
TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.1Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Intro to Concurrency,
Linux Thread API, Locks,

Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.2

OBJECTIVES – 4/25

1

2

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 25, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.3

ONLINE DAILY FEEDBACK SURVEY

April 25, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.4

3

4

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (45 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.44 (- previous 7.58)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.84 (- previous 6.14)

April 25, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.5

MATERIAL / PACE

 For the CFS, what is the main reason we need to use it?

 Prior to the Linux Completely Fair Scheduler (CFS), Linux used
the Big O(1) scheduler

 To read more about the specific problems CFS tries to solve
with the O(1) scheduler, see the article:

 https://dl.acm.org/doi/fullHtml/10.5555/1594371.1594375

 And can instead of using a Red -Black tree, is it possible to use
another type of tree?

 Red-Black tree is a type of self balancing binary search tree

 Balanced binary search trees are much more efficient at
search than unbalanced binary search trees

 Another tree may not be as efficient

 See article: https://brill iant.org/wiki/red-black-tree/

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

FEEDBACK FROM 4/20

5

6

https://dl.acm.org/doi/fullHtml/10.5555/1594371.1594375
https://brilliant.org/wiki/red-black-tree/

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.4Slides by Wes J. Lloyd

 How does sched_latency_ns af fect the behavior of CFS?

 See slides 8.28 & 8.29

 Sched_latency_ns is the total cycle time for iterating through the
set of processes in a runqueue

 Default is 24,000,000 ns (24 ms)
when the number-of-processes in a runqueue < 8

 Otherwise 3ms * number -of-processes in runqueue

 For example: with 12 processes in runqueue, sched_latency
is 36,000,000 ns (36 ms)

 When less 8 jobs in runqueue, individual jobs get more than
sched_min_granularity execution time (3ms)

 Longer runtime is better for long running batch jobs

 Long runtime is poor for GUI/IO jobs that run for short bursts

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.7

FEEDBACK - 2

 Bonus session:

Monday May 1 starting at 6:30pm

▪ Zoom link to be posted on Canvas

▪ Problems and solutions posted on “Schedule” tab of website

 A series of example scheduling problems will be solved:

▪ Focus on: FIFO, SJF, STCF, RR, MLFQ

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.8

BONUS SESSION –

EXAMPLE SCHEDULER PROBLEMS

7

8

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.5Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Str ings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.9

OBJECTIVES – 4/25

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.10

OBJECTIVES – 4/25

9

10

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.6Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.11

OBJECTIVES – 4/25

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 27 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2023_quiz_1.pdf

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.12

QUIZ 1

11

12

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.7Slides by Wes J. Lloyd

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Multiple choice and fill - in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

 Due Tuesday May 2nd at 11:59pm

 Link:

 https://canvas.uw.edu/courses/1642522/assignments/8316759

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.13

QUIZ 2

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.14

OBJECTIVES – 4/25

13

14

https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.8Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.15

COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.16

PROCESSES VS. THREADS

15

16

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.9Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.17

OBJECTIVES – 4/25

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

RACE CONDITION

17

18

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.10Slides by Wes J. Lloyd

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.19

RACE CONDITION

Thread 2 preempts Thread 1 and
changes the counter value AFTER

Thread 1 has read the value

When Thread 1 resumes, it
does not reread the counter value and

Thread 1 overwrites value from Thread 2

Thread 1’s Increment is lost

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

OBJECTIVES – 4/25

19

20

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.11Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a

race condition .

 Atomic execution (all code executed as a unit) must be

ensured in critical sections

▪ These sections must be mutually exclusive

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce LOCKS

 Counter example revisited

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.22

LOCKS

21

22

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.12Slides by Wes J. Lloyd

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is ~16 million Lock & Unlock API calls

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.23

COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.24

23

24

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.13Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

OBJECTIVES – 4/25

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.26

THREAD CREATION

25

26

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.14Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.28

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

27

28

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.15Slides by Wes J. Lloyd

 thread: which thread?

 value_ptr: pointer to return value

type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.29

WAITING FOR THREADS TO FINISH

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.30

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

29

30

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.16Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.31

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.32

ADDING CASTS

31

32

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.17Slides by Wes J. Lloyd

 pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

ADDING CASTS - 2

WE WILL RETURN AT

4:55PM

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.34

33

34

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.18Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.35

