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TCSS 422: OPERATING SYSTEMS

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (45 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.44 ( - previous 7.58) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.84 ( - previous 6.14)
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MATERIAL / PACE

 For the CFS, what is the main reason we need to use it? 

 Prior to the Linux Completely Fair Scheduler (CFS), Linux used 
the Big O(1) scheduler

 To read more about the specific problems CFS tries to solve 
with the O(1) scheduler, see the article:

 https://dl.acm.org/doi/fullHtml/10.5555/1594371.1594375

 And can instead of using a Red -Black tree, is it possible to use 
another type of tree?

 Red-Black tree is a type of self balancing binary search tree

 Balanced binary search trees are much more efficient at 
search than unbalanced binary search trees

 Another tree may not be as efficient 

 See article: https://brill iant.org/wiki/red-black-tree/
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FEEDBACK FROM 4/20

5

6

https://dl.acm.org/doi/fullHtml/10.5555/1594371.1594375
https://brilliant.org/wiki/red-black-tree/


TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.4Slides by Wes J. Lloyd

 How does sched_latency_ns af fect the behavior of  CFS?

 See slides 8.28 & 8.29

 Sched_latency_ns is the total cycle time for iterating through the
set of processes in a runqueue

 Default is 24,000,000 ns  (24 ms)
when the number-of-processes in a runqueue < 8

 Otherwise 3ms * number -of-processes in runqueue

 For example: with 12 processes in runqueue, sched_latency
is 36,000,000 ns (36 ms)

 When less 8 jobs in runqueue, individual jobs get more than
sched_min_granularity execution time (3ms)

 Longer runtime is better for long running batch jobs

 Long runtime is poor for GUI/IO jobs that run for short bursts
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FEEDBACK - 2

 Bonus session:

Monday May 1 starting at 6:30pm

▪ Zoom link to be posted on Canvas

▪ Problems and solutions posted on “Schedule” tab of website

 A series of example scheduling problems will be solved:

▪ Focus on: FIFO, SJF, STCF, RR, MLFQ

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L9.8

BONUS SESSION –

EXAMPLE SCHEDULER PROBLEMS
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 Questions from 4/20

 C Tutorial - Pointers, Str ings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
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OBJECTIVES – 4/25

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 4/25

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 27 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2023_quiz_1.pdf
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QUIZ 1
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 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Multiple choice and fill - in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

 Due Tuesday May 2nd at 11:59pm

 Link:

 https://canvas.uw.edu/courses/1642522/assignments/8316759

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
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QUIZ 2

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 4/25
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 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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PROCESSES VS. THREADS
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 4/25

 What is happening with our counter? 

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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RACE CONDITION
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 What is happening with our counter? 

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.19

RACE CONDITION

Thread 2 preempts Thread 1 and 
changes the counter value AFTER

Thread 1 has read the value

When Thread 1 resumes, it
does not reread the counter value and

Thread 1 overwrites value from Thread 2

Thread 1’s Increment is lost

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 4/25
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 Code that accesses a shared variable must not be 

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 

race condition .

 Atomic execution (all code executed as a unit ) must be 

ensured in critical sections

▪ These sections must be mutually exclusive

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 

“atomically -as a unit” Chapter 27 & beyond introduce LOCKS

 Counter example revisited

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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LOCKS
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 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT  - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is ~16 million Lock & Unlock API calls

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API

April 25, 2023
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School of Engineering and Technology, University of Washington - Tacoma L9.24
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
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OBJECTIVES – 4/25

 pthread_create

 thread: thread struct

 attr:  stack size, scheduling priority…  (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 25, 2023
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?
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 thread: which thread?

 value_ptr: pointer to return value

type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 25, 2023
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WAITING FOR THREADS TO FINISH

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

29
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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ADDING CASTS
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 pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

ADDING CASTS - 2

WE WILL RETURN AT 

4:55PM

April 25, 2023
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
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OBJECTIVES – 4/25

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++)  {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}
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 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 25, 2023
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School of Engineering and Technology, University of Washington - Tacoma
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LOCK INITIALIZATION
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 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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LOCKS - 3

April 25, 2023
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39

40



TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.21Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma L9.41

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
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OBJECTIVES – 4/25
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 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait ()

▪ Puts thread to “sleep” (waits)    (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released 

▪ Waits (listens) for a “signal”   (NON -BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the 
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);
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 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to 

execute when it should not.  (e.g. too early)
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CONDITION AND SIGNALS - 4
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 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread
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PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o
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CHAPTER 28 –

LOCKS
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
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OBJECTIVES – 4/25

 Ensure critical section(s) are executed atomically -as a unit

▪ Only one thread is allowed to execute a critical section at any given 

time

▪ Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:
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LOCKS
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 Lock variables are called “MUTEX”

▪ Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

▪ Locked  (acquired or held)

▪ Unlocked (available or free)

 Only 1 thread can hold a lock
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LOCKS - 2

 pthread_mutex_lock(&lock)

▪ Try to acquire lock

▪ If lock is free, calling thread will acquire the lock

▪ Thread with lock enters critical section

▪ Thread “owns” the lock

 No other thread can acquire the lock before the owner 

releases it.
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LOCKS - 3
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/25

 Program can have many mutex (lock) variables to 

“serialize” many critical sections

 Locks are also used to protect data structures

▪ Prevent multiple threads from changing the same data 

simultaneously

▪ Programmer can make sections of code “granular”

▪ Fine grained – means just one grain of sand at a time through an 

hour glass

▪ Similar to relational database transactions

▪ DB transactions prevent multiple users from modifying a table, 

row, field
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LOCKS - 4
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 Is this code a good example of “fine grained parallelism”?
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FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 
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FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .

57

58



TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.30Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from 
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation 

lies someplace along
the trade-off space…

 Correctness

▪ Does the lock work?  

▪ Are critical sections mutually exclusive?  

(atomic-as a unit?)

 Fairness

▪ Do all threads that compete for a lock have a fair chance 

of acquiring it?

Overhead
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EVALUATING LOCK IMPLEMENTATIONS

What makes a 
good lock?
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 Locks require hardware support

▪ To minimize overhead, ensure fairness and correctness

▪ Special “atomic-as a unit” instructions to support lock 

implementation

▪ Atomic-as a unit exchange instruction 

▪ XCHG

▪ Compare and exchange instruction

▪ CMPXCHG

▪ CMPXCHG8B

▪ CMPXCHG16B
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BUILDING LOCKS

 To implement mutual exclusion

▪ Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt

▪ What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts

▪ Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost

▪ If not queued…
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HISTORICAL IMPLEMENTATION
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/25
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SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do- it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?
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 Correctness requires luck…  (e.g. DIY lock is incorrect )

 Here both threads have “acquired” the lock simultaneously 
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DIY: CORRECT?

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%

▪ Continuously loops, and evaluates mutex->flag value…

▪ Generates heat…
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DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/25

 Hardware support required for working locks

 Book presents pseudo code of C implementation 

▪ TEST-and-SET adds a simple check to the basic spin lock

▪ Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Can implement the C version (non-atomic) and have some 
success on a single-core VM

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

TEST-AND-SET INSTRUCTION
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 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount
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DIY: TEST-AND-SET - 2

 Correctness:

▪ Spin locks with atomic Test-and-Set: 

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:

▪ No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:

▪ Spin locks perform “busy waiting”

▪ Spin locks are best for short periods of waiting (< 1 time quantum)

▪ Performance is slow when multiple threads share a CPU

▪ Especially if “spinning” for long periods 
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SPIN LOCK EVALUATION
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/25

 Checks that the lock variable has the expected value FIRST, 
before changing its value

▪ If so, make assignment

▪ Return value at location

 Adds a comparison to TestAndSet

▪ Textbook presents C pseudo code

▪ Assumption is that the compare-and-swap method runs atomically  

 Useful for wait-free synchronization

▪ Supports implementation of shared data structures which can be 
updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

▪ Shared data structure updates become “wait -free” 

▪ Upcoming in Chapter 32
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COMPARE AND SWAP
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 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare -and-exchange instruction

▪ cmpxchg8b

▪ cmpxchg16b
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COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

April 25, 2023
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 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors

▪ Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)

▪ Loads value into register

▪ Same as typical load

▪ Used as a mechanism to track competition

 Store-conditional (SC)

▪ Performs “mutually exclusive” store

▪ Allows only one thread to store value
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TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

▪ C code is psuedo code
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LL/SC LOCK
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 Two instruction lock
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LL/SC LOCK - 2

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES
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 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/25

Adding locks to data structures make them 

thread safe.

Considerations:

▪Correctness 

▪Performance

▪Lock granularity

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

LOCK-BASED

CONCURRENT DATA STRUCTURES
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COUNTER STRUCTURE W/O LOCK

 Synchronization weary --- not thread safe

 Add lock to the counter

 Require lock to change data
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CONCURRENT COUNTER
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 Decrease counter

 Get value
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CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times
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CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.
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 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)
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PERFECT SCALING

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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OBJECTIVES – 4/25
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 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically 

▪ Global counter has lock to protect global counter value

▪ Sloppiness threshold (S):

Update threshold of global counter with local values

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  

Why do we want counters local to each CPU Core?
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SLOPPY COUNTER

 Idea of Sloppy Counter is to RELAX the synchronization 

requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading -off split-second 

accuracy of the counter

 Sloppy counter: trade-off accuracy for speed

▪ It’s sloppy because it’s not so accurate (until the end)
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SLOPPY COUNTER – MAIN POINTS
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 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters
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SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S → What is the consequence?

 High S → What is the consequence?
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THRESHOLD VALUE S
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 Example implementation

 Also with CPU affinity
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SLOPPY COUNTER - EXAMPLE

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table
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OBJECTIVES – 4/25
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 Simplification - only basic list operations shown

 Structs and initialization:
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CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks
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CONCURRENT LINKED LIST - 2

}

93

94



TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.48Slides by Wes J. Lloyd

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks 
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CONCURRENT LINKED LIST - 3

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control f low” to be error 

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding 

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …
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CONCURRENT LINKED LIST
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 Init and Insert
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CCL – SECOND IMPLEMENTATION

 Lookup
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CCL – SECOND IMPLEMENTATION - 2
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 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify 

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?
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CONCURRENT LINKED LIST PERFORMANCE

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 

same time
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MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue
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CONCURRENT QUEUE
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 Add to queue
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CONCURRENT QUEUE - 2

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table
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Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list 

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists
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CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU
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INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.
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CONCURRENT HASH TABLE
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 Lock-free data structures in Java

 Java.util.concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/uti l/concurrent/atomic/package -summary.html
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