
TCSS 422 A – Winter 2017
Institute of Technology

1/5/2017

L1.1Slides by Wes J. Lloyd

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma

INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Wes J. Lloyd

Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

� Introduce operating systems

� Management of resources

� Concepts of virtualization/abstraction

� CPU, Memory, I/O

� Operating system design goals

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.2

OBJECTIVES

�Responsible for:

�Making it easy to runrunrunrun programs

�Allowing programs to shareshareshareshare memory

�Enabling programs to interactinteractinteractinteract with devices

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.3

OPERATING SYSTEMS

OS is in charge of making sure the system

operates correctly and efficiently.

� The OS is a resource manager

�Manages CPU, disk, network I/O

�Enables many programs to

�ShareShareShareShare the CPU

�Share Share Share Share the underlying physical memory (RAM)

�Share Share Share Share physical devices

� Disks

� Network Devices

� …

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.4

RESOURCE MANAGEMENT

� Operating systems present physical resourcesphysical resourcesphysical resourcesphysical resources

as virtual representationsvirtual representationsvirtual representationsvirtual representations to the programs sharing

them

� Physical resources: CPU, disk, memory, …

� The virtual form is “abstractabstractabstractabstract”

� The OS presents an illusion that each user program

runs in isolation on its own hardware

� This virtual form is general, powerful, and easy-to-use

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.5

VIRTUALIZATION

�What form of abstraction does the OS provide?

�CPU

� Process and/or thread

�Memory

� Address space

�� large array of bytes

� All programs see the same “size” of RAM

�Disk

� Files

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.6

ABSTRACTIONS

TCSS 422 A – Winter 2017
Institute of Technology

1/5/2017

L1.2Slides by Wes J. Lloyd

�Allow applications to reuse common facilities

�Make different devices look the same

�Easier to write common code to use devices

� Linux/Unix Block Devices

�Provide higher level abstractions

�More useful functionality

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.7

WHY ABSTRACTION?

�What level of abstraction?

�How much of the underlying hardware should be

exposed?

�What if too muchtoo muchtoo muchtoo much?

�What if too too too too littlelittlelittlelittle?

�What are the correct abstractions?

�Security concerns

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.8

ABSTRACTION CHALLENGES

� Each running program gets its own “virtual” representation of

the CPU

� Many programs seem to run at once

� Linux: “top” command shows

process l ist

� Windows: task manager

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.9

VIRTUALIZING THE CPU

� Simple Looping C Program

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.10

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 #include <assert.h>
5 #include "common.h"
6
7 int
8 main(int argc, char *argv[])
9 {
10 if (argc != 2) {
11 fprintf(stderr, "usage: cpu <string>\n");
12 exit (1);
13 }
14 char *str = argv[1];
15 while (1) {
16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second
17 printf("%s\n", str);
18 }
19 return 0;
20 }

� Runs forever, must Ctrl -C to halt…

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.11

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"
A
A
A
ˆC
prompt>

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.12

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353
[2] 7354
[3] 7355
[4] 7356
A
B
D
C
A
B
D
C
A
C
B
D
...

Even though we have only one processor, all four of

programs seem to be running at the same time!

TCSS 422 A – Winter 2017
Institute of Technology

1/5/2017

L1.3Slides by Wes J. Lloyd

� Computer memory is treated as a large array of bytes

� Programs store all data in this large array

� Read memory (load)Read memory (load)Read memory (load)Read memory (load)

� Specify an address to read data from

� Write memory (store)Write memory (store)Write memory (store)Write memory (store)

� Specify data to write to an address

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.13

VIRTUALIZING MEMORY

� Program to read/write memory:

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.14

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include "common.h"
5
6 int
7 main(int argc, char *argv[])
8 {
9 int *p = malloc(sizeof(int)); // a1: allocate some

memory
10 assert(p != NULL);
11 printf("(%d) address of p: %08x\n",
12 getpid(), (unsigned) p); // a2: print out the

address of the memmory
13 *p = 0; // a3: put zero into the first slot of the memory
14 while (1) {
15 Spin(1);
16 *p = *p + 1;
17 printf("(%d) p: %d\n", getpid(), *p); // a4
18 }
19 return 0;
20 }

� Output of mem.c

� int value stored at 00200000

� program increments int value

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.15

VIRTUALIZING MEMORY - 3

prompt> ./mem
(2134) memory address of p: 00200000
(2134) p: 1
(2134) p: 2
(2134) p: 3
(2134) p: 4
(2134) p: 5
ˆC

� Multiple instances of mem.c

� (int*)p receives the same memory location 00200000

� Why does modifying (int*)p in program #1 (PID=24113), not

interfere with (int*)p in program #2 (PID=24114) ?

