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 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention 
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OBJECTIVES

 “Learning from Mistakes – A Comprehensive Study on 
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and 
Operating Systems (ASPLOS 2008), Seattle WA
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CONCURRENCY BUGS IN 
OPEN SOURCE SOFTWARE

Majority of concurrency bugs

Most common:

Atomicity violation

Order violation
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NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate 
threads is not enforced  (e.g. non-atomic)

 Simple example:
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ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically… 

 Add locks for all uses of: thd->proc_info
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ATOMICITY VIOLATION - SOLUTION
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Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?
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ORDER VIOLATION BUGS

 Use condition variable to enforce order
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ORDER VIOLATION - SOLUTION
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ORDER VIOLATION – SOLUTION 2

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these 
bugs in code

Desire for automated tool support (IDE)
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NON-DEADLOCK BUGS - 1

Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized uses be legal?  

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order
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NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless 
one manages to acquire both locks
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DEADLOCK BUGS
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 Complex code
 Must avoid circular dependencies

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time 
deadlock could result
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REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition 
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 
program
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PREVENTION – CIRCULAR WAIT

 Acquire all locks atomically

 Use a “lock” “lock”

 Effective solution – guarantees no race conditions while 
acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…
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PREVENTION – HOLD AND WAIT

When acquiring locks, don’t BLOCK forever if 
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks
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PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

Add random delay

Allows one thread to win 
livelock race!
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NO PREEMPTION - LIVELOCKS
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 Build wait-free data structures

 Eliminate locks altogether 

 Build structures using CompareAndSwap atomic CPU (HW) 
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically
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PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until 
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)
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PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion
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MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation
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MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n  (new node ptr)

Only when head = n->next
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MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario: 

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:
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DEADLOCK AVOIDANCE 
VIA INTELLIGENT SCHEDULING
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Scheduler produces schedule:

No deadlock can occur

Consider:
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INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not task risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 
difficulty having intimate lock knowledge about every 
thread
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INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some 
action.

 Example: When OS freezes, reboot…

 How often is acceptable?

 Many database systems employ deadlock detection and 
recovery technique.
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DETECT AND RECOVER QUESTIONS
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