TCSS 422 A — Spring 2024

4/4/2024
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 4/4

|- Questions from 4/2 |
7 = C Review Survey - Closes Friday April 5
The Process APl & N = Assignment O

Limited Direct Execution ’ = Chapter 5: Process API
. Vil = fork(), wait(), exec()

= Chapter 6: Limited Direct Execution
Wes J. Lond = Direct execution

School of Engineering and Technology = Limited direct execution

University of Washington - Tacoma * CPUmodes

= System calls and traps

= Cooperative multi-tasking

= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2024]
il i School of Engineering and Technology, University of Washington - Tacoma

April 4, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington

TEXT BOOK COUPON TCSS 422 - OFFICE HRS - SPRING 2024

= 15% off textbook code: POETRYA15 (through Friday Apr 5) - ;*:u_zs(da s after cla)ss untll 7:00pm**
ybori In-person/Zoom

= This session will be in person in CP 229.

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi- =Zoom will be monitored when no student is in CP 229.
arpaci-dusseau/operating:systems-three-easy-pieces: = Thursdays after class until 7:00pm - Hybrid (in-person/Zoom)
hardcover-version-110/hardcover/product- . i i K
15gjeeky.html?q=three+easy+pieces+operating+systems&pag * Additional office time will be held on Thursdays after class
e=1&pageSize=4 when there is high demand indicated by a busy Tuesday

office hour

= With coupon textbook is only $33.79 + tax & shipping = When Thursday Office Hours are planned, Zoom links will

be shared via Canvas
= Questions after class on Thursdays are always entertained
even when the formal office hour is not scheduled

TCSS422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
April 42024 School of Engineering and Technology, University of Washington - Tacoma. w3 April4, 2024 School of Engineering and Technology, University of Washington - Tacoma

TCSS 422 - Online Daily Feedback Survey - 4/1
ONLINE DAILY FEEDBACK SURVEY Quielstmctors
Question 1 0spes
. . . Ona scae of 1 tn 10, lease classity your perspective on materlal covered i today's
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 &4 5 & 7 8 9 10
= Tuesday surveys: due by ~ Wed @ 11:59p e - il
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments
spng2021
o “ Question 2 05pe
Home
Announcements Please rate the pace of today's class:
Zoom ~ Upcoming Assignments 12z 3 4 s s 7T 8 3 1w
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
= i I ™ Avallable until Apr 5 at 11:5%m | DueAprSat 10pm | -/Lpts
Dicuctinne Aun.r i
TCS5422: Computer Operating Systems [Spring 2024] .
‘ Gl School of Engineering and Technology, University of Washington - Tacoma “e April4, 2024 oot Eoamaare e Tt Chh ey o #eatington - Tacoma L46

Slides by Wes J. Lloyd L4.1


https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422

A — Spring 2024

School of Engineering and Technology

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (32 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.56 (T - previous 6.49)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.38 (T - previous 5.31)

TCSS422: Computer Operating Systems [Spring 2024]

o) School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 4/4

= | understand that using malloc() while a program is
running requires using free() if we want to prevent
memory leaks, but Isn't it true that most modern
operating systems recover the allocated memory after a
program exlts?

= YES, when the process ends, the operating system will
claim all memory allocated for the code, stack, heap, and
data segments

= |f the program only runs for a short time, then it may be
acceptable not to “free()” memory on the heap

= The issue is with programs that run forever (i.e. servers)
= Web applications may “run forever”
= if there is a memory leak in a web application, it could cause

the web application server to eventually crash

TCSS422: Operating Systems [Spring 2024]

April 4, 2024 School of Engineering and Technology, University of Washington - Tacoma.

4/4/2024

FEEDBACK FROM 4/2

= | am Interested In differentlating the responsiblliitles between
the run-time stack and the memory heap. I understand the
gist of these ideas but still feel unfamiliar with their specifics.
= What data is stored on the heap?
= What data is stored on the stack?

