
TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/15/2017

Slides by Wes J. Lloyd L11.1

Concurrency
Problems

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Non-deadlock concurrency bugs

 Deadlock causes

 Deadlock prevention

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.2

OBJECTIVES

 “Learning from Mistakes – A Comprehensive Study on
Real World Concurrency Bug Characteristics”

 Shan Lu et al.

 Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.3

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

Majority of concurrency bugs

Most common:

Atomicity violation

Order violation

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.4

NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

 Simple example:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.5

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.6

ATOMICITY VIOLATION - SOLUTION

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/15/2017

Slides by Wes J. Lloyd L11.2

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.7

ORDER VIOLATION BUGS

 Use condition variable to enforce order

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.8

ORDER VIOLATION - SOLUTION

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.9

ORDER VIOLATION – SOLUTION 2

97% of Non-Deadlock Bugs were

Atomicity

Order violations

Consider what is involved in “spotting” these
bugs in code

Desire for automated tool support (IDE)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.10

NON-DEADLOCK BUGS - 1

Atomicity
 How can we tell if a given variable is shared?
 Can search the code for uses

 How do we know if all instances of its use are shared?
 Can some non-synchronized uses be legal?

 Before threads are created, after threads exit

 Must verify the scope

Order violation
Must consider all variable accesses

Must known desired order

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.11

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless
one manages to acquire both locks

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.12

DEADLOCK BUGS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/15/2017

Slides by Wes J. Lloyd L11.3

 Complex code
 Must avoid circular dependencies

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.13

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.14

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire
program

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.15

PREVENTION – CIRCULAR WAIT

 Acquire all locks atomically

 Use a “lock” “lock”

 Effective solution – guarantees no race conditions while
acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.16

PREVENTION – HOLD AND WAIT

When acquiring locks, don’t BLOCK forever if
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.17

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel
always fail to obtain both locks

Add random delay

Allows one thread to win
livelock race!

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.18

NO PREEMPTION - LIVELOCKS

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/15/2017

Slides by Wes J. Lloyd L11.4

 Build wait-free data structures

 Eliminate locks altogether

 Build structures using CompareAndSwap atomic CPU (HW)
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.19

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.20

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.21

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.22

MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.23

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario:

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.24

DEADLOCK AVOIDANCE
VIA INTELLIGENT SCHEDULING

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

2/15/2017

Slides by Wes J. Lloyd L11.5

Scheduler produces schedule:

No deadlock can occur

Consider:

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.25

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not task risks

 Slows down execution – many threads

 There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.26

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some
action.

 Example: When OS freezes, reboot…

 How often is acceptable?

 Many database systems employ deadlock detection and
recovery technique.

February 15, 2017 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

L11.27

DETECT AND RECOVER QUESTIONS

October 24, 2016 TCSS422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma L10.28

