TCSS 422 A — Spring 2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Intro to Concurrency,
Linux Thread API, Locks,
Lock-based data structures

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

. TCS5422: Operating Systems [Spring 2023]
Pl k) School of Engineering and Technology, University of Washington

4/25/2023

OBJECTIVES - 4/25

[= Questions from 4720]
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
®= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2023]

fpllez v School of Engineering and Technology, University of Washington - Tacoma 02

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spr

Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Spring 2023]

April 25,2023 School of Engineering and Technology, University of Washington - Tacoma

[o]

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2023]

Qeiian 2023 School of Engineering and Technology, University of Washington - Tacoma L94

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (45 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Aver -7.44 - prevl T

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.84 ({ - previous 6.14)

TCS5422: Computer Operating Systems [Spring 2023]

e School of Engineering and Technology, University of Washington -Tacoma

FEEDBACK FROM 4/20

= For the CFS, what is the main reason we need to use it?

= Prior to the Linux Completely Fair Scheduler (CFS), Linux used
the Big O(1) scheduler

= To read more about the specific problems CFS tries to solve
with the O(1) scheduler, see the article:

= https://dl.acm.org/doi/fullHtml|/10.5555/1594371.1594375

= And can instead of using a Red-Black tree, is it possible to use
another type of tree?
= Red-Black tree is a type of self balancing binary search tree

= Balanced binary search trees are much more efficient at
search than unbalanced binary search trees

= Another tree may not be as efficient
= See article: https://brilliant.org/wiki/red-black-tree,

TCS5422: Operating Systems [Spring 2023]

Rl School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.1

https://dl.acm.org/doi/fullHtml/10.5555/1594371.1594375
https://brilliant.org/wiki/red-black-tree/

TCSS 422 A — Spring 2023
School of Engineering and Technology

FEEDBACK - 2

= How h latency_ns affe h: havlor of CFS?

= See slides 8.28 & 8.29

set of processes in a runqueue

= Default is 24,000,000 ns (24 ms)
when the number-of-processes in a runqueue < 8

Otherwise 3ms * number-of-processes in runqueue

For example: with 12 processes in runqueue, sched_latency
is 36,000,000 ns (36 ms)

= When less 8 jobs in runqueue, individual jobs get more than
sched_min_granularity execution time (3ms)
= Longer runtime is better for long running batch jobs

Long runtime is poor for GUI/I10 jobs that run for short bursts

= Sched_latency_ns is the total cycle time for iterating through the

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

[o]

4/25/2023

BONUS SESSION -

EXAMPLE SCHEDULER PROBLEMS

= Bonus session:
Monday May 1 starting at 6:30pm
= Zoom link to be posted on Canvas
= Problems and solutions posted on “Schedule” tab of website

= A series of example scheduling problems will be solved:
= Focus on: FIFO, SJF, STCF, RR, MLFQ

‘TCS5422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma Lo8

April 25,2023

OBJECTIVES - 4/25

Questions from 4/20

C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
Assignment 1 - Due Tue May 9

Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section

Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast

Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma

[o]

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

Apell2s,2023) School of Engineering and Technology, University of Washington - Tacoma

L9.10

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
| " Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue Maz 22]
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

‘ e School of Engineering and Technology, University of Washington - Tacoma

Le.11

10

(0] V] A §

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas
= Due Thursday April 27t at 11:59pm

= Link:
= https://faculty.washington.edu/wlloyd/courses/tcss422
uiz/TCSS422_s2023_quiz_1.pdf

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

812

April 25,2023

11

Slides by Wes J. Lloyd

12

L9.2

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf

TCSS 422 A — Spring 2023
School of Engineering and Technology

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas

= Unlimited attempts permitted

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas
= Please report any grading problems

= Due Tuesday May 2" at 11:59pm

canvas.uw.edu/courses/1642522/asslgnments/8316759

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

19.13

4/25/2023

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
uiz 1 (Due Thur Apr 27 2 (Due Tue May 2
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2023

COUNTER EXAMPLE

= Counter example

= A + B : ordering

= |s th nter example embarrassingl; rallel?

= What does the parallel counter program require?

