TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

02/08/2017

TCSS 422: OPERATING SYSTEMS

Semaphores

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

OBJECTIVES

= Semaphores - API

= Uses

= Reader/Writer Locks

= Dining Philosophers

TCS5422: Operating Systems [Winter 2017

Institute of Technology, University of Washington - Tacoma Loz

February 8, 2017

ANOTHER APPROACH TO CONCURRENCY

= We've looked at Locks (ch. 28) and CondlItlons (ch. 30) to
provide atomicity in critical sections for concurrency

= Now we’ll look at “semaphores”

= Provide same functionality

= With different “packaging”

THE SEMAPHORE

=Semaphores (struct in Linux):

= Contains:

= Lock
= Integer: (essentially a counter)
= List: (thread wait list)

TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma o3

February 8, 2017

TCS5422: Operating Systems [Winter 2017]
Institute of Technology, University of Washington - Tacoma

February 8, 2017 L0a

SEMAPHORE API

= sem_init():

1 #include <semaphore.h>
2 sem t s;
3 sem_init(&s, 0, 1); initialize s to the value 1

= |nitializes new semaphore:

= First param- address of a semaphore
Second param: O- single process, 1- multiprocess
“1” can be used with fork() to synchronize processes
Third param: initial value of counter

SEMAPHORE API - 2

= sem_wait():
= Decrements the value of the semaphore counter,
and returns

= Adds thread to wait queue if counter <= 0
and blocks it

int sem wait(sem_t *s) (
decrement the value of semaphore s by one

1
2
3 wait if value of semaphore s is negative
4

}

=The negative value corresponds to the number of queued,
waiting threads

TCS5422: Operating Systems [Winter 2017) | os

February 8, 2017 Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

February 8, 2017 1106

Slides by Wes J. Lloyd

L10.1

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

SEMAPHORE API - 3

= sem_post():
= Increments the semaphore counter by 1.

= Awakens a thread on the wait queue (if any)
(when counter < 0)

1 int sem post(sem_t *s) {

2 increment the value of semaphore s by one

3 if there are one or more threads waiting, wake one
4

TCS5422: Operating Systems [Winter 2017)

February 8, 2017 Institute of Technology, University of Washington - Tacoma

El

02/08/2017

SEMAPHORE AS A LOCK

= What should the value of X be below?
= Consider two threads entering this code,
one immediately after the other
=What should the first thread do?
=The second thread do?

sem_t m;

sem_init(&m, 0, X); // initialize semaphore to X
sem_wait(&m); // similar to Tock

// critical section goes here

sem_post(&m) ; // similar to unlock

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

[o

TWO THREADS AND A SEMAPHORE

Value | Thread 0 State Thread 1 State
1 Running Read
- Semaphore 1 call sem wait() Runmnz Read;
as a lock: » 0 | semwait() recruns Running Ready
o (crit set: begin) Running Ready
0 Interrupt; Switch - T1 Ready Running
o Ready | call semvaic() Running
- Ready | decrement sem Raneing
-1 Running Switch - TO sleeping
-1 | (crit sect: end) Running sleeping
-1 | call sem_post() Running sleeping
» o | incremnt sem Runring deeping
0 wake (T1) Running Ready
0 sturns Running Ready
o Interrupt; Switch — T1 Ready Running
o Ready | sem_wait() retruns Running
0 Ready | call sempost0) Runving
1 Ready | sem post() retums Running

TCS5422: Operating Systems [Winter 2017]

Febtary 82017 Institute of Technology, University of Washington - Tacoma

SEMAPHORE AS A CONDITION VARIABLE

=Semaphores can be thought of as “mutants”
=They can be used as locks, or condition variables

= Consider an example

TCS5422: Operating Systems [Winter 2017]

EbienvE 01 Institute of Technology, University of Washington - Tacoma

L1010

= What should be the value of X ?

sem t s;
void *

1
2
3
4 child(void *arg) {
5
6
7
8

printf("child\n");
» sem_post(&s); // signal here:
eturn NULL

10 int

11 ain (int arge, char *argv([])

12 ‘ sem_init(ss, 0, X);i //
printf("parent: begin\n");

14 pthread t c;
15 I pthread create(c, NULL, child, NULL);

sem_wait (&s);

ait here for
printf("parent: end\n");

SEMAPHORE AS A CONDITION VARIABLE -2

18 return 07
19)
TCS5422: Operating Systems [Winter 2017]
February$§, 2017 Institute of Technology, University of Washington - Tacoma Lo

ORDERING OF EXECUTION - 1 OF 2

= Parent calls sem_wait() before child calls sem_post()