= What is the difference between voluntary and involuntary
context switches (C/S)?
= A voluntary C/S occurs when a process performs privileged
operations such as I/0 that BLOCK and WAIT for a response

= This is considered a voluntary C/S because the user program has
elected to perform the I/0 and needs to WAIT anyways.

= It's a perfect time to for the CPU to C/S and perform other work

= UNCLEAR: The processes of going from running to blocked to
ready then back to running.

TCS5422: Operating Systems [Spring 2024]

il i School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

= | originally thought one of the maln reasons we program
in n our Virtual Machines was so that we did not
accidentally use malloc() and cause permanent damage
to our memory by making it nonreusable.

= When writing privileged kernel-level code, you may use
“kmalloc()” which stands for “kernel malloc”.

= Errors with dynamic memory allocation in the kernel may
result in the corruption of the kernel’s memory which is
catastrophic if not recoverable

= |f a user program fails, it is no big deal to the system

= |f the kernel errors, the system may go down

TCS5422: Operating Systems [Spring 2024]

Aprl4,202¢ School of Engineering and Technology, University of Washington - Tacoma

410

FEEDBACK - 3

= We covered context switches quickly so | wonder how exactly
they are implemented and better examples of where we use
them?

= A programmer can “use” a voluntary context switch by
performing a blocking operation where the system must wait
for 1/0 etc. In this case the CPU is not busy, and is reclaimed
for some other process by the 0S

= Otherwise the user does not cause or enact a context switch.
Context switches are generated by the operating system when
a process runs for more than a “time slice” which is from
~ 3 to 10 milliseconds depending how busy the system is

= We will cover context switches in more detail in Chapter 6

TCS5422: Operating Systems [Spring 2024]

CEEDCHEIE) School of Engineering and Technology, University of Washington - Tacoma

La11

10

TCSS 422 DISCORD SERVER

= Please join the TCSS 422 A - Spring 2024 Discord Server

= https://discord.gg/H7PPZ5ArFW

= Under Edit Server Profile:
Please update your ‘Server Nickname’
to your real name or UW NET ID
THANK YOU

TC55422: Operating Systems [Spring 2024]

Sl School of Engineering and Technology, University of Washington - Tacoma

12

11

Slides by Wes J. Lloyd

12

L4.2


https://discord.gg/H7PPZ5ArFW

TCSS 422 A — Spring 2024
School of Engineering and Technology

4/4/2024

OBJECTIVES - 4/4

= Questions from 4/2
|- C Review Survey - Closes Friday April 5 |
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Spring 2024]
‘ o) School of Engineering and Technology, University of Washington - Tacoma

813

C REVIEW SURVEY -

AVAILABLE THRU 4/7

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington -

13

14

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5

= Assignment O

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

= Chapter 4: Linux process data structure - task_struct

TCSS422: Operating Systems [Spring 2024]

‘ April 42024 School of Engineering and Technology, University of Washington - Tacoma.

La.15

FEEDBACK ON ASSIGNMENT O

= [n the homework, it speclifies to use “non-Interactive”
commands. What does this mean exactly?

= An non-interactive command does not require any input
from the user (i.e. from the keyboard)

= Non-interactive commands and scripts can run entirely on
their own without intervention

= These commands are considered “headless” in
that they don’t feature a USER INTERFACE,
either a GUI, or TUI

= What is a TUI?
= *Text-based User Interface

TUI Is also a bird >

TCSS422: Operating Systems [Spring 20;

24]
‘ Aprl4,202¢ School of Engineering and Technology, University of Washington - Tacoma 1418

15

16

TCSS 422 - SET VMS

hosted Ubuntu 22.04 VMs for TCSS 422 - Spring 2024

= Request submitted for School of Engineering and Technology

TCS5422: Operating Systems [Spring 2024]

‘ CEEDCHEIE) School of Engineering and Technology, University of Washington - Tacoma