= Counter: incrementing global variable by two threads

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

19.15

14

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

Process Process
et =1 o [spaters o
| stack | stack ‘ stack |
i
.
m < <
BRLLESS | | et — ; I I
L4 I < é
+

singlohreaded procass mustithroadsd pracess

TCS5422; Operating Systems [Spring 2023}
School of Engineering and Technology, University of Washington - Tacoma

April 25,2023 ‘

15

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition |
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

‘ e School of Engineering and Technology, University of Washington - Tacoma

1817

16

RACE CONDITION

= What is happening with our counter?

= When counter=50, ider code: = +1
= If synchronized, counter will = 52
(after instruction)
o5 Thread1 Thread2 PC Seax counter
00 0 50
105 50 50
08 51 50

, teax 108 50

113 51 1
<] 108 51 50
%eax, 0x3 1¢ 113 51 51
. 7CS5422: Operating Systems [Spring 2023]
‘ REDE D ‘ School of Engineering and Technology, University of Washington -Tacoma 1018

17

Slides by Wes J. Lloyd

L9.3

https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A — Spring 2023 4/25/2023

School of Engineering and Technology

RACE CONDITION

Thread 2 preempts Thread 1 and
changes the counter value AFTER
Thread 1 has read the value

When Thread 1 resumes, it
does not reread the counter value and
Thread 1 overwrites value from Thread 2

Thread 1's In nt is lost

mov %eax, 0x804%alc 13 51 [s1
TCSS422: Operating Systems [Spring 2023]
l Lnlleks i School of Engineering and Technology, University of Washington - Tacoma Lo-19

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
®= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
[~ critical section |
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
* Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2023]
l fpllez v School of Engineering and Technology, University of Washington - Tacoma 1920

19

20

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread
= Multiple active threads inside a critical sectlon produce a
race conditlon.
= Atomlc execution (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCS5422: Operating Systems [Spring 2023]

1
School of Engineering and Technology, University of Washington - Tacoma

l April 25,2023

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce LOCKS

lock_t mutexs

balance = balance + 1;

unlock (smutex) ;

1
2 P

3 o mitex
4 Critical section
5

= Counter example revisited

TCS5422: Operating Systems [Spring 2023] 1922

l April 25,2023 School of Engineering and Technology, University of Washington - Tacoma

21

COUNTER EXAMPLE

= With locks
= 2 threads count to 16 million
= ~1.4 seconds
= COUNT IS CORRECT - no data loss

= Without locks
= 2 threads count to 16 million
= ~0.03 seconds
= COUNT IS INCORRECT - DATA IS LOST

= Correct version is 46.6 x slower
= Cost is ~16 million Lock & Unlock API calls

TCS5422: Operating Systems [Spring 2023]
l e School of Engineering and Technology, University of Washington - Tacoma Lo

23

Slides by Wes J. Lloyd

22

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Spring 2023]

i)]
eriize 2028 School of Engineering and Technology, University of Washington -

24

L9.4

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/25/2023

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
|__* pthread_create/_loin |
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]
‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma 1925

THREAD CREATION

= pthread_create

¥include <pthread.h>

thread,

ad_attr t* attr,

id* (*start_routine) (void*),
- arg) ;

pthread create(

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

‘TCS5422: Operating Systems [Spring 2023] 1926

‘ fpllez v School of Engineering and Technology, University of Washington - Tacoma

25

26

PTHREAD_CREATE - PASS ANY DATA

#incluge <pthread.n»

t _myarg t {

} myarg t:

*mythread (s

*) args
n", m-ra, m->b);

main(*argv(]) {

»

re = pthread_create(ép, HULL, mythread, &args)s

]

TCS5422: Operating Systems [Spring 2023] 1927
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2023

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bvtes) can the p

e data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

Ic

pthread create (ip, NULL, mythread, (Eoid TD100);
pthread_join(p, (void **) &m);

12 printf(“returned 3d\n”, m);
0

TCS5422: Operating Systems [Spring 2023] 1928

‘ April 25,2023 School of Engineering and Technology, University of Washington - Tacoma

27

WAITING FOR THREADS TO FINISH

pthread_join(pthread t thread, i **value_ptr}:

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCS5422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington -Tacoma 102