Value | Parent State Child State
0 Create (Child) Running | (Child exists; is runnable) Ready
0 |call sem wait() Running Ready
-1 decrement sem Running Ready
-1 (sem < 0)—sleep sleeping Ready
-1 | switch.child sleeping | child runs Running
-1 sleeping | call sem_post () Running
[sleeping increment sem Running
0 Ready wake (Parent) Running
0 Ready | sem post() returns Running
0 Ready | Interrupt; Switch-Parent Ready
0 |sem wait() retruns Running Ready

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11012

Slides by Wes J. Lloyd

L10.2

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

ORDERING OF EXECUTION - 2 OF 2

= Child runs, calls sem_post() before parent calls sem_wait()

Value | Parent State Child State
0 Create (Child) Running | (Child exists; is runnable) Ready
0 | Interrupt; switch-child Ready | child runs Running
0 Ready | call sem post() Running
1 Ready increment sem Running
1 Ready wake (nobody) Running
1 Ready | sem post() returns Running
1 parent runs Running | Interrupt; Switch-Parent Ready
1 call sem_wait() Running Ready
0 | decrement sem Running Ready
0 (sem<0) —awake Running Ready
0 |sem wait() retruns Running Ready

02/08/2017

TCS5422: Operating Systems [Winter 2017)

February 8, 2017 Institute of Technology, University of Washington - Tacoma

[o

PRODUCER/CONSUMER W/ SEMAPHORES

= Producer: put()
= Consumer: get()
= With MAX=1, 1 consumer thread, 1 producer thread:

1 int buffer([MAX];

2 int £ill = 0;

3 int use =

4

5 void put(int value) {

6 buffer[fill] = value;

7 fill = (£fill + 1) % MAX;
8

9

10 int get() (

11 int tmp = buffer[use]; / lin
12 use = (use + 1) % MAX;
13 return tmp;

14}

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11014

PRODUCER/CONSUMER W/ SEMAPHORES - 2

1 sem_t empty;

2 sem_t full;

3

4 void *producer(void *arg) (

5 i;

6 for (i = 0; i< loops; i++) {
7 sem_wait (sempty) ;
8 put(i);

9 sem_post (&full) ;
10)

11}

12

13 void *consumer (v *arg) {
14 it i, tmg

15 while (tmp != -1)

16 sem wait (&full);
17 tmp = get ();

18 sem_post (sempty) ;
19 printf("sd\n", tmp);
20)

21}

22

TCS5422: Operating Systems [Winter 2017]

Febtary 82017 Institute of Technology, University of Washington - Tacoma

PRODUCER/CONSUMER W/ SEMAPHORES - 3

21 int main(int arge, char rargv(l) (

22 17

23 sem_init (sempty, 0, MAX); i
24 sem_init (sfull, 0, 0);

25 s

26)

= This code is sufficient for any size buffer with
1 producer, 1 consumer

= Try it out

= But what happens if we add multiple producers and
consumers?

= Try it out

= Must consider critical sections

TCS5422: Operating Systems [Winter 2017]

EbienvE 01 Institute of Technology, University of Washington - Tacoma

L1016

MUTUAL EXCLUSION

= Which part of the code is the critical section?

MULTI THREAD P/C SEMAPHORES W/

1 sem t empty:

2 sem_t full;

3 sem t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {
8 sem_wait (smutex) ;
9 sem_wait (sempty) ;
10 put(i);

11 sem_post (sfull) ;
12 sem_post (smutex) ;
13)

14}

15

(Cont.)

TCS5422: Operating Systems [Winter 2017)

February 8, 2017 Institute of Technology, University of Washington - Tacoma

=

MULTI THREAD P/C SEMAPHORES W/

MUTUAL EXCLUSION - 2

(cont.)

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {
19 sem_wait (smutex);

20 sem_wait(&full);

21 int tmp = get();

22 sem_post (sempty) ;

23 sem_post (smutex) ;

24 printf("sd\n", tmp);
25)

26}

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11018

Slides by Wes J. Lloyd

L10.3

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

EXECUTION FLOW

= With one producer, one consumer
=Consumer acquires mutex (the lock)
=Consumer calls sem_wait() to wait for data

=No data available, consumer blocks are yields the
CPU

Still has mutex (the lock)
=Producer tries to acquire mutex (the lock)
=Producer becomes stuck in deadlock

Consumer is waiting for data, and will never
release the mutex

02/08/2017

TCS5422: Operating Systems [Winter 2017)

February 8, 2017 Institute of Technology, University of Washington - Tacoma

[o

MULTITHREAD P/C W/ SEMAPHORES

= Lock should only protect put(), get()

1 sem t empty;

2 sem t full;

3 sem_t mutex;

4

5 *producer (void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) (

8 sem_wait (sempty) ; e

9 sem_wait (&mutex); // line pl.5 (MOVED MUTEX HERE..)
10 put (i) ; e p2

11 sem_post (smutex) ; // line p2.5 (.. AND HERE)
12 sem_post (&full) ; / line p3

13)

14}

15

(cont.)