1817

OBJECTIVES - 4/4

= Questions from 4/2

= C Review Survey - Closes Friday April 5

= Assignment O

= Chapter 5: Process API

wait(), exec()

= Chapter 6: Limited Direct Execution

= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

= Context switchi d pree ive multi-tasking
April 4, 2024

TCs8422: tems '8 2024,
School of Engineering and Technology, University of Washington - Tacoma

17

Slides by Wes J. Lloyd

18

L4.3



TCSS 422 A — Spring 2024
School of Engineering and Technology

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Spring 2024]

LA 2 School of Engineering and Technology, University of Washington -

19

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])({
printf ("hello world (pid:%d)\n", (int) getpid());
|» int re = fork();
(re < 0) { i;
fprintf(stderr, "fork failed\n");
exit(1);

} £ (rc 0) { pr
printf("hello, I am child (pid:%d)\n", (int) getpid());
{ ( )

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());

TCSS422: Operating Systems [Spring 2024]

‘ April 4, 2024 School of Engineering and Technology, University of Washington - Tacoma

1421

21

TCS5422: Operating Systems [Spring 2024]

‘ CEEDCHEIE) School of Engineering and Technology, University of Washington - Tacoma

1423

4/4/2024

fork()

= Creates a new process - think of “a fork in the road”

= “Parent” process is the original

= Creates “child” process of the program from the current
executlon point

= Book says “pretty odd”

= Creates a duplicate program instance (these are processes!)

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

Amlld TCS5422; Operating Systems (Spring 2024]
il School of Engineering and Technology, University of Washington - Tacoma

20

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

= CPU scheduler determines which to run first

TCS5422: Operating Systems [Spring 2024]

Aprl4,202¢ School of Engineering and Technology, University of Washington - Tacoma

422

22

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork()xec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes

= System calls and traps
= Cooperative multi-tasking

perating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

23

Slides by Wes J. Lloyd

24

L4.4



TCSS 422 A — Spring 2024
School of Engineering and Technology

wait()

= wait(), waitpid()
= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCSS422: Operating Systems [Spring 2024]

o) School of Engineering and Technology, University of Washington - Tacoma

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

main(int arge, r *argvi]) (
printf("hello world (pid:%d)\n", (int) getpid());
rc = for!
(re < 0) {
fprintf (stderr, "fork failed\n");
exit(1);
} (rc == 0) { (
printf("hello, I am child (pid:%d)\n", (int) getpid());
{ ( )

q we = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, we, (int) getpid();

TCS5422: Operating Systems [Spring 2024]
il i School of Engineering and Technology, University of Washington - Tacoma 1426

25

26

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCSS422: Operating Systems [Spring 2024]

April 4, 2024 School of Engineering and Technology, University of Washington - Tacoma

1427

FORK EXAMPLE

= Linux example

TCS5422: Operating Systems [Spring 2024]
[Anel1 82028 School of Engineering and Technology, University of Washington - Tacoma L8

27

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API

= fork(), wait(
= Chapter 6: Limited Direct Execution

= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

April 4, 2024

29

Slides by Wes J. Lloyd

28

exec()

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argil, .. argn)

= execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

7CS5422: Operating Systems [Spring 2024]
£l School of Engineering and Technology, University of Washington - Tacoma 1430

30




TCSS 422 A — Spr

ing 2024

School of Engineering and Technology

EXEC EXAMPLE

<stdio.h>

*argv(]){
world (pid:sd)\n", (int) getpid());

re = fork();
(re < 0) {
fprintf (stderr, "fork failed\n");
exit(1);

(re == 0) {
printf("hello, T am child (pid:%d)\n", (int) getpid());
char *myargs[31;
myargs (0] = strdup ("we"); uct
myargs[1] = strdup("p3.c"); :

myargs (2] = NULL;