OBJECTIVES – 4/25

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.36

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

35

36

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.19Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.38

LOCK INITIALIZATION

37

38

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.20Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.39

LOCKS - 3

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.40

39

40

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.21Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.41

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.42

OBJECTIVES – 4/25

41

42

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.22Slides by Wes J. Lloyd

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait ()

▪ Puts thread to “sleep” (waits) (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released

▪ Waits (listens) for a “signal” (NON -BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.44

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

43

44

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.23Slides by Wes J. Lloyd

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.45

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

CONDITION AND SIGNALS - 4

45

46

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.24Slides by Wes J. Lloyd

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

47

48

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.25Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.49

CHAPTER 28 –

LOCKS

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.50

49

50

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.26Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.51

OBJECTIVES – 4/25

 Ensure critical section(s) are executed atomically -as a unit

▪ Only one thread is allowed to execute a critical section at any given

time

▪ Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

LOCKS

51

52

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.27Slides by Wes J. Lloyd

 Lock variables are called “MUTEX”

▪ Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

▪ Locked (acquired or held)

▪ Unlocked (available or free)

 Only 1 thread can hold a lock

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

LOCKS - 2

 pthread_mutex_lock(&lock)

▪ Try to acquire lock

▪ If lock is free, calling thread will acquire the lock

▪ Thread with lock enters critical section

▪ Thread “owns” the lock

 No other thread can acquire the lock before the owner

releases it.

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

LOCKS - 3

53

54

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.28Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.55

OBJECTIVES – 4/25

 Program can have many mutex (lock) variables to

“serialize” many critical sections

 Locks are also used to protect data structures

▪ Prevent multiple threads from changing the same data

simultaneously

▪ Programmer can make sections of code “granular”

▪ Fine grained – means just one grain of sand at a time through an

hour glass

▪ Similar to relational database transactions

▪ DB transactions prevent multiple users from modifying a table,

row, field

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

LOCKS - 4

55

56

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.29Slides by Wes J. Lloyd

 Is this code a good example of “fine grained parallelism”?

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

57

58

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.30Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation

lies someplace along
the trade-off space…

 Correctness

▪ Does the lock work?

▪ Are critical sections mutually exclusive?

(atomic-as a unit?)

 Fairness

▪ Do all threads that compete for a lock have a fair chance

of acquiring it?

Overhead

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?

59

60

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.31Slides by Wes J. Lloyd

 Locks require hardware support

▪ To minimize overhead, ensure fairness and correctness

▪ Special “atomic-as a unit” instructions to support lock

implementation

▪ Atomic-as a unit exchange instruction

▪ XCHG

▪ Compare and exchange instruction

▪ CMPXCHG

▪ CMPXCHG8B

▪ CMPXCHG16B

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

BUILDING LOCKS

 To implement mutual exclusion

▪ Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt

▪ What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts

▪ Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost

▪ If not queued…

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.62

HISTORICAL IMPLEMENTATION

61

62

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.32Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

OBJECTIVES – 4/25

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.64

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do- it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

63

64

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.33Slides by Wes J. Lloyd

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%

▪ Continuously loops, and evaluates mutex->flag value…

▪ Generates heat…

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.66

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

65

66

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.34Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

OBJECTIVES – 4/25

 Hardware support required for working locks

 Book presents pseudo code of C implementation

▪ TEST-and-SET adds a simple check to the basic spin lock

▪ Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Can implement the C version (non-atomic) and have some
success on a single-core VM

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

TEST-AND-SET INSTRUCTION

67

68

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.35Slides by Wes J. Lloyd

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

DIY: TEST-AND-SET - 2

 Correctness:

▪ Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:

▪ No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:

▪ Spin locks perform “busy waiting”

▪ Spin locks are best for short periods of waiting (< 1 time quantum)

▪ Performance is slow when multiple threads share a CPU

▪ Especially if “spinning” for long periods

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

SPIN LOCK EVALUATION

69

70

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.36Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

OBJECTIVES – 4/25

 Checks that the lock variable has the expected value FIRST,
before changing its value

▪ If so, make assignment

▪ Return value at location

 Adds a comparison to TestAndSet

▪ Textbook presents C pseudo code

▪ Assumption is that the compare-and-swap method runs atomically

 Useful for wait-free synchronization

▪ Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

▪ Shared data structure updates become “wait -free”

