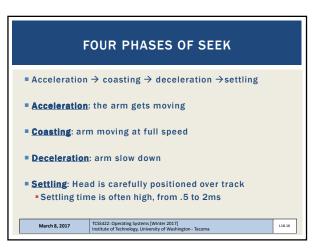

L18.6

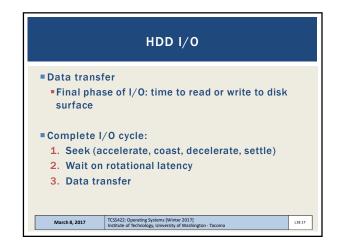

EXAMPLE: USDA SOIL EROSION MODEL WEB SERVICE (RUSLE2) - 2							
Free space	e in bytes (df)						
Device /dev/vda2	total size bytes-used bytes-free usage 13315844 9556412 3049188 76% /mnt						
Free inode	s (df -i) @ 512 bytes / node						
Device /dev/vda2	total inodes used free usage 3552528 1999823 1552705 57% /mnt						
March 8, 2017	TCSS422: Operating Systems [Winter 2017] Institute of Technology, University of Washington - Tacoma						

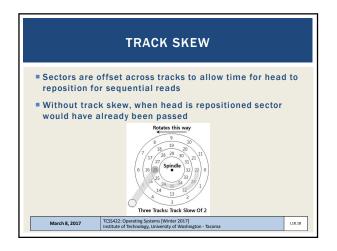


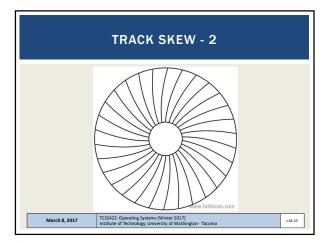


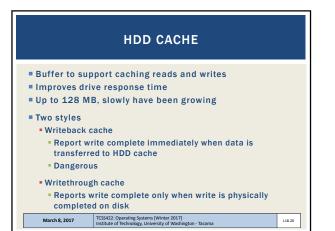


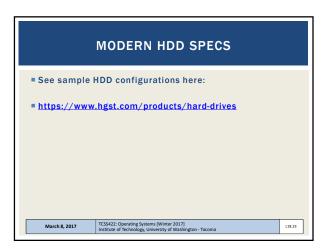


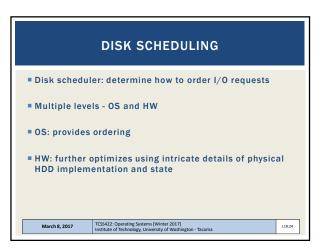


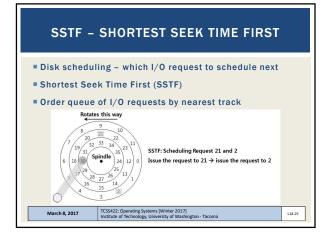


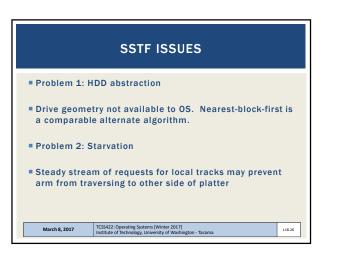











TRANSFER SPEED							
I/O Ti	me $T_{I/O} = T_{seek}$	$+ T_{rotation} + T_{transfer}$					
The ratio	te of I/O $R_{I/O}$	$=\frac{Size_{Transfer}}{T_{I/O}}$					
		Cheetah 15K.5	Barracuda				
	Capacity	300 GB	1 TB	_			
	RPM	15,000	7,200				
	Average Seek	4 ms	9 ms				
	Max Transfer	125 MB/s	105 MB/s				
	Platters	4	4				
	Cache	16 MB	16/32 MB				
	Connects Via	SCSI	SATA				
	Disk	Drive Specs: SCSI Versus	SATA				
March 8		perating Systems [Winter 2017] Technology, University of Washington	- Tacoma	L18.21			


		I/0	SPEED			
Random w	orkload:	4KB rand	om read on	HDD		
Sequentia					re	
- Sequentia	workioa	u. icau 1	Cheetah 15K.5	Barracuda	13	
	T		4 ms	9 ms		
	T _{seek} T _{rotation}		2 ms	4.2 ms		
	Random	T _{transfer}	30 microsecs	38 microsecs		
		T _{1/0}	6 ms	13.2 ms		
		R _{I/O}	0.66 MB/s	0.31 MB/s	1	
		T _{transfer}	800 ms	950 ms		
	Sequential	T _{1/0}	806 ms	963.2 ms		
		R _{I/O}	125 MB/s	105 MB/s	1	
	Dis		mance: SCSI Versus	SATA		
			ap in drive th nd sequential			
March 8, 2017	TCSS422: Operating Systems [Winter 2017] Institute of Technology, University of Washington - Tacoma					