‘ April 4, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

1831

4/4/2024

EXEC EXAMPLE - 2

myargs (0], myargs);
"this shouldn’t print out");

wait (NULL) ;
"hello, I am parent of %d (w
we, (int) getpid());

(pid:td)\n",

prompt> ./p3

hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c

prompt>

hello, T am parent of 29384 (wc:29384) (pid:29383)

‘ ol 2020 TC55422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

832

31

= Example:

EXEC WITH FILE REDIRECTION (OUTPUT)

https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

#include
#include
#include
#include
#include
#include

main(int

(

}

-

<stdio.h>
<stdlib.h>
<unistd.h>
string.h>
fentl.h>
<sys/wait.h>

arge, char *argv(]){
fork();

re < 0) { ;
fprintf(stderr, "fork failed\n");
exit(1);
(rc 0)
close (STDOUT_FTLENO) ;
open ("./p4.output™, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

‘ April 4, 2024

TCS8422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

1433

32

FILE MODE BITS

‘ S_IRWXU

write permission, others

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

‘ pras TCS5422: Operating Systems [Spring 2024

School of Engineering and Technology, University of Washington - Tacoma

1434

33

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

*myargs [3];
myargs (0] = strdup ("wc");
myargs[1] = strdup("pd.c");
myargs[2] = NULL;
execvp (myargs (0], myargs);
{
we = wait (NULL);

prompt>
prompt>

prompt>

./p4
cat p4.output

32 109 846 pd.c

‘ April 4, 2024

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

1435

35

Slides by Wes J. Lloyd

34

.11) < Activities

current program?

Fork()

Exec()

i seruoe 82

Current responses

Respanse options

€ Visual settngs

EAIGYS  Sard Wty o 22558

@ e

Which Process AP call is used to launch a different program from the

Count %

36

L4.6



TCSS 422 A — Spring 2024
School of Engineering and Technology

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

TCSS422: Operating Systems [Spring 2024]

‘ o) School of Engineering and Technology, University of Washington - Tacoma

1837

37

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Spring 2024]

LA 2 School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

= Time Sharing

= Tradeoffs:

= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

TCS5422: Operating Systems [Spring 2024]

‘ CEEDCHEIE) School of Engineering and Technology, University of Washington - Tacoma

La.a1

41

Slides by Wes J. Lloyd

4/4/2024

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()

| = Chapter 6: Limited Direct Executionl

= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

April 4, 2024

School of Engineering and Technology, University of Washington - Tacoma

38

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct executi
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2024] 1440
School of Engineering and Technology, University of Washington - Tacoma

April 4,2024

40

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

os Program
1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCS3422: Operating Systems [Spring 2024] a2
School of Engineering and Technology, University of Washington - Tacoma

‘ April 4, 2024

42

L4.7



TCSS 422 A — Spring 2024 4/4/2024
School of Engineering and Technology

COMPUTER BOOT SEQUENCE: DIRECT EXECUTION - 2

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system? = With direct execution:
oS Py
. e e = fodiam How does the OS stop a program from running, and switch
. Lreate entry for process lis " " 23
2. Allocate memory for to another to support time sharing?

Without /imits on running programs, How do programs share disks and perform 1/0 if they are

L= osa‘:"’g““'l‘(’,’l‘;ltdbe in control of anything given direct control? Do they know about each other?

5. Clear registers 7.Run main () ) With direct execution, how can dynamic memory structures
6. Execute call main () 8. Execute return from main () such as linked lists grow over time?