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11020

MULTITHREAD P/C W/ SEMAPHORES - 2

= Try it out...
(Cont.)
16 void *consumer(void *arg) (
17 int i;
18 for (i = 0; i< loops; i++) {
19 sem_wait (sfull) ; / ne
20 sem_wait (smutex); // line c1.5 (MOVED MUTEX HERE.)
21 int tmp = get ()7 / line c
22 sem_post (smutex) ; // line c2.5 (. AND HERE)
23 sem_post (sempty) ; / line c3
24 printf (“8d\n”, tmp);
25)
26)
27
28 int main(int arge, char *argv(l) {
29 /)
30 sem_init (sempty, 0, MAX); it
31 sem_init(&full, 0, 0);
32 sem_init (emutex, 0, 1);
33 7
34)
February 8, 2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma | ozt

CONCURRENT DATA STRUC

= Concurrent data structures ideally will:
= Ensure atomicity of writes
= Enable multiple synchronous reads
As long as elements being read are not concurrently changed

= Concurrent linked list, use a Reader-Writer Lock
= Insert
Has traditional critical section which must not be multiply entered
= Read
Should support concurrent reads if not being changed
Semaphores: good for tracking concurrent reads

February 8, 2017 TCS5422: Operating Systems [Winter 2017]

Institute of Technology, University of Washington - Tacoma 22

CONCURRENT LIST WITH SEMAPHORES

= Multiple readers can acquire a lock
= Writer must wait until all readers finish

1 typedef struct _rwlock_t {

2 sem t lock;

3 sem_t writelock;

4 nt readers; n
5) rwlock_t;

6

7 rwlock_init (rwlock t *rw) {

8 ru->readers = 0;

9 sem_init (srw->lock, 0, 1);

10 sem_init (srw->writelock, 0, 1);

1)

12

13 void rwlock_acquire_readlock (rwlock_t *rw) {
14 sem_wait (&rw->Lock) ;

15

February 8, 2017 TCSS422: Operating Systems [Winter 2017)

Institute of Technology, University of Washington - Tacoma | 1oz

CONCURRENT LIST WITH SEMAPHORES - 2

15 rw->readers++;

16 if (rw->readers == 1)

17 sem_wait (srw->writelock); // first reader acquires writelock
18 sem_post (srw->lock) 7

19)

20

void rwlock_release_readlock(rwlock_t *rw) {
22 sem_wait (&rw->lock) ;

23 rw->readers--;

24 if (rw->readers == 0)

25 sem_post (srw->writelock); /

26 sem_post (&rw->1ock) 7

27)

28

29 void rwlock acquire writelock(rwlock t *rw) {
30 sem_wait (srw->writelock);

31)

32

33 void rwlock release writelock(rwlock t *rw) {
34 sem_post (srw->writelock) ;

35)

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11024

Slides by Wes J. Lloyd

L10.4

TCSS 422: Operating Systems [Winter 2017] 02/08/2017
Institute of Technology, UW-Tacoma

READER-WRITER LOCK DINING PHILOSOPHERS PROBLEM
= Fairness problem = Classic computer science problem
= With many readers, it becomes difficult for a writer to = Possible job interview question

obtain the lock

=One improvement is to prevent more readers from reading

= Philosopher’s
once a writer is waiting for the lock

1. Think
= How could we Implement thils Improvement? 2. Pick up forks (wait if not available)
3. Eat

4. Put down forks

TCS5422: Operating Systems [Winter 2017)

TCS5422: Operating Systems [Winter 2017
Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma

February 8, 2017 | L1025

February 8, 2017 1026

DINING PHILOSOPHERS - 2 DINING PHILOSOPHERS - 3

= P- Philosopher = Philosophers:
= f- fork (eating utensil) EE.
getfoxk's()?

eat();

" Key challenges , putforks() ;
=There is no deadlock 2
) Fork helper functions
=No philosopher starves
= Concurrency is high

Forks get used as much as possible

int right(int p
Philosophers have plenty of eating } o T

opportunitles . . = Fork on left: left(P1) = f1 ‘ .
Fork on right: right(P1) = f2

TC55422: Operating Systems [Winter 2017]
Febtary 82017 Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017]
EbienvE 01 Institute of Technology, University of Washington - Tacoma