29

Slides by Wes J. Lloyd

28

struct myarg { . .
inta; hat will this code do?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

zﬁ;:ﬁz ,’;yirg;"”“’“t' Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])

pthread_t pl;
struct myarg args;
struct myarg *ret_args;

args.a = 10;
args.b = 20;
pthread_

h . .
sy How can this code be fixed?
return 0

April25, 2029 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L930

30

L9.5

TCSS 422 A — Spring 2023
School of Engineering and Technology

struct myarg { -
it How about this code?
};

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

int main (int argc, char * argv[]) a=10 b=20

returned 1 2

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 1
args.b H

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2023]

derize 202 School of Engineering and Technology, University of Washington - Tacoma

$./pthread_struct

1931

31

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

return from thread function

int * counterval = malloc(sizeof(int));
*counterval = counter;

return (void *) counterval;

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma

19.33

33

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
thread_create/_join
thread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma

1935

4/25/2023

ADDING CASTS

= Casting
= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
Jusr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type 'int **

extern int pthread_join (pthread_t __th, void **__thread_return);

‘TCS5422: Operating Systems [Spring 2023]

‘ fpllez v School of Engineering and Technology, University of Washington - Tacoma

32

WE WILL RETURN AT
4:55PM

TCSS422: Operating Systems [Spring 2023]

LTI School of Engineering and Technology, University of Washington -

34

= pthread_mutex_t data type
= /usr/include/bits/pthread_types.h

// Global Address Space

static volatile int counter = 0;
void *worker(void *arg)

{

int i;
for (i=0;1<10000000;i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;

TC55422: Operating Systems [Spring 2023]
‘ Rl School of Engineering and Technology, University of Washington -Tacoma 193

35

Slides by Wes J. Lloyd

36

L9.6

TCSS 422 A — Spring 2023 4/25/2023
School of Engineering and Technology

LOCK INITIALIZATION

= Ensure critical sections are executed atomically-as a unit = Assigning the constant
= Provides implementation of “Mutual Excluslon”

| pthread mutex_t lock = PTHREAD MUTEX INITIALIZER; ‘

= API = API call:

pthread_mutex_lock (pthread_mutex_t *mutex);
t pthread mutex_unlock(pthread mutex t *mutex);

rc = pthread mutex init (slock, NULL); ‘

assert (rc)i

= Example w/o initialization & error checkin
P / g = Initializes mutex with attributes specified by 2" argument

pthread mutex t lock:
pthre ;,nu:cx,lwk(ﬂﬂck!: = |f NULL, then default attributes are used
= x+ 1

pthread mutex unlock(&lock) ;

= Upon initialization, the mutex is initialized and unlocked
= Blocks forever until lock can be obtained

= Enters critical section once lock is obtained
* Releases lock

TCS5422: Operating Systems [Spring 2023] TC5422: Operating Systems (Spring 2023]
‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma 1937 Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma 1938

37 38

u & When poll is active, respond at pollev.com/wesleylloyd641
LOCKS - 3 = Text WESLEYLLOYDG641 to 22333 once to join

Which NON-BLOCKING API call can be used to
= AT GHDECLIRES WG 0 W obtain a lock without BLOCKING the calling

thread?

i Pthread mutex lock (pthread mutex t *mutex) {
t ead_mutex_lock (mutex) ;

} pthread_mutex_lock()
= What if lock can’t be obtained? pthread_mutex_unlock()
pthread mutex trylock(pthread mutex t *mutex); s
pthread mutex timelock (pthread mutex t *mutex, pthread]Oln()
struct timespec *abs_timecut): -
= trylock - returns immediately (fails) if lock is unavailable pthread_mutex_trylock()
= timelock - tries to obtain a lock for a specified duration None of the above
5 ing ms [Sprit 1

39 40

| @ When poll is active, respond at pollev.com/wesleylloyd641 u
& Text WESLEYLLOYD641 to 22333 once to join

OBJECTIVES - 4/25

Which API call BLOCKS temporarily for a
YW specified amount of time while trying to obtain

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
HY 2> = Assignment 1 - Due Tue May 9
& loc" before g“”ng up' Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
hread_mutex_lock/_unlock/_trylock/_timelock
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

