
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/27/2017

Slides by Wes J. Lloyd L15.1

Translation Lookaside
Buffer (TLB)

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.2

OBJECTIVES

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

virtual  physical memory

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.3

TRANSLATION LOOKASIDE BUFFER

 Goal:
Reduce access
to the page
tables

 Example:
50 accesses
for 5 for-loop
iterations

 Move lookups
from RAM to TLB

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.4

TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.5

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.6

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/27/2017

Slides by Wes J. Lloyd L15.2

 For: array based page table

 Hardware managed TLB

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.7

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.8

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we access the page table to populate the
TLB… we then requery the TLB

 All address translations go through the TLB

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.9

TLB – ADDRESS TRANSLATION CACHE

 Example:

 Program address space: 256-byte
 Addressable using 8 total bits (28)

 4 bits for the VPN (16 total pages)

 Page size: 16 bytes
 Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.10

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not
in the TLB?

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.11

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.12

TLB EXAMPLE - 3

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/27/2017

Slides by Wes J. Lloyd L15.3

 What factors affect the hit/miss rate?

 Page size

 Data locality

 Temporal locality

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.13

TLB EXAMPLE - 4

 Page size

 Larger page sizes increase the probability of a TLB hit

 Example: 16-bytes (very small), 4096-bytes (common)

 Larger sizes increase memory requirement of offset

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.14

TLB TRADEOFFS

 Spatial locality

 Accessing addresses local to each other improves the hit
rate.

 Consider random vs. sequential array access

 What happens when the data size exceeds the TLB size?
 E.g. 1st level TLB caches 64 4KB page addresses

 Single program can cache data lookups for 256 KB

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.15

TLB TRADEOFFS - 2

 Temporal locality

 Higher cache hit ratios are expected for repeated memory
accesses close in time

 Can dramatically improve performance for “second
iteration”

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.16

TLB TRADEOFFS - 3

 Example: Consider an array of a custom struct where each
struct is 64-bytes. Consider sequential access for an
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits (98.4% hit
ratio)

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.17

EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi level TLBs
 First level TLB:

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag

for larger page sizes

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.18

TLB EXAMPLE IMPLEMENTATIONS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/27/2017

Slides by Wes J. Lloyd L15.4

 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.19

HW CACHE TRADEOFF

Speed Size

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions
and handling of TLB misses

HW has a page table register to store location of
page table

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.20

HANDLING TLB MISS

 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can
use different data structures, etc.

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.21

HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.22

TLB CONTENTS

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB f lush
 Flush TLB on context switches, set all entries to 0

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.23

TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist
during context switches – also can support virtual machines

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.24

TLB: CONTEXT SWITCH - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/27/2017

Slides by Wes J. Lloyd L15.5

When processes share a code page

Shared libraries ok

Code pages typically are RX,
not RWX

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.25

SHARED MEMORY SPACE

Sharing of pages is
useful as it reduces the

number of physical
pages in use.

When TLB cache is full, how add a new address
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.26

CACHE REPLACEMENT POLICIES

 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.27

LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

 Early 64-bit RISC processor

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.28

EXAMPLE TLB ENTRY – MIPS R4000

QUESTIONS

February 27, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L15.29

