
Page 1 of 4 

 

TCSS 422: Operating Systems        Institute of Technology 

Winter 2017               University of Washington – Tacoma 

http://faculty.washington.edu/wlloyd/courses/tcss422         Instructor: Wes Lloyd 

 

 

Assignment 2 
Process Reporter - Linux Kernel Module 

 

Due Date: Wednesday February 22
nd

, 2017 @ 11:59 pm 

 

Objective  
The purpose of this assignment is to create a Linux Kernel Module that generates a report describing the 

running processes on a Linux system.  This module will traverse the list of running processes, and 

introspect information about them.  A sample kernel module has been provided on the course web page 

to assist with getting started. 
 

Key objectives of the assignment include working with the Linux Kernel linked list functions to: (1) 

iterate through the master process list, and (2) drill down into a process’s list of child processes.  In 

addition to working with the Linux kernel process list, a secondary objective of this assignment is to 

generate and provide report output to the console.  Linux kernel modules and kernel routines often 

provide a “file” based interface to interact with users.  A number of proc interfaces are found under the 

“/proc”.  These /proc interfaces are dynamically generated files produced by kernel code.  They can be 

generated by native kernel code or by kernel modules.  As of Linux kernel version 3.10 the kernel API to 

support creation of a proc file has changed.  The default Centos 7 Linux kernel version is >=3.10.x. 
 

It may be easier to divide and conquer the objectives.  Tackling generation of the report independently 

(and probably before) the output part requirements of the module may be easier.  Most of the credit for 

the assignment (75%) is weighted on setting up and producing the report, not the /proc output. 
 

To support development of the report, write a function (or set of functions) to generate the report.  

Report generation and process list computation cannot occur in the /proc output routines.  In 

following with good design and coding practices the report and output routines should be decoupled.  

To support development, debuggers can be used, or information can be written to the 

/var/log/messages file on CentOS. 
 

This file can be traced in a separate terminal window using the command: 
 

sudo tail –fn 50 /var/log/messages 
 

In the kernel module here are some example print statements: 
  
printk(KERN_INFO “My string=%s\n”,text); 

printk(KERN_INFO “My index=%d\n”,idx); 

printk(KERN_INFO “My pointer=%lu\n”, (unsigned long) myptr); 
 

The sample kernel module is here: 

http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/hello_module.tar.gz 
 

To extract the sample kernel module:  
tar xzf hello_module.tar.gz 



Page 2 of 4 

 

To build the sample module: 
cd hello_module/ 

make 
 

To remove a previously installed the module: 
sudo rmmod ./helloModule.ko 
 

To install a newly built module: 
sudo insmod ./helloModule.ko 
 

This sample kernel module prints messages to the kernel logs. 

The “dmesg” command provides a command to interface with kernel log messages, but it is simple 

enough to just trace the output as described above. 
 

*** THE KERNEL MODULE SHOULD BE RENAMED TO “procReport” *** 

FAILURE TO RENAME THE MODULE WILL RESULT IN A 10 point deduction. 
 

The kernel module should produce output as below.  Output should start with a line that says “PROCESS 

REPORTER”.  Then a count of the number of unrunnable, runnable, and stopped processes should 

appear followed by one row of text for each running process.  Here is a partial output example: 
 

PROCESS REPORTER: 
Unrunnable:0 
Runnable:4 
Stopped:193 
Process ID=1 Name=systemd number_of_children=67 first_child_pid=495 first_child_name=systemd-journal 
Process ID=2 Name=kthreadd number_of_children=86 first_child_pid=3 first_child_name=ksoftirqd/0 
Process ID=3 Name=ksoftirqd/0  *No Children 
Process ID=5 Name=kworker/0:0H  *No Children 
Process ID=7 Name=migration/0  *No Children 
Process ID=8 Name=rcu_bh  *No Children 
Process ID=9 Name=rcuob/0  *No Children 
Process ID=10 Name=rcuob/1  *No Children 
Process ID=11 Name=rcuob/2  *No Children 
Process ID=12 Name=rcuob/3  *No Children 
 

Here is a verbose description of the process output row: 
 

“Process ID=” followed by the process ID (integer) of the current process during a traversal of the 

process list.  Then a space, followed by “Name=” and then the name of the process (string). 

If the process has children first display “number_of_children=” followed by the number of children 

processes started by this process (integer), followed by a space, and then “first_child_pid=” followed by 

the process ID of the first child created (integer), followed by another space, and then 

“first_child_name=” followed by the name of the child process (string). 

If the process does not have children, simply print “*No Children”. 
 