. 7CS5422: Operating Systems [Spring 2023]
.I Mo e i o l. ‘ April 25,2023 School of Engineering and Technology, University of Washington - Tacoma 1942

41 42

Slides by Wes J. Lloyd L9.7

TCSS 422 A — Spring 2023 4/25/2023
School of Engineering and Technology

CONDITIONS AND SIGNALS

CONDITIONS AND SIGNALS -2

= Condition variables support “signaling”
between threads

int pthread_cond_signal(pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

nt pthread cond wait (pthread cond _t *cond, J = pthread_cond_signal()
pthread mutex t *mutex); : = Called to send a “signal” to wake-up first thread in FIFO “walt” queue
pthread cond signal (pthread cond t *cond): = The goal is to unblock a thread to respond to the signal
L] pth read_cont_t datatype

= pthread_cond_broadcast()

. = Unblocks all threads in FIFO “walt” queue, currently blocked on the
= pthread_cond_wait() specified condition variable
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)

= Broadcast is used when all threads should wake-up for the signal
= Threads added to >FIFO queue<, lock is released

. et N . = Which thread is unblocked first?
= Waits (llstens) for a “signal” (NON-BUSY WAITING, no polling) P (1) 05 SEER e (e 6 pHlei)
= When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread = Thread(s) awoken based on placement order in FIFQ wait queue

= When awoken threads acquire lock as in pthread_mutex_lock ()

TCS5422: Operating Systems [Spring 2023] TC5422: Operating Systems (Spring 2023]
‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma Lo43 Sl 2e72022)

School of Engineering and Technology, University of Washington - Tacoma Lo.44

44

CONDITIONS AND SIGNALS -3

CONDITION AND SIGNALS - 4

= Wait example:

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER; pthread_cond t cond = PTHREAD_COND_INITIALIZER;

pthread cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex_lock (&lock) ;
while (initialized == 0)
pthread_cond_wait (&cond, &lock);
// Perform work that requires lock

t ‘i
// Perform work that requires lock
a=a+b;

A pthread_mutex_unlock (&lock) ;
pthread mutex unlock (&lock) ; = Why do we wait inside a while loop?
= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released by this code) = The while ensures upon awakening the condition is rechecked
* Wnen iiialized. another tread signals _ ¢, S5° %8, B o D=y
ack(slagk) ; to proceed above.

<€
gnal (einit);
_unlock(slock) :

TCS5422: Operating Systems [Spring 2023]
‘ April 25,2023 School of Engineering and Technology, University of Washington - Tacoma Lo4s

45

= Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)
pthread mut

TCS5422: Operating Systems [Spring 2023]
April 25,2023 School of Engineering and Technology, University of Washington - Tacoma Lo.48

46

PTHREADS LIBRARY

SAMPLE MAKEFILE

= Compilation: Eﬁfgég?pthread -I. -wall
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)
pthread_mult: pthread.c pthread_int.c
$(CcC) $(CFLAGS) $A -0 $@
= List of pthread manpages

clean: . .
= man -k pthread $(rRM) -f $(binaries) *.o

= Example builds multiple single file programs
= All target
= pthread_mult
= Example if multiple source files should produce a single executable
= clean target
|

TCS5422: Operating Systems [Spring 2023] . TC55422: Operating Systems [Spring 2023]
e School of Engineering and Technology, University of Washington - Tacoma 1047 REDE D School of Engineering and Technology, University of Washington - Tacoma o4

47 48

Slides by Wes J. Lloyd L9.8

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/25/2023

€ When poll is active, respond at pollev.com/wesleylloyd641
= Text WESLEYLLOYD641 to 22333 once to join

What key feature differentiates condition

variables from mutex_locksinC?

Conditian variables provide only NON-BLOCKING
APl cals.

Locks can not be used without condition
variales

Condition variables introduce a FIFQ queue
enabling control of the arder that theeass wil
recenve the lack which provides faimess.

Condition variables must first be initialized toa
nan-HULL value before being used in the program.