� The OS has “virtualized” memory, and provides a “virtual” address

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.16

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
...

�Key take-aways:

� Each process (program) has its own vir tual address spacevir tual address spacevir tual address spacevir tual address space

� The OS maps virtual address spacesaddress spacesaddress spacesaddress spaces onto

physical memoryphysical memoryphysical memoryphysical memory

� A memory reference from one process can not affect the

address space of others.

� IsolationIsolationIsolationIsolation

� Physical memory, a shared resource, is managed by the OS

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.17

VIRTUAL MEMORY

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.18

CONCURRENCY

TCSS 422 A – Winter 2017
Institute of Technology

1/5/2017

L1.4Slides by Wes J. Lloyd

� Linux: 654 tasks

� Windows: 37 processes

� The OSOSOSOS appears to run many programs at once, juggling them

� Modern multimultimultimulti ---- threadedthreadedthreadedthreaded programs feature concurrent threads

and processes

� What is a key difference between processes and threads?

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.19

CONCURRENCY

Listing continues …

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.20

CONCURRENCY - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "common.h"
4
5 volatile int counter = 0;
6 int loops;
7
8 void *worker(void *arg) {
9 int i;
10 for (i = 0; i < loops; i++) {
11 counter++;
12 }
13 return NULL;
14 }
15 ...

Not the same as Java volatile:

Provides a compiler hint than an object may change value

unexpectedly (in this case by a separate thread) so aggressive

optimization must be avoided.

� Program creates two threads

� Check documentation: “man pthread_create”

� worker() method counts from 0 to argv[1] (loop)

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.21

CONCURRENCY - 3

16 int
17 main(int argc, char *argv[])
18 {
19 if (argc != 2) {
20 fprintf(stderr, "usage: threads <value>\n");
21 exit (1);
22 }
23 loops = atoi(argv[1]);
24 pthread_t p1, p2;
25 printf("Initial value : %d\n", counter);
26
27 Pthread_create(&p1, NULL, worker, NULL);
28 Pthread_create(&p2, NULL, worker, NULL);
29 Pthread_join(p1, NULL);
30 Pthread_join(p2, NULL);
31 printf("Final value : %d\n", counter);
32 return 0;
33 }

January 4, 2017
TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L1.22

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.23

CONCURRENCY - 4

� Command line parameter argv[1] provides loop length

� Defines number of times the shared counter is incremented

� Loops: 1000

� Loops 100000

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000
Initial value : 0
Final value : 2000

prompt> ./thread 100000
Initial value : 0
Final value : 143012 // huh??
prompt> ./thread 100000
Initial value : 0
Final value : 137298 // what the??

� When loop value is large why do we not achieve 200000 ?

� C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

� These instructions happen concurrently and VERY FAST

� (P1 || P2) write incremented register values back to memory,

While (P1 || P2) read same memory

� Memory access here is unsynchronizedunsynchronizedunsynchronizedunsynchronized (nonnonnonnon---- atomicatomicatomicatomic)

� Some of the increments are lost

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.24

CONCURRENCY - 5

TCSS 422 A – Winter 2017
Institute of Technology

1/5/2017

L1.5Slides by Wes J. Lloyd

� DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

� Stores data while power is present

� When power is lost, data is lost (volatile)

� Operating System helps “persist” data more permanently

� I/O device(s): hard disk drive (HDD), solid state drive (SSD)

� File system(s): “catalog” data for storage and retrieval

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.25

PERSISTENCE

� open(), write(), close(): OS system calls for device I/O

� Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 wri te”, “man close”

TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.26

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > - 1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

� To write to disk, OS must:

� Determine where on disk data should reside

� Perform sys calls to perform I/O:

� Read/write file system

� Read/write file

� Provide fault tolerance for system crashes

� Journaling: Record disk operations in a journal for replay

� Copy-on-write: see ZFS

� Carefully order writes on disk

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.27

PERSISTENCE - 3

� AbstractingAbstractingAbstractingAbstracting the hardware

� Makes programming code easier to write

� Automate sharing resources – save programmer burden

� Provide high per formanceperformanceperformanceperformance

� Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/O)

� Share resources fairly

� Attempt to tradeoff performance vs. fairness � consider
priority

� Provide isolation isolation isolation isolation

� User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.28

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

� ReliabilityReliabilityReliabilityReliability

� OS must not crash, 24/7 Up-time

� Poor user programs must not bring down the system:

Blue Screen

� Other Issues

� Energy-efficiency

� Security (of data)

� Cloud: Virtual Machines

January 4, 2017
TCSS422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma
L1.29

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2 QUESTIONSQUESTIONSQUESTIONSQUESTIONS

