TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

1/0 Devices

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

03/06/2017

OBJECTIVES

= Chapter 36

= Polling vs Interrupts

= Programmed 1/0 (PIO)

= Direct memory Access (DMA)

= Port-mapped I/0 (PMIO)

= Memory-mapped I/0 (MMIO)

TCS5422: Operating Systems [Winter 2017

Marché, 2017 Institute of Technology, University of Washington - Tacoma

w72

1/0 DEVICES

= Modern computer systems interact with a variety of devices

COMPUTER SYSTEM ARCHITECTURE

Memory Bus
(proprietary)

General I/O Bus

(eg, PCI)
Peripheral /0 Bus
(e.g., SCSI, SATA, USB)

Prototypical System Architecture

Memory bus
General 1/0 bus
Peripheral 1/0 bus

TCS5422: Operating Systems [Winter 2017]

| (TR, Atk Institute of Technology, University of Washington - Tacoma

174

TCS5422: Operating Systems [Winter 2017]
March§, 2017 Institute of Technology, University of Washington - Tacoma wrs
= Buses

= Buses closer to the CPU are faster
= Can support fewer devices
= Further buses are slower, but support more devices

= Physics and costs dictate “levels”
= Memory bus
= General I/0 bus
= Peripheral 1/0 bus

= Tradeoff space: speed vs. locality

TCS5422: Operating Systems [Winter 2017)

March 6, 2017 Institute of Technology, University of Washington - Tacoma

[s

Slides by Wes J. Lloyd

CANONICAL DEVICE

= Consider an arbitrary canonical device

R [s | [Commena] [oma | | iece

Micro-controller(CPU))
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

Canonical Device

= Two primary components
= Interface (registers for communication)

= Internals: Local CPU, memory, specific chips, firmware
(embedded software)

TCSS422: Operating Systems [Winter 2017

Marché, 2017 Institute of Technology, University of Washington - Tacoma

u7e

L17.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

CANONICAL DEVICE:
HARDWARE INTERFACE

= Status register
= Maintains current device status

= Command register
=Where commands for interaction are sent

= Data register
=Used to send and receive data to the device

General concept:

controls device behavior
device registers.

TCS5422: Operating Systems [Winter 2017]
March, 2017 Institute of Technology, University of Washington - Tacoma

=R

03/06/2017

OS DEVICE INTERACTION

= Common example of device interaction

while (starus -- susy) < Poll- Is device available?

; //wait is not busy

write data to data register 4=m Command parameterization
write command to command register - Send command

Doing so starts the device and executes the command

UsY) 4mmm Poll - Is d

s done

while (STATUS

TCS5422: Operating Systems [Winter 2017]
Marché, 2017 Institute of Technology, University of Washington - Tacoma urs

POLLING

STATUS register
= Simple approach
= CPU cycles are wasted without doing meaningful work

= 0S checks if device is READY by repeatedly checking the

= Ok if only a few cycles, for rapid devices that are often READY
= BUT polling, as with “spin locks” we understand is inefficient

“waiting 10"

@ [a[a[i]1]1]plelplelp[2]2]2]]1]

task 1 E] - polling

CPU utilization by polling

TC55422: Operating Systems [Winter 2017]
MarchiEi200] Institute of Technology, University of Washington - Tacoma

uzs

INTERRUPTS VS POLLING

= For longer waits, put process waiting on I/0 to sleep

= Context switch (C/S) to another process

= When I/0 completes, fire an interrupt to initiate C/S back
= Advantage: better multi-tasking and CPU utilization
= Avoids: unproductive CPU cycles (polling)

task 2

o [AE[[E] EEEEE]

Disk
Diagram of CPU utilization by interrupt
TCS5422: Operating Systems [Winter 2017]
(TR, Atk Institute of Technology, University of Washington - Tacoma e

INTERRUPTS VS POLLING - 2

What is the tradeoff space ?

= Interrupts are not always the best solution

=How long does the device I/0 require?

= What is the cost of context switching?

polling

interrupts

TCS5422: Operating Systems [Winter 2017)
March 6, 2017 Institute of Technology, University of Washington - Tacoma

N

INTERRUPTS VS POLLING - 3

= One solution is a two-phase hybrid approach
= Initially poll, then sleep and use interrupts

= Livelock problem
= Common with network I/0
= Many arriving packets generate many many interrupts
= Overloads the CPU!
= No time to execute code, just interrupt handlers!