Mone of the above

- P For \ e srsen et e

CHAPTER 28 -

LOCKS

TCSS422: Operating Systems [Spring 2023]

Aprl 28 2022 School of Engineering and Technology, University of Washington -

49

50

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

DRI oGy

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]
‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

L9.51

|
= Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance — balance + 1;

= A “critical section”:

lock t mutex;

balance = balance + 1;

1

2 -

3 lock (smutex) ;

3

5 unlock (smutex) ;

TCS5422: Operating Systems [Spring 2023]

‘ April 25, 2023 School of Engineering and Technology, University of Washington - Tacoma

51

LOCKS - 2

= Lock variables are called “MUTEX”

= Lock variables store the state of the lock
= States
=Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

= Short for mutual exclusion (that’s what they guarantee)

TCS5422: Operating Systems [Spring 2023]

‘ April 25, 2023 School of Engineering and Technology, University of Washington - Tacoma

1953

53

Slides by Wes J. Lloyd

52

"pthread mutex_lock (&lock)

= Try to acquire lock
= If lock is free, calling thread will acquire the lock

=Thread with lock enters critical section
Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

TC55422: Operating Systems [Spring 2023]
‘ Rl School of Engineering and Technology, University of Washington -Tacoma Losd

54

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction,
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023] 1955
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2023

55

FINE GRAINED?

= [s this code a good example of “fIne gralned parallellsm”

thread_mutex_lock(&lock);
b++;
a* ¢
*d =a+ b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
T4+
Iy .
e=e-1i;
pthread_mutex_unlock(&lock);

TCS5422: Operating Systems [Spring 2023] 1957
School of Engineering and Technology, University of Washington - Tacoma

p
a
b

‘ April 25,2023

57

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED

Many Lock (kernel) calls

COARSE-GRAINED
Few Lock (kernel) calls

More overhead from
excessive locking

More parallelism

Higher code complexity
& debugging

Low overhead from
minimal locking

Less parallelism

Low code complexity
& simpler debugging

Every program
implementation
lies someplace along
the trade-off space...

TCS5422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington -Tacoma 149

4/25/2023

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
Fine gralned - means just one grain of sand at a time through an
hour glass
=Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

‘TCS5422: Operating Systems [Spring 2023]

‘ Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma

56

FINE GRAINED PARALLELISM

pthread_mutex_lock (&lock_a);
pthread_mutex_lock (&lock_b);

a = b++;

pthread_mutex_unlock (&lock_b);
pthread_mutex_unlock (&lock_a);

pthread_mutex_lock (&lock_b);
=a* c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock (&lock_d);

*d =a+ b +c;

pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock (&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock (&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCS5422: Operating Systems [Spring 2023]

‘ Apell2s,2023) School of Engineering and Technology, University of Washington - Tacoma

58

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?
N

)

= Correctness
= Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness
= Do all threads that compete for a lock have a fair chance

of acquiring it?

= Overhead

. 7CS5422: Operating Systems [Spring 2023]
‘ REDE D School of Engineering and Technology, University of Washington -Tacoma 1960

59

Slides by Wes J. Lloyd

60

L9.10

TCSS 422 A — Spring 2023
School of Engineering and Technology

BUILDING LOCKS

= Locks require hardware support
= To minimize overhead, ensure fairness and correctne

= Special “atomic-as a unit” instructions to support loc
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHG8B
CMPXCHG16B

SS

k

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

L9.61

61

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introdu n, Lock Granularity
Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma

L9.63

63

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call 1ock()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag = 1;

= Here both threads have “acquired” the lock simultaneously

TCS5422: Operating Systems [Spring 2023]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L9.65

65

Slides by Wes J. Lloyd

4/25/2023

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

lock() |
DisableInterrupts(}s

unlock () {
EnableInterrupts();
= Any thread could disable system-wide interrupt

= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

‘TCS5422: Operating Systems [Spring 2023]

‘ Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma L9.62

62

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks

= |s this lock implementation: (1)Correct? (2)Falr? (3)Performant?