IF SOME FUNCTIONALITY IS MISSING IN YOUR KERNEL MODULE, PLEASE FOLLOW THE OUTPUT 

FORMAT AND USE PLACEHOLDERS.  For example, use a placeholder like: “number_of_children=XX” 
 

To support development of your kernel module output, it may be helpful to begin by writing code that 

produces the report, and then print this report to the system log files with printk. 

 

 

 



Page 3 of 4 

 

Here are some references describing how to create the proc file kernel module interface: 
 

http://www.crashcourse.ca/introduction-linux-kernel-programming/lesson-11-adding-proc-files-your-modules-part-1 

 

http://stackoverflow.com/questions/8516021/proc-create-example-for-kernel-module/ 
 

Kernel modules should have a name in the /proc directory. 

Please name your module: “proc_report”. 
 

***Failure to follow the naming convention will result in a loss of 10 points.*** 

 

Grading 

This assignment will be scored out of 90* points.  (90/90)=100% 

* If necessary the total points scored from may be lowered, while the total available points remains 100. 
 

Rubric: 

100 possible points: (Currently 10 extra credit points are available) 
 

Report Toal:  65 points           

5 points  Output of the PID of each running process 

10 points Reporting the total count of unrunnable, runnable, and stopped processes 

10 points Output of the program name of each running process 

10 points Output of the number of children processes started by every process 

>>> 5 points for the count,  

>>> 5 points for reporting when there are No Children 

10 points Output of the PID of the first child process for every process having children 

10 points Output of the program name of the first child for every process having children 

10 points The ability to generate and provide output of the report multiple times: 

  >>> 5 points – reloading your kernel module 

  >>> 5 points – crashing the machine 
 

Output Total: 20 points           

20 points Report output uses the Linux /proc  

  >>> 10 points  - decoupling output routines from report generation 
 

Miscellaneous: 15 points           

5 points  Kernel module builds and installs 

5 points  Coding style, formatting, and comments 

5 points  Following the Output requirements as described above (even without any output) 
 

WARNING!             

10 points Automatic deduction if your kernel module is not called “procReport” 

10 points Automatic deduction if your /proc directory entry is called something other than 

 “proc_report” 

 

What to Submit  

For this assignment, submit a tar gzip archive as a single file upload to Canvas. 
 

Tar archive files can be created by going back one directory from the kernel module code with “cd ..”, 

then issue the command “tar czf hello_module.tar.gz hello_module”.  Name the file 



Page 4 of 4 

 

the same as the directory where the kernel module was developed but with “.tar.gz” appended at the 

end: tar czf <module_dir>.tar.gz <module_dir>. 

 

When developing code from the sample, please rename the source directory to procReport. 

To rename a directory in Linux use: “mv hello_module procReport”. 

 

Pair Programming (optional) 

Optionally, this programming assignment can be completed with two person teams.   
 

If choosing to work in pairs, only one person should submit the team’s tar gzip archive to Canvas. 
 

Additionally, EACH member of a pair programming team must provide an effort report of team 

members to quantify team contributions for the overall project.  Effort reports must be submitted 

INDEPENDENTLY and in confidence (i.e. not shared) by each team member to capture each person’s 

overall view of the teamwork and outcome of the programming assignment.  Effort reports are not used 

to directly numerically weight assignment grades.   
 

Effort reports should be submitted in confidence to Canvas as a PDF file named: “effort_report.pdf”.  

Google Docs and recent versions of MS Word provide the ability to save or export a document in PDF 

format.   
 

Provide 1 (low effort) to 10 (high effort) scores for each: research, design, coding, testing 

Effort scores should add up to 10 for each category.  Even effort 50%-50% is reported as 5 and 5.  
 

Here is an effort report for a pair programming team (written from the point of view of Jane Smith): 

 

1. John Doe 

Research 2 

Design 3 

Coding 8 

Testing 3 

 

2. Jane Smith 

Research 8 

Design 7 

Coding 2 

Testing 7 
 

Team members may not share their effort reports, but should submit them independently in Canvas as 

a PDF file.   Failure of one or both members to submit the effort report will result in both members 

receiving NO GRADE on the assignment…   (considered late until both are submitted) 

 
Disclaimer regarding pair programming: 

The purpose of TCSS 422 is for everyone to gain experience programming in C while working with operating 

system and parallel coding.  Pair programming is provided as an opportunity to harness teamwork to tackle 

programming challenges.  But this does not mean that teams consist of one champion programmer, and a 

second observer simply watching the champion!  The tasks and challenges should be shared as equally as 

possible. 

 