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ fnlle ikt School of Engineering and Technology, University of Washington - Tacoma Laas il i School of Engineering and Technology, University of Washington - Tacoma Lass

43 44

CONTEXT SWITCHING OVERHEAD

CONTROL TRADEOFF

* Too little control: Context Switching Total cost of
= No security context sudtching
Multitasking

= No time sharing N | N | B _

vs. Multitasking with context switching

= Too much control: l':.- I IJ\T I IUJI-

=Too much OS overhead =

Sequentia
= Poor performance for compute & 1/0 Overhead [ |
= Complex APIs (system calls), difficult to use ' '

Time

TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ April 42024 School of Engineering and Technology, University of Washington - Tacoma Lads Aprl4,202¢ School of Engineering and Technology, University of Washington - Tacoma La48

45 46

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
| = Limited direct executlon |
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

7CS5422: Operating Systems [Spring 2024]
£l School of Engineering and Technology, University of Washington - Tacoma Lo

WE WILL RETURN AT

2:40PM

TCSS422: Operating Systems [Spring 2024]

g )
ger 2z School of Engineering and Technology. University of Washington -

47 48

Slides by Wes J. Lloyd L4.8



TCSS 422 A — Spring 2024
School of Engineering and Technology

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
| = CPU modes |
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Spring 2024]
‘ fnlle ikt School of Engineering and Technology, University of Washington - Tacoma Lads

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

TCSS422: Operating Systems [Spring 2024]
April 42024 School of Engineering and Technology, University of Washington - Tacoma sy

TCS5422: Operating Systems [Spring 2024]
il i School of Engineering and Technology, University of Washington - Tacoma La.50

= User mode: ring 3 - untrusted
= Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=|/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

TCS5422: Operating Systems [Spring 2024]
‘ [Anel1 82028 School of Engineering and Technology, University of Washington - Tacoma L2

51

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
| = System calls and traps |
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2024] N
CEEDCHEIE) School of Engineering and Technology, University of Washington - Tacoma 148

52

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device I/0 (e.g. file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

7CS5422: Operating Systems [Spring 2024]
‘ £l School of Engineering and Technology, University of Washington - Tacoma Las

53

Slides by Wes J. Lloyd

54




TCSS 422 A — Spring 2024
School of Engineering and Technology

TRAPS:

waiecode /N

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Interrupt Service Routine

Intermupt
1000 {

instruction 1

instruction 2

= Trap: any transfer to kernel mode

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

I8RO {
mstruction 1
mstruction 2
mstruction 3

TCSS422: Operating Systems [Spring 2024]

4/4/2024

EXCEPTION TYPES

e | e

o °

TN Aonchvonous == e S

ISR ... o | G o p—

——— e T = po—

e
N N r— - o

- i

T s p— Nermasat witin Resume
e | o= || o po—
e = == - p—
. I — pa—
p— Tl T pa—
e o | o =

‘ fnlle ikt School of Engineering and Technology, University of Washington - Tacoma Lass
05 @ boot Hardware
(kemal mods)
‘ Soicakse trap tabbe
remarmbar address of
) S
os@ run Hardware Program

(kemal mods) (user mode)

Creste entry for process list
- Allocate memery for program
Load program inte memery.
Setup user stack with argy
Fill kare stack with r8g/PC

return-from -t
° restore regs from kernel stack

move to user mode
Jumeteman Run maind
‘ Call tystern
trap inta 05
save rags to kernalstack

meve to keinel made
jump to trap handler

Hande tisp
- Do work of syscall
retur-from -0

restore rage from kel stack
meve ta user mede
juma te PC after tiap
- retur from main
tiap (s exit i)
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Frea memory of pracess
Remove from process list

April 4, 2024

L4.57

TCS5422: Operating Systems [Spring 2024]
‘ il i School of Engineering and Technology, University of Washington - Tacoma La.58
05 @ boot Hardware
(kemal mods)

initialize trap table
remambar address of
syscall handler

05 & run Hardware Program
(kermel mode) (user mode)
Creste entry for process list

Alloes

Computer BOOT Sequ

OS with Limited Direct Execution

meve to keinel made
jump to trap handler

Handle trsp

Do wark of syscal

retum-from-r
" restore reg trom kemel stack

meve to user mode

jump to BC aftar trap.

return from main
tiap via exit (1)