1 " _lock t { int flag: } lock t;
2

3

1

5

[

B look(*mutex) |

] (mutex->flag == 1) TEST
10 v t
11 mitex->rlag = 17

12

13

14 unlock(lock t *mutex) {

15 motex->flag = 07

16 |}

TCS5422: Operating Systems [Spring 2023]

‘ Apell2s,2023) School of Engineering and Technology, University of Washington - Tacoma

Lo.64

64

DIY: PERFORMANT?

void Tock(Tock_t *mutex)
{

// while Tock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

TCS5422: Operating Systems [Spring 2023]

‘ REDE D School of Engineering and Technology, University of Washington -Tacoma

L0.66

66

L9.11

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin LocksCompare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

L9.67

67

DIY: TEST-AND-SET - 2

= C version: requires preemptive scheduler on single core system
" Lock is never released without a context switch
= single-core VM: occasionally will deadlock, doesn’t miscount

1 VE

T lock £
flag:

t

init(lock_t *lock)

>Tlag =
9 1

10

11 lock(lock_t *lock)

12 (TestAndSet (ilock->flag, 1) == 1}
13 #

1)

15

16 unlockilock t *lockl |

11 lock->flag = 07

TCS5422: Operating Systems [Spring 2023]

[Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

L9.69

69

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularit:
= Spin Locks, Test and Set,
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

e School of Engineering and Technology, University of Washington - Tacoma

871

71

Slides by Wes J. Lloyd

4/25/2023

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks

= Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

AndSet (int *ptr, int new) {
old = *ptrj
ptr =

1

= |lock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller

= Can implement the C version (non-atomic) and have some
success on a single-core VM

‘TCS5422: Operating Systems [Spring 2023]

Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma

68

SPIN LOCK EVALUATION

= Correctness:

= Spin locks with atomic Test-and-Set:
Critical sections won’t be executed simultaneously by (2) threads

= Falrness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting (< 1 time quantum)
= Performance is slow when multiple threads share a CPU
Especially if “spinning” for long periods

TCS5422: Operating Systems [Spring 2023]

Apell2s,2023) School of Engineering and Technology, University of Washington - Tacoma

L9.70

70

COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

= Adds a comparison to TestAndSet
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization

= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

TCS5422: Operating Systems [Spring 2023]

REDE D School of Engineering and Technology, University of Washington -Tacoma

872

72

L9.12

TCSS 422 A — Spring 2023
School of Engineering and Technology

COMPARE AND SWAP

= Compare and Swap

*ptr = news
actual

C implementation 1-core VM:
Count is correct, no deadlock

= Spin loc

expected, int new) |

= cmpxchg8b
= cmpxchgléb

= X86 provides “cmpxchgl” compare-and-exchange instruction

TCSS422: Operating Systems [Spring 2023]

l Lnlleks i School of Engineering and Technology, University of Washington - Tacoma.

19.73

73

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

synchronization on RISC systems
= No support on x86 processors

= Supported by RISC: Alpha, PowerPC, ARM
= Load-linked (LL)

= Loads value into register

= Same as typical load

= Used as a mechanism to track competition
= Store-conditional (SC)

= Performs “mutually exclusive” store
= Allows only one thread to store value

= Cooperative instructions used together to support

TCS5422: Operating Systems [Spring 2023]

l [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma

19.75

75

LL/SC LOCK - 2

1 1 lock(lock_t *lock) |

2 o

3 (LoadLinked (slock->flag) == 1)
4 H -

5 (StoreConditional (slock->flag, 1) == 1)
7

8 1

L]

10

1 1 unlock (lock_t *lock) {

1z

= Two instruction lock

TCS5422: Operating Systems [Spring 2023]

l April 25, 2023 School of Engineering and Technology, University of Washington - Tacoma.

1877

77

Slides by Wes J. Lloyd

4/25/2023

(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable

Condition variables

ATOMIC instructions

Fairness

None of the above

When implementing locks in a high-level Ianguage'.

74

LL/SC LOCK

1 t LoadLinked(int *ptr) {

2 *ptr;

3 I

4

5 1t Storeconditional (int *ptr, int value) {
6 (no one has updated *ptr since the Loadlinked to this address) |
7 *ptr = walue;

8 1z

9 I t

10

11)

12z}

= LL instruction loads pointer value (ptr)

= SC only stores if the load link pointer has not changed
= Requires HW support
= C code is psuedo code

TCS5422: Operating Systems [Spring 2023]

l April 25, 2023 School of Engineering and Technology, University of Washington - Tacoma e

76

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

April 25, 2023 TCSS422: Operating Systems [Spring 2023]

