
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.1

Address Spaces
and the Memory API

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 C Help: Viveret, Ian - recommended mentors

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.2

UPDATES

 Program 1:
 To create a tar gzip archive:

 From your source directory with mash.c

cd ..

tar czf mash.tar.gz mash

 Creates a tar archive file which is automatically gzipped

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.3

UPDATES

 Programs:
 Please start early

 Work as if though the deadline is 2 days earlier

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.4

UPDATES

From Virginia Tech Department of Computer Science - 2011

Better than 50%
chance of A/B

Less than 50%
chance of A/B

 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.5

OBJECTIVES

 What is memory vir tualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.6

MEMORY VIRTUALIZATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.2

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.7

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.8

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.9

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system utilization and efficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.10

MULTIPROGRAMMING
WITH SHARED MEMORY

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.11

ADDRESS SPACE

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.12

ADDRESS SPACE - 2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.3

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.13

ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.14

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.15

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.16

GOALS OF
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluation memory
virtualization schemes

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.17

GOALS - 2

CHAPTER 14: THE
MEMORY API

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L12.18

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.4

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.19

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.20

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.21

FREE()

 Pointer is a local variable on the stack

 Malloc returns space on the heap

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.22

VIRTUAL ADDRESS SPACE

 Releases heap space pointed to
by the pointer on the stack

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.23

VIRTUAL ADDRESS SPACE - 2

 Forgetting to malloc memory

Unterminated string

Uninitialized memory

Memory leak

Dangling pointer

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.24

COMMON MEMORY ERRORS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.5

 C is not Java

 When forgetting to maloc:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.25

FORGETTING TO MALLOC

char *src = “hello”; //character string constant
char *dst; //unallocated
strcpy(dst, src); //segfault and die

dst has not been initialized.
It has no place to store anything

Segmentation fault (core dumped)

 Why do we malloc length + 1 ?

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.26

CORRECTION

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.27

UNTERMINATED STRING

Malloc too little memory

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.28

FORGETTING TO INITIALIZE

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.29

MEMORY LEAK

Program runs out of memory
and eventually dies…

30

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.6

31

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.32

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.33

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.34

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.35

REALLOC()

 Can’t deallocate twice

 Second call core dumps

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.36

DOUBLE FREE

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.7

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L12.37

SYSTEM CALLS

CHAPTER 15: ADDRESS
TRANSLATION

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L12.38

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.39

OBJECTIVES

 Using hardware support provide virtualization that is:

 Efficient

 Flexible

 Secure and isolated

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.40

MEMORY VIRTUALIZATION

 For each and every memory reference…
address translation is performed

 Hardware transforms
 Virtual address physical address

 OS tracks which memory locations are free / in-use

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.41

HARDWARE BASED
ADDRESS TRANSLATION

 Load value from memory

 Increment by three

 Store value back in memory

 In assembly…

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.42

EXAMPLE: ADDRESS TRANSLATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.8

 Load value at address into register (eax)

 Add (3) to eax register

 Store the value of eax back into memory

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.43

EXAMPLE: ADDRESS TRANSLATION - 2

 Fetch instruction at address 128

 Execute this instruction (load from address 15KB)

 Fetch instruction at address 132

 Execute this instruction (no memory reference)

 Fetch the instruction at address 135

 Execute this instruction (store to address 15 KB)

 Program’s perspective:
 Address space starts at 0

 Machine’s perspective:
 Program is located somewhere, not at 0

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.44

EXAMPLE: ADDRESS TRANSLATION - 3

Int x

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.45

PLACEMENT IN PHYSICAL RAM

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.46

BASE AND BOUNDS

0 ≤ ݏݏ݁ݎ݀݀ܽ ݈ܽݑݐݎ݅ݒ < ݏ݀݊ݑܾ

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.47

INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.48

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.9

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.49

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.50

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.51

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.52

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.53

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L14.54

DYNAMIC RELOCATION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.10

CHAPTER 16:
SEGMENTATION

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L15.55

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.56

BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment
(registers)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.57

MULTIPLE SEGMENTS

 Consider 3 segments:

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.58

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.59

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap start)

 Physical address = 104 + 34816 (offset + heap base)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.60

ADDRESS TRANSLATION: HEAP

࢙࢙ࢋ࢘ࢊࢊࢇ ࢇ࢛࢚࢘ࢂ + ࢋ࢙ࢇ࢈ is not the correct physical address.

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.11

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.61

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.62

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01 heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.63

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.64

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.65

SHARED CODE SEGMENTS

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.66

SEGMENTATION GRANULARITY

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

11/8/2016

Slides by Wes J. Lloyd L12.12

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.67

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.68

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

February 22, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L15.69

COMPACTION QUESTIONS

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L12.70

