
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

03/06/2017

Slides by Wes J. Lloyd L17.1

I/O DevicesI/O DevicesI/O DevicesI/O Devices

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Chapter 36

� Polling vs Interrupts

� Programmed I/O (PIO)

� Direct memory Access (DMA)

� Port-mapped I/O (PMIO)

� Memory-mapped I/O (MMIO)

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.2

OBJECTIVES

� Modern computer systems interact with a variety of devices

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.3

I/O DEVICES

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.4

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

� Buses

� Buses closer to the CPU are faster

� Can support fewer devices

� Further buses are slower, but support more devices

� Physics and costs dictate “levels”

� Memory bus

� General I/O bus

� Peripheral I/O bus

� Tradeoff space: speed vs. locality

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.5

I/O BUSES

� Consider an arbitrary canonical device

� Two primary components

� Interface (registers for communication)

� Internals: Local CPU, memory, specific chips, firmware

(embedded software)

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.6

CANONICAL DEVICE

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

03/06/2017

Slides by Wes J. Lloyd L17.2

� Status register

� Maintains current device status

� Command register

� Where commands for interaction are sent

� Data register

� Used to send and receive data to the device

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.7

CANONICAL DEVICE:

HARDWARE INTERFACE

General concept:

The OS interacts and controls device behavior

by reading and writing the device registers.

� Common example of device interaction

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.8

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

� OS checks if device is READY by repeatedly checking the

STATUS register

� Simple approach

� CPU cycles are wasted without doing meaningful work

� Ok if only a few cycles, for rapid devices that are often READY

� BUT polling, as with “spin locks” we understand is inefficient

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.9

POLLING

� For longer waits, put process waiting on I/O to sleep

� Context switch (C/S) to another process

� When I/O completes, fire an interrupt to initiate C/S back

� Advantage: better multi-tasking and CPU utilization

� Avoids: unproductive CPU cycles (polling)

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.10

INTERRUPTS VS POLLING

� Interrupts are not always the best solution

� How long does the device I/O require?

� What is the cost of context switching?

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.11

INTERRUPTS VS POLLING - 2

If device I/O is fast ���� polling is better.

If device I/O is slow ���� interrupts are better.

What is the tradeoff space ? � One solution is a two-phase hybrid approach

� Initially poll, then sleep and use interrupts

� Livelock problem

� Common with network I/O

� Many arriving packets generate many many many many many many many many interrupts

� Overloads the CPU!

� No time to execute code, just interrupt handlers !

� Livelock optimization

� Coalesce multiple arriving packets (for different processes) into

fewer interrupts

� Must consider number of interrupts a device could generate

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.12

INTERRUPTS VS POLLING - 3

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

03/06/2017

Slides by Wes J. Lloyd L17.3

� To interact with a device we must send/receive

DATA

� There are two general approaches:

�Programmed I/O (PIO)

�Direct memory access (DMA)

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.13

DEVICE I/O

TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

� Spend CPU time to perform I/O

� CPU is involved with the data movement (input/output)

� PIO is slow –CPU is occupied with meaningless work

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.15

PROGRAMMED I/O (PIO)

PIO

� Legacy serial ports

� Legacy parallel ports

� PS/2 keyboard and mouse

� Legacy MIDI, joysticks

� Old network interfaces

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.16

PIO DEVICES

� Copy data in memory by offloading to a “DMA controller”

� Many devices (including CPUs) have DMA controllers

� Give DMA memory address, size, and copy instruction

� DMA performs I/O independent of the CPU

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.17

DIRECT MEMORY ACCESS (DMA)

� Two primary methods

�Port mapped I/O (PMIO)

�Memory mapped I/O (MMIO)

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.18

DEVICE INTERACTION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

03/06/2017

Slides by Wes J. Lloyd L17.4

� Device specific CPU I/O Instructions

� Follows a CISC model: extra instructions

� x86-x86-64: in and out instructions

� outb, outw, outl

� 1, 2, 4 byte copy from EAX � device’s I/O port

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.19

PORT MAPPED I/O (PMIO)

� Device’s memory is mapped to CPU memory

� Tenet of RISC CPUs: instructions are eliminated, CPU is

simpler

� Old days: 16-bit CPUs didn’t have a lot of spare memory space

� Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr

space)

� Regular CPU instructions used to access device: mapped to

memory

� Devices monitor CPU address bus and respond to their

addresses

� I/O device address areas of memory are reservedreservedreservedreserved for I/O

� Must not be available for normal memory operations.

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.20

MEMORY MAPPED I/O (MMIO)

� The OS must interact with a variety of devices

� Example: for DISK I/O consider the variety of disks:

� SCSI, IDE, USB flash drive, DVD, etc.

� Device drivers use abstraction to provide general

interfaces for vendor specific hardware

� In Linux: block devices

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.21

DEVICE INTERACTION

� Layers of I/O abstraction in Linux

� C functions (open, read, write) issue block readblock readblock readblock read and write write write write

requests to the generic block layer

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.22

FILE SYSTEM ABSTRACTION

� Too much abstractionToo much abstractionToo much abstractionToo much abstraction

� Many devices provide special capabilities

� Example: SCSI Error handling

� SCSI devices provide extra detail which are lost to the OS

� Buggy device driversBuggy device driversBuggy device driversBuggy device drivers

� 70% of OS code is in device drivers

� Device drivers are required for every device plugged in

� Drivers are often 3rd party, which is not quality controlled at

the same level as the OS (Linux, Windows, MacOS, etc.)

March 6, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L17.23

FILE SYSTEM ABSTRACTION ISSUES QUESTIONSQUESTIONSQUESTIONSQUESTIONS

March 6, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L17.24