▪ Upcoming in Chapter 32

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

COMPARE AND SWAP

71

72

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.37Slides by Wes J. Lloyd

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare -and-exchange instruction

▪ cmpxchg8b

▪ cmpxchg16b

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.73

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.74

73

74

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.38Slides by Wes J. Lloyd

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors

▪ Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)

▪ Loads value into register

▪ Same as typical load

▪ Used as a mechanism to track competition

 Store-conditional (SC)

▪ Performs “mutually exclusive” store

▪ Allows only one thread to store value

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

▪ C code is psuedo code

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

LL/SC LOCK

75

76

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.39Slides by Wes J. Lloyd

 Two instruction lock

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

LL/SC LOCK - 2

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L9.78

77

78

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.40Slides by Wes J. Lloyd

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.79

OBJECTIVES – 4/25

Adding locks to data structures make them

thread safe.

Considerations:

▪Correctness

▪Performance

▪Lock granularity

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

LOCK-BASED

CONCURRENT DATA STRUCTURES

79

80

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.41Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.81

COUNTER STRUCTURE W/O LOCK

 Synchronization weary --- not thread safe

 Add lock to the counter

 Require lock to change data

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.82

CONCURRENT COUNTER

81

82

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.42Slides by Wes J. Lloyd

 Decrease counter

 Get value

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

83

84

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.43Slides by Wes J. Lloyd

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.85

PERFECT SCALING

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.86

OBJECTIVES – 4/25

85

86

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.44Slides by Wes J. Lloyd

 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically

▪ Global counter has lock to protect global counter value

▪ Sloppiness threshold (S):

Update threshold of global counter with local values

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?

Why do we want counters local to each CPU Core?

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.87

SLOPPY COUNTER

 Idea of Sloppy Counter is to RELAX the synchronization

requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading -off split-second

accuracy of the counter

 Sloppy counter: trade-off accuracy for speed

▪ It’s sloppy because it’s not so accurate (until the end)

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.88

SLOPPY COUNTER – MAIN POINTS

87

88

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.45Slides by Wes J. Lloyd

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.89

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S → What is the consequence?

 High S → What is the consequence?

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.90

THRESHOLD VALUE S

89

90

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.46Slides by Wes J. Lloyd

 Example implementation

 Also with CPU affinity

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.91

SLOPPY COUNTER - EXAMPLE

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.92

OBJECTIVES – 4/25

91

92

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.47Slides by Wes J. Lloyd

 Simplification - only basic list operations shown

 Structs and initialization:

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.93

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.94

CONCURRENT LINKED LIST - 2

}

93

94

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.48Slides by Wes J. Lloyd

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.95

CONCURRENT LINKED LIST - 3

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control f low” to be error

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.96

CONCURRENT LINKED LIST

95

96

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.49Slides by Wes J. Lloyd

 Init and Insert

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.97

CCL – SECOND IMPLEMENTATION

 Lookup

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.98

CCL – SECOND IMPLEMENTATION - 2

97

98

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.50Slides by Wes J. Lloyd

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.99

CONCURRENT LINKED LIST PERFORMANCE

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.100

OBJECTIVES – 4/25

99

100

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.51Slides by Wes J. Lloyd

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the

same time

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.101

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.102

CONCURRENT QUEUE

101

102

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.52Slides by Wes J. Lloyd

 Add to queue

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.103

CONCURRENT QUEUE - 2

 Questions from 4/20

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 1 - Due Tue May 9

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.104

OBJECTIVES – 4/25

103

104

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.53Slides by Wes J. Lloyd

Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.105

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.106

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

105

106

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.54Slides by Wes J. Lloyd

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.107

CONCURRENT HASH TABLE

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.10
8

107

108

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/25/2023

L9.55Slides by Wes J. Lloyd

 Lock-free data structures in Java

 Java.util.concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/uti l/concurrent/atomic/package -summary.html