)]
School of Engineering and Technology, University of Washington -

78

L9.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]
‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

19.79

79

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe

1 __counter t |
2 valuej

3] counter_t;

]

5 init (counter_t *c) {

€ c->value = 0

7]

a

10

11)

12

13 decrement (¢) [
14 c->value-

15)

16

17 geticounter_t *c) |{

18 c->values

19)

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

L9.81

81

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

0 _ {
mutex_lock(sc->lock) 7
lue--;

i mutex_unlock (sc->1ock) 1

(sc->lock) ¢

ex_unlock (sc->1ock) 1

TCS5422: Operating Systems [Spring 2023]

‘ April 25, 2023 School of Engineering and Technology, University of Washington - Tacoma.

L9.83

83

Slides by Wes J. Lloyd

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

‘TCS5422: Operating Systems [Spring 2023]

‘ Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma 180

80

CONCURRENT COUNTER

1 __counter_t {
2z int value;

3 pthread lock t lock:
a) counter_t;

B init (counter t *c) {

7 >value = 0;

8 _mutex_init(&c->lock, NULL);
k4)

10

1 er t *c) {
1z

13

14

15)

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Spring 2023]

‘ Apell2s,2023) School of Engineering and Technology, University of Washington - Tacoma we

82

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

Time {saconcs)

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

scales poorly

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2023

Lo.84

84

4/25/2023

L9.14

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/25/2023

PERFECT SCALING

= Throughput:
= Transactions per second (tps)

= Achieve (N) performance gain with (N) additional resources

School of Engineering and Technology, University of Washington - Tacoma

= 1 core
= N =100 tps
= 10 cores (x10)
= N =1000 tps (x10)
‘ FaoizeT2003 TCS5422: Operating Systems [Spring 2023] ogs

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

Slo Counter
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2023] 1986
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2023 ‘

85

SLOPPY COUNTER

= Provides single logical shared counter

4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically
Global counter has lock to protect global counter value
Sloppiness threshold (S):
Update threshold of global counter with local values
Small (S): more updates, more overhead

= Why this implementation?
Why do we want counters local to each CPU Core?

= Implemented using local counters for each ~CPU core

Large (S): fewer updates, more performant, less synchronized

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

L9.87

87

SLOPPY COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

School of Engineering and Technology, University of Washington - Tacoma

Time | 1, [P P ™ G
] [+]] 0 o 0
1 4] 0 1 1 o
2 1 Qo 2 1 a
3 2 o 3 1 o
4 3] 3 2 0
S 4 1 3 3 o
6 530 1 3 a 5 (from L,)
7 0 2 a 530 10 (from L,)

‘ e TCS5422: Operating Systems [Spring 2023] loso

89

Slides by Wes J. Lloyd

86

SLOPPY COUNTER - MAIN POINTS

= |dea of Sloppy Counter is to RELAX the synchronization
requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+l
= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Sloppy counter: trade-off accuracy for speed
= It's sloppy because it’s not so accurate (until the end)

TCS5422: Operating Systems [Spring 2023] 1988
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2023

88

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S &> What is the consequence?
= High S > What is the consequence?

15

7
2 10
5
8
8
@
ESs
[S
04— T F———t—t
1 2 4 8 16 32 64 128 256 5121024
Sloppiness
. 7CS5422: Operating Systems [Spring 2023]
‘ REDE D ‘ School of Engineering and Technology, University of Washington -Tacoma 1990

90

L9.15

TCSS 422 A — Spring 2023
School of Engineering and Technology

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

L9.91

91

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
® Structs and initialization:

2 __node_t |

node_t *next;

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

19.93

93

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32

List_Lookup (list_t *L, int key) {
ock) s

{curr->key == key) {
pthread_mutex_unlock {sL->10ck) ;

= curr->next;

1
pthread mutex_unlock(sL->lock);
EN

TCS5422: Operating Systems [Spring 2023]

‘ e School of Engineering and Technology, University of Washington - Tacoma

19.95

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
®= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List |Queue, Hash Table

‘TCSS422: Operating Systems [Spring 2023]

Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma

92

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18 int List Insert(list t *L,
19 it

20
21
22

23

ae

ont.)