DINING PHILOSOPHERS - 4

DINING PHILOSOPHERS - 5

(S5
think() ;
getforks();
eat();

= If we just protect the forks with semaphores: = Complete the table atforks():
void getforks() {
sem_wait(forks[left(p)1); Phllosopher RIGHT
sem_wait(forks[right(p)1);
¥ PO
void putforks({
sem_post(forks[left(p)]) P1
]

D;
sem_post(forks[right(p)1);

void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

}

void putforks() {
sem_post(forks[left(p)]);
sem_post(forks[right(p)1);

P3

P4

}
= Try this: 52 ‘

TCS5422: Operating Systems [Winter 2017)

February 8, 2017 Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

[o

Slides by Wes J. Lloyd L10.5

TCSS 422: Operating Systems [Winter 2017]
Institute of Technology, UW-Tacoma

DINING PHILOSOPHERS - 5

void getforks() {

= DEADLOCK: All Philosophers Starve!

Philasopher “ RIGHT

void putforks() {

sem_wait(forks[left(p)1);
sem_wait(forks[right(p)1);

sem_post(forks[left(p)]);
sem_post(forks[right(p)1);

PO acquires fO waits for f1
P1 acquires f1 waits for f2
P2 acquires f2 waits for f3
P3 acquires f3 waits for f4
P4 acquires f4

February 8, 2017 O]

02/08/2017

ALTERNATE PHILOSOPHER

= We need another approach to acquiring forks
= Consider which fork philosophers grab first
= What if we have a alternate-handed philosopher?

void getforks() {
if (p==4) {
sem_wait(forks[right(p)1);
sem_wait(forks[Teft(p)1);

} else {
sem_wait(forks[Teft(p)]);

sem_wait(forks[right(1);

Pete 2]

}

}

= Solv he Dining Phil her's problem !!!
= Remember that one philosopher grabs a different fork

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11032

void getforks() {
1 4)

= P3 eats! Solves deadlock

Philosopher “ RIGHT

} else {

}

ALTERNATE PHILOSOPHER - 2

]
sem_wait(forks[right(p)1);
sem_wait(forks[left(p)1);

sem_wait(forks[left(p)]);
sem_wait(forks[right(p)1);

PO acquires f0 waits for f1 .
P
P1 acquires f1 waits for f2
P2 acquires f2 waits for f3
P3 acquires f3 acquires 4,
eats...
P4 Waits for fO

1]
C ol]

TCS5422: Operating Systems [Winter 2017]

Febtary 82017 Institute of Technology, University of Washington - Tacoma

SEMAPHORE IMPLEMENTATION

= Semaphores can be built using locks and conditions
= pthread_mutex_t
= pthread_cond_t

= Linux implementation
= Does not track negative counter values

= Easier to implement

= Zemaphore

TCS5422: Operating Systems [Winter 2017]

EbienvE 01 Institute of Technology, University of Washington - Tacoma

11034

1

2

3 pthread _cond_t cond;

4 pthread_mutex_t lock;

5) zemt N N

6

7 e

8 void zem_init(zem_t value) {
9 s->value = valu

10 Cond_init (ss->cond) ;

1 Mutex_init (ss->1ock) ;

12)

13

14 void Zem wait(zem t *s) (

15 Mutex_lock (s5->10ck) 7

16 while (s->value <= 0)

17 Cond_vait (ss->cond, &s->lock) ;
18 s->value-~;

19 Mutex_unlock (ss->1lock) ;

Zem_post (zem_t *s) (

23 utex_lock (ss->1ock) ;
24 s->value++;

25 Cond_signal (ss->cond) ;
26 utex_unlock (gs->lock) ;

27

SEMAPHORE IMPLEMENTATION - 2

TCS5422: Operating Systems [Winter 2017)

February 8, 2017 Institute of Technology, University of Washington - Tacoma

[s

SEMAPHORES SUMMARY

= Provide one construct for both concurrency features
= Binary semaphore: provides basic mutex lock
Ensures mutual exclusion in critical sections
= Condition semaphore: Synchronize one or more threads
which need to wait for something to happen
= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

= After seeing Locks, Conditions, and Semaphores,
Which do you like better?

TCS5422: Operating Systems [Winter 2017

February 8, 2017 Institute of Technology, University of Washington - Tacoma

11036

Slides by Wes J. Lloyd

L10.6

TCSS 422: Operating Systems [Winter 2017] 02/08/2017
Institute of Technology, UW-Tacoma

QUESTIONS

TCS$422: Operat

RETTCHESL Institute of Techn

Slides by Wes J. Lloyd L10.7