April 25, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L9.109

LOCK-FREE DATA STRUCTURES

QUESTIONS

109

110

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/25
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/20
	Slide 7: Feedback - 2
	Slide 8: Bonus session – example scheduler problems
	Slide 9: OBJECTIVES – 4/25
	Slide 10: OBJECTIVES – 4/25
	Slide 11: OBJECTIVES – 4/25
	Slide 12: Quiz 1
	Slide 13: Quiz 2
	Slide 14: OBJECTIVES – 4/25
	Slide 15: Counter example
	Slide 16: Processes vs. threads
	Slide 17: OBJECTIVES – 4/25
	Slide 18: Race condition
	Slide 19: Race condition
	Slide 20: OBJECTIVES – 4/25
	Slide 21: Critical section
	Slide 22: locks
	Slide 23: Counter example
	Slide 24: Chapter 27 - Linux Thread API
	Slide 25: OBJECTIVES – 4/25
	Slide 26: Thread creation
	Slide 27: Pthread_create – pass any data
	Slide 28: Passing a single value
	Slide 29: Waiting for threads to finish
	Slide 30
	Slide 31
	Slide 32: ADDING CASTS
	Slide 33: Adding casts - 2
	Slide 34: We will return at 4:55pm
	Slide 35: OBJECTIVES – 4/25
	Slide 36: locks
	Slide 37: Locks - 2
	Slide 38: Lock initialization
	Slide 39: Locks - 3
	Slide 40
	Slide 41
	Slide 42: OBJECTIVES – 4/25
	Slide 43: Conditions and signals
	Slide 44: Conditions and signals - 2
	Slide 45: conditions and signals - 3
	Slide 46: Condition and SIGNALS - 4
	Slide 47: Pthreads library
	Slide 48: Sample Makefile
	Slide 49
	Slide 50: Chapter 28 – LOCKS
	Slide 51: OBJECTIVES – 4/25
	Slide 52: Locks
	Slide 53: Locks - 2
	Slide 54: Locks - 3
	Slide 55: OBJECTIVES – 4/25
	Slide 56: Locks - 4
	Slide 57: Fine grained?
	Slide 58: Fine grained parallelism
	Slide 59: Lock granularity trade-off space
	Slide 60: Evaluating lock implementations
	Slide 61: Building locks
	Slide 62: Historical implementation
	Slide 63: OBJECTIVES – 4/25
	Slide 64: Spin lock implementation
	Slide 65: DIY: Correct?
	Slide 66: DIY: PERFORMANT?
	Slide 67: OBJECTIVES – 4/25
	Slide 68: Test-and-set instruction
	Slide 69: DIY: Test-and-set - 2
	Slide 70: Spin Lock evaluation
	Slide 71: OBJECTIVES – 4/25
	Slide 72: Compare and Swap
	Slide 73: Compare and swap
	Slide 74
	Slide 75: Two more “lock Building” CPU instructions
	Slide 76: LL/SC Lock
	Slide 77: LL/SC lock - 2
	Slide 78: Chapter 29 – LOCK Based data structures
	Slide 79: OBJECTIVES – 4/25
	Slide 80: Lock-based concurrent data structures
	Slide 81: Counter structure w/o lock
	Slide 82: concurrent counter
	Slide 83: Concurrent counter - 2
	Slide 84: Concurrent counters - Performance
	Slide 85: Perfect scaling
	Slide 86: OBJECTIVES – 4/25
	Slide 87: Sloppy counter
	Slide 88: Sloppy counter – main points
	Slide 89: Sloppy counter - 2
	Slide 90: Threshold value S
	Slide 91: Sloppy counter - example
	Slide 92: OBJECTIVES – 4/25
	Slide 93: Concurrent linked list - 1
	Slide 94: Concurrent linked list - 2
	Slide 95: Concurrent linked list - 3
	Slide 96: Concurrent linked list
	Slide 97: Ccl – second implementation
	Slide 98: Ccl – second implementation - 2
	Slide 99: Concurrent Linked list performance
	Slide 100: OBJECTIVES – 4/25
	Slide 101: Michael and scott concurrent queues
	Slide 102: Concurrent queue
	Slide 103: Concurrent queue - 2
	Slide 104: OBJECTIVES – 4/25
	Slide 105: Concurrent hash table
	Slide 106: Insert performance – concurrent hash table
	Slide 107: Concurrent hash table
	Slide 108
	Slide 109: Lock-free data structures
	Slide 110: Questions