Frea memory of pracess

Remove from process list

TCSS422: Operating Systems [Spring 2024]

April 4, 2024 School of Engineering and Technology, University of Washington - Tacoma e

57

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
| = Cooperative multl-tasking |
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2024]

‘ CEEDCHEIE) School of Engineering and Technology, University of Washington - Tacoma

L4.59

58

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

‘ April 4, 2024

59

Slides by Wes J. Lloyd

60

L4.10



TCSS 422 A — Spring 2024
School of Engineering and Technology

4/4/2024

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?
TCSS422: Oy ing Sy [Spring 2024]
Lzl At School of E:;r:;e’:\gngy:‘r;"“lsechzn:zggv, University of Washington - Tacoma Las1

Q < Activities # Moderate €) Visual settings & Edit < >

ol B
When poll is active respond at - PollEv.comiweslioyd  Send weslioyd and your message to 22333

B

What problems exist for regaining control of the

CPU with cooperative multitasking OSes? @0

Join by QR code

Join by Web Loadjng, Scan with your camera app

PollEv.com/weslloyd

Join by Text

Send weslloyd and your message to
22333

Current responses

Responses Screen name Received at

62

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

TCSS422: Operating Systems [Spring 2024]
‘ April 42024 School of Engineering and Technology, University of Washington - Tacoma L83

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

= Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

63

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2024] La6s
School of Engineering and Technology, University of Washington - Tacoma

‘ April 4, 2024

65

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Spring 2024]
‘ Aprl4,202¢ School of Engineering and Technology, University of Washington - Tacoma Las4
.11) < Activities > Moderate &) Visual settings &) Edit < >
ol ]

Join by Web PollEv.comweslioyd  Join by Text Send weslioyd and your message to 22333

3

For an OS that uses a system timer to force
arbitrary context switches to share the CPU,
what is a good value (in seconds) for the timer
interrupt?

<20

Join by QR code
Scan with your camera app

Loadjng.

Join by Web

PollEv.com/weslloyd

Join by Text

Send weslloyd and your message to
22333

Current responses

Responses Screen name: Received at

66

L4.11



TCSS 422

A — Spring 2024

School of Engineering and Technology

QUESTION: TIME SLICE

= For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Spring 2024]

o) School of Engineering and Technology, University of Washington - Tacoma

La.67

67

OBJECTIVES - 4/4

= Questions from 4/2
= C Review Survey - Closes Friday April 5
= Assignment O
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

Operating Systems [Spring.

22:
April 4, 2024 School of Engineering and Technology,

ersity of Washington - Tacoma

69

[y

CONTEXT SWITCH - 2

. Save register values of the current process to its kernel
stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
‘ eI TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

71

4/4/2024

QUESTION: TIME SLICE

= For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?
=Typical time slice for process execution is

1 100 milli n
=Typical context switch overhead is (switch between processes)

0.01 milliseconds

0.1% of the time slice (1/1000t")

TCS5422: Operating Systems [Spring 2024]

il i School of Engineering and Technology, University of Washington - Tacoma

La.68

68

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

TCS5422: Operating Systems [Spring 2024]

Aprl4,202¢ School of Engineering and Technology, University of Washington - Tacoma La.70
05 @ boot
(kernel moxe) Hardware

71

Slides by

Wes J. Lloyd

- initiaize trap table
-mn interrupt timer

remember address of

‘ syseall handlar

timar handlar

- v
interrupt CPU in X ms

05 run
(kernel mode)

Program
{user mode)

[ Ty
timer interrupt

save regsiA) to k-stack(a)
mave ta kernel mode
jump to trap handler

Hardware

Handle the trap
Call switch) routine
save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
rotum-from-trap (into B}
restore regs() fiom k-stack(E)

move to user mode
q Process B

Jump to B PC

TCSS422: Operating Systems [Spring 2024]

April 4, 2024 School of Engineering and Technology, University of Washington - Tacoma Lk

