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Translation Lookaside
Buffer (TLB)

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch
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OBJECTIVES

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory
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TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 accesses
for 5 for-loop 
iterations

 Move lookups
from RAM to TLB
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TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches
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 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory
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TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we access the page table to populate the
TLB… we then requery the TLB

 All address translations go through the TLB
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TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits  (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers
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TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 
in the TLB?
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3
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 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality
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TLB EXAMPLE - 4

 Page size

 Larger page sizes increase the probability of a TLB hit

 Example: 16-bytes (very small), 4096-bytes (common)

 Larger sizes increase memory requirement of offset 
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TLB TRADEOFFS

 Spatial locality

 Accessing addresses local to each other improves the hit 
rate.

 Consider random vs. sequential array access

 What happens when the data size exceeds the TLB size?
 E.g. 1st level TLB caches 64 4KB page addresses

 Single program can cache data lookups for 256 KB
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TLB TRADEOFFS - 2

 Temporal locality

 Higher cache hit ratios are expected for repeated memory 
accesses close in time 

 Can dramatically improve performance for “second 
iteration”
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TLB TRADEOFFS - 3

 Example: Consider an array of a custom struct where each 
struct is 64-bytes.   Consider sequential access for an 
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits  (98.4% hit 
ratio)
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EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi  level TLBs
 First level TLB: 

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag 

for larger page sizes 

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…
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TLB EXAMPLE IMPLEMENTATIONS
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 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory
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HW CACHE TRADEOFF

Speed Size

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions 
and handling of TLB misses

HW has a page table register to store location of 
page table
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HANDLING TLB MISS

 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception 

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can 
use different data structures, etc.
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HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the 
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.22

TLB CONTENTS

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB f lush
 Flush TLB on context switches, set all entries to 0 

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process 
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TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist 
during context switches – also can support virtual machines

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.24

TLB: CONTEXT SWITCH - 2



TCSS 422: Operating Systems [Winter 2017]  
Institute of Technology, UW-Tacoma

2/27/2017

Slides by Wes J. Lloyd L15.5

When processes share a code page 

Shared libraries ok

Code pages typically are RX,
not RWX
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SHARED MEMORY SPACE

Sharing of pages is 
useful as it reduces the 

number of physical 
pages in use.

When TLB cache is full, how add a new address 
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB
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CACHE REPLACEMENT POLICIES

 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement
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LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

 Early 64-bit RISC processor
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EXAMPLE TLB ENTRY – MIPS R4000

QUESTIONS
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