
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.1

Address Spaces
and the Memory API

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 C Help: Viveret, Ian - recommended mentors

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.2

UPDATES

 Program 1:
 To create a tar gzip archive:

 From your source directory with mash.c

cd ..

tar czf mash.tar.gz mash

 Creates a tar archive file which is automatically gzipped

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.3

UPDATES

 Programs:
 Please start early

 Work as if though the deadline is 2 days earlier

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.4

UPDATES

From Virginia Tech Department of Computer Science - 2011

Better than 50%
chance of A/B

Less than 50%
chance of A/B

 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.5

OBJECTIVES

 What is memory vir tualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.6

MEMORY VIRTUALIZATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.2

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.7

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.8

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.9

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system utilization and efficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.10

MULTIPROGRAMMING
WITH SHARED MEMORY

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.11

ADDRESS SPACE

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.12

ADDRESS SPACE - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.3

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.13

ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.14

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.15

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.16

GOALS OF
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluation memory
virtualization schemes

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.17

GOALS - 2

CHAPTER 14: THE
MEMORY API

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L12.18

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.4

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.19

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.20

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.21

FREE()

 Pointer is a local variable on the stack

 Malloc returns space on the heap

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.22

VIRTUAL ADDRESS SPACE

 Releases heap space pointed to
by the pointer on the stack

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.23

VIRTUAL ADDRESS SPACE - 2

 Forgetting to malloc memory

Unterminated string

Uninitialized memory

Memory leak

Dangling pointer

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.24

COMMON MEMORY ERRORS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.5

 C is not Java

 When forgetting to maloc:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.25

FORGETTING TO MALLOC

char *src = “hello”; //character string constant
char *dst; //unallocated
strcpy(dst, src); //segfault and die

dst has not been initialized.
It has no place to store anything

Segmentation fault (core dumped)

 Why do we malloc length + 1 ?

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.26

CORRECTION

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.27

UNTERMINATED STRING

Malloc too little memory

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.28

FORGETTING TO INITIALIZE

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.29

MEMORY LEAK

Program runs out of memory
and eventually dies…

30

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.6

31

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.32

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.33

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.34

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.35

REALLOC()

 Can’t deallocate twice

 Second call core dumps

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.36

DOUBLE FREE

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.7

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.37

SYSTEM CALLS

CHAPTER 15: ADDRESS
TRANSLATION

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L12.38

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.39

OBJECTIVES

 Using hardware support provide virtualization that is:

 Efficient

 Flexible

 Secure and isolated

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.40

MEMORY VIRTUALIZATION

 For each and every memory reference…
address translation is performed

 Hardware transforms
 Virtual address  physical address

 OS tracks which memory locations are free / in-use

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.41

HARDWARE BASED
ADDRESS TRANSLATION

 Load value from memory

 Increment by three

 Store value back in memory

 In assembly…

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.42

EXAMPLE: ADDRESS TRANSLATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.8

 Load value at address into register (eax)

 Add (3) to eax register

 Store the value of eax back into memory

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.43

EXAMPLE: ADDRESS TRANSLATION - 2

 Fetch instruction at address 128

 Execute this instruction (load from address 15KB)

 Fetch instruction at address 132

 Execute this instruction (no memory reference)

 Fetch the instruction at address 135

 Execute this instruction (store to address 15 KB)

 Program’s perspective:
 Address space starts at 0

 Machine’s perspective:
 Program is located somewhere, not at 0

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.44

EXAMPLE: ADDRESS TRANSLATION - 3

Int x

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.45

PLACEMENT IN PHYSICAL RAM

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.46

BASE AND BOUNDS

0 ≤ ݏݏ݁ݎ݀݀ܽ ݈ܽݑݐݎ݅ݒ < ݏ݀݊ݑ݋ܾ

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.47

INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.48

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.9

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.49

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.50

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.51

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.52

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.53

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.54

DYNAMIC RELOCATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.10

CHAPTER 16:
SEGMENTATION

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L15.55

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.56

BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment
(registers)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.57

MULTIPLE SEGMENTS

 Consider 3 segments:

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.58

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.59

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap start)

 Physical address = 104 + 34816 (offset + heap base)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.60

ADDRESS TRANSLATION: HEAP

࢙࢙ࢋ࢘ࢊࢊࢇ ࢒ࢇ࢛࢚࢘࢏ࢂ + ࢋ࢙ࢇ࢈ is not the correct physical address.

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.11

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.61

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.62

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.63

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.64

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.65

SHARED CODE SEGMENTS

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.66

SEGMENTATION GRANULARITY

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.12

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.67

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.68

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.69

COMPACTION QUESTIONS

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L12.70