72

L4.12



TCSS 422 A — Spring 2024
School of Engineering and Technology

05 @ boot
(kernal mode)

initialize trap table

Hardware

remember address of
syscall handlar
timer handler

start interrupt timer
start timer
interrupt CPU in X ms

Frogram

Context Switch

Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to kestack(B)
return-from-trap (into B)
restore regs(8) from k-stack(B)

move to user mode
q Process B

Jump to B PC

TCSS422: Operating Systems [Spring 2024]

April4,2024 School of Engineering and Technology, University of Washington - Tacoma

L1473

4/4/2024

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCS5422: Operating Systems [Spring 2024]

il i School of Engineering and Technology, University of Washington - Tacoma

474

73

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero

= decrements when locks are released

= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

= increments for each lock acquired (not safe to preempt)

= nterrupt can be interrupted when preempt_count=0

TCSS422: Operating Systems [Spring 2024]

l Andld;2028 School of Engineering and Technology, University of Washington - Tacoma

1475

74

75

Slides by Wes J. Lloyd

QUESTIONS

L4.13



	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/4
	Slide 3: Text book coupon
	Slide 4: Tcss 422 – office hrs – spring 2024
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/2
	Slide 9: Feedback from 4/4
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: TCSS 422 Discord server
	Slide 13: OBJECTIVES – 4/4
	Slide 14: C Review Survey - available thru 4/7
	Slide 15: OBJECTIVES – 4/4
	Slide 16: Feedback on assignment 0
	Slide 17: TCSS 422 – SET VMs
	Slide 18: OBJECTIVES – 4/4
	Slide 19: Chapter 5: C process api
	Slide 20: fork()
	Slide 21: Fork example
	Slide 22: Fork example - 2
	Slide 23: :(){ :|: & };:
	Slide 24: OBJECTIVES – 4/4
	Slide 25: wait()
	Slide 26: Fork With wait
	Slide 27: Fork with wait - 2
	Slide 28: Fork example
	Slide 29: OBJECTIVES – 4/4
	Slide 30: exec()
	Slide 31: Exec example
	Slide 32: Exec example - 2
	Slide 33: Exec with file redirection (output)
	Slide 34: File mode bits
	Slide 35: exec w/ File redirection (output) - 2
	Slide 36
	Slide 37: Question: PROCESS API
	Slide 38: OBJECTIVES – 4/4
	Slide 39: CH. 6: Limited direct execution
	Slide 40: OBJECTIVES – 4/4
	Slide 41: Virtualizing the cpu
	Slide 42: Computer boot sequence: OS with Direct execution
	Slide 43: Computer boot sequence: OS with Direct execution
	Slide 44: Direct execution - 2
	Slide 45: Control tradeoff
	Slide 46: Context switching overhead
	Slide 47: We will return at 2:40pm
	Slide 48: OBJECTIVES – 4/4
	Slide 49: Limited direct execution
	Slide 50: OBJECTIVES – 4/4
	Slide 51: Cpu modes
	Slide 52: CPU modes
	Slide 53: OBJECTIVES – 4/4
	Slide 54: System calls
	Slide 55: TRAPS:  System calls, Exceptions, interrupts
	Slide 56: Exception types
	Slide 57
	Slide 58
	Slide 59: OBJECTIVES – 4/4
	Slide 60: multitasking
	Slide 61: multitasking
	Slide 62
	Slide 63: Question: multitasking
	Slide 64: Multitasking - 2
	Slide 65: Multitasking - 2
	Slide 66
	Slide 67: QUESTION: TIME SLICE
	Slide 68: QUESTION: TIME SLICE
	Slide 69: OBJECTIVES – 4/4
	Slide 70: Context switch
	Slide 71: Context switch - 2
	Slide 72
	Slide 73
	Slide 74: Interrupted interrupts
	Slide 75: Preemptive kernel
	Slide 76: Questions