= Livelock optimization
= Coalesce multiple arriving packets (for different processes) into
fewer interrupts
= Must consider number of interrupts a device could generate

TCS5422: Operating Systems [Winter 2017]
Marché, 2017 nstitute of Technology, University of Washington - Tacoma

uri2

Slides by Wes J. Lloyd

L17.2

TCSS 422: Operating Systems [Winter 2017] 03/06/2017
Institute of Technology, UW-Tacoma

Transfer Modes
Maximum transfer rate . _
Mode = # P (MBJs) + | cycle time &
DEVICE I/0 o a3 500 ns
1 52 383 ns
PIO 2 83 240 ns
. . . . 3 11.1 180 ns
=To interact with a device we must send/receive % e 205
DATA o 2.1 960 ns.
Single-word DMA 1 4.2 480 ns
2 83 240 ns
o .
There are two general approaches: = = S
1 13.3 150 ns
-Programmed |/O (PlO) Multi-word DMA. 2 18.7 120 ns
at341 20 100 ns
) 41341 25 80 ns
.
Direct memory access (DMA) = e e
1 25.0 160ns = 2
2 (Ultra ATA/33) 33.3 120ns = 2
3 44.4 80 ns + 2
Ultra DMA
4 (Ultra ATA/EB) 66.7 80 ns +2
5 (Ultra ATA/100) 100 40ns + 2
TCS$422: Operating Systems [Winter 2017] 6 (Ultra ATA/133) 133 30 ns ~2
March, 2017 Institute of Technology, University of Washington - Tacoma | s |7 (Utra ATAMB7Y51 == e

PROGRAMMED 1/0 (PIO) P10 DEVICES

= Spend CPU time to perform I/0 = Legacy serial ports
= CPU is involved with the data movement (input/output)
= PO is slow -CPU is occupied with meaningless work = Legacy parallel ports

= PS/2 keyboard and mouse

Plo “over-burdened” task 1 < task 2

| : copy data from memory = Legacy MIDI, joysticks

ey |1|1\1|1\Ic\c\c 2[2]2]2]2]1]1]1]

pisk [1]2]1]

Diagram of CPU utilization

= Old network interfaces

March 6, 2017 TCS5422: Operating Systems [Winter 2017]

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma March 6, 2017

Institute of Technology, University of Washington - Tacoma 1r1e

DIRECT MEMORY ACCESS (DMA) DEVICE INTERACTION

= Copy data in memory by offloading to a “DMA controller” =Two primary methods
= Many devices (including CPUs) have DMA controllers
= Give DMA memory address, size, and copy instruction

= DMA performs I/0 independent of the CPU =Port mapped I/O (PMIO)
1| :taskl | 2] :task2
_mpydammemw = Memory mapped I/0 (MMIO)

v [1]1]1]1]2 2]2]2]2]2]1]1]1]

DMA
Disk
Diagram of CPU utilization by DMA
Warch, 2017 e e e A - e E= Marchs, 2017 | oy, vty of astington - Tacoma urss

Slides by Wes J. Lloyd L17.3

TCSS 422: Operating Systems [Winter 2017] 03/06/2017
Institute of Technology, UW-Tacoma

PORT MAPPED I/0 (PMIO) MEMORY MAPPED 1/0 (MMIO)

= Device specific CPU I/0 Instructions = Device’s memory is mapped to CPU memory

= Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

= Old days: 16-bit CPUs didn’t have a lot of spare memory space

= Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

= Follows a CISC model: extra instructions

= x86-x86-64: i n and out instructions

=outb, outw, out! = Regular CPU instructions used to access device: mapped to
=1, 2, 4 byte copy from EAX - device’s 1/0 port memory
= Devices monitor CPU address bus and respond to their
addresses
= |/0 device address areas of memory are reserved for 1/0
= Must not be available for normal memory operations.

TCS5422: Operating Systems [Winter 2017)

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

March 6, 2017 | e Marché, 2017 Institute of Technology, University of Washington - Tacoma 20

DEVICE INTERACTION FILE SYSTEM ABSTRACTION

= The OS must interact with a variety of devices = Layers of I/0 abstraction in Linux

= C functions (open, read, write) issue block read and write

= Example: for DISK I/0 consider the variety of disks: MEEIESES (O Uie Femeis HIeeLs et

|

POSIX API [open, read, write, close, etc] = = = = = = = = -

= SCSI, IDE, USB flash drive, DVD, etc.

kernel
. . . " G ic Block Interf: block read/writ:

= Device drivers use abstraction to provide general PR | CoroisCi D st |

interfaces for vendor specific hardware ‘Generlc Block Layer ‘

Specific Block Interface [protocol-specific read/write]
= In Linux: block devices

The File System Stack

March 6, 2017 TCS5422: Operating Systems [Winter 2017]

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma w2

| March 6, 2017

FILE SYSTEM ABSTRACTION ISSUES

QUESTIONS

= Too much abstraction

= Many devices provide special capabilities
= Example: SCSI Error handling
= SCSI devices provide extra detail which are lost to the 0S

= Buggy device drivers

= 70% of OS code is in device drivers
= Device drivers are required for every device plugged in

= Drivers are often 3" party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

TCS5422: Operating Systems [Winter 2017)

March 6, 2017 Institute of Technology, University of Washington - Tacoma

=

TCS8422: Operating Systems [Winter 2017]
LU= 0 20K nstitute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L17.4