TCS5422: Operating Systems [Spring 2023]

‘ Apell2s,2023) School of Engineering and Technology, University of Washington - Tacoma

94

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

. 7CS5422: Operating Systems [Spring 2023]
‘ REDE D School of Engineering and Technology, University of Washington -Tacoma 1996

95

Slides by Wes J. Lloyd

96

4/25/2023

L9.16

TCSS 422 A — Spring 2023

4/25/2023
School of Engineering and Technology

CCL - SECOND IMPLEMENTATION CCL - SECOND IMPLEMENTATION - 2

= Init and Insert

= Lookup
1 List_Tnit(list_t *L) | -
2 T->nead = e . y
3 pthread mu it (g1->lock, MULL pist_ookup (List_t i, eyl {
5 ! pthread mutex
& id List_Insertilist t *L, int key) { node, It*CLr!'
1 curr)
8 node_t *ne 1loc (sizeof (node_t))s {eurr— {
9 (new
10

"nalloc”)

curr = curr—>next:
]
pthread_mutex_unlock (sL->lack) s

L->hea
19 pthread mu Lack)
20 !
21
TCS5422: Operating Systems [Spring 2023] TC5422: Operating Systems (Spring 2023]
‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma L9:97 Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma Lo.98

97 98

CONCURRENT LINKED LIST PERFORMANCE OBJECTIVES - 4/25

. . . L ® Questions from 4/20
= Using a single lock for entire list is not very performant » C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Users must “wait” in line for a single lock to access/modify = Assignment 1 - Due Tue May 9
any item ® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Hand-over-hand-locking (lock coupling) = Chapter 26: Concurrency: An Introduction

= Race condition
= Introduce a lock for each node of a list « Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Fewer locks, but more than 1 ® Chapter 29: Lock Based Data Structures
= Best lock-to-node distribution? ecpviColnter

_ _ = Concurrent Structures: Linked List, Hash Table
‘ PIFE S TCS5422: Operating Systems [Spring 2023] L009 ‘

April 25, 2023 TCS5422: Operating Systems [Spring 2023] 19.100
School of Engineering and Technology, University of Washington - Tacoma Shille School of Engineering and Technology, University of Washington - Tacoma

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity

= Degrades traversal performance

= Consider hybrid approach

99 100

MICHAEL AND SCOTT CONCURRENT QUEUES CONCURRENT QUEUE

= Improvement beyond a single master lock for a queue (FIFO)

= Remove from queue
= Two locks:

T
= One for the head of the queue ;
= One for the tall H
= Synchronize enqueue and dequeue operations :
&
;.
= Add a dummy node 1
= Allocated in the queue initialization routine i‘
= Supports separation of head and tail operations e {node_t)):
= [tems can be added and removed by separate threads at the ,
same time)
TCS5422: Operating Systems [Spring 2023] . TCSS422: Operating Systems [Spring 2023]
‘ AillERED School of Engineering and Technology, University of Washington - Tacoma o101 ‘ REDE D School of Engineering and Technology, University of Washington - Tacoma 1002

101 102

Slides by Wes J. Lloyd L9.17

TCSS 422 A — Spring 2023
School of Engineering and Technology

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
2 eue (queue_t *q, value) {

*tmp = malloc((node_t))
assert(tmp l=

LL) ¢

tmp->value = v;
TMp->Next = NULL

ue:

pthread mutex lock(sq->taillock) s
g->tail->next = tmp;

g->tail = tmp:

pthread mutex_unlock{sg->taillock);

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleks i School of Engineering and Technology, University of Washington - Tacoma

19.103

103

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket

One lock per hash (bucket)
Hash bucket is a linked lists

Bucket is implemented using a concurrent linked list

TCS5422: Operating Systems [Spring 2023]

‘ [Apl2572023 School of Engineering and Technology, University of Washington - Tacoma.

10,105

105

CONCURRENT HASH TABLE

1 BUCKETS (101)
3 t _hash t {
4 list_t lists[BUCKETS];
5 J hash_t:
7 Hash_Init(hasn_t *H) [
8 int is -
s for (i = 07 i < BUCKETS; i+4) {
10 List_Init(sH->lists[i]):
1
1z)
12
1
15
16
17]
18
13 Hash_Lookup (hash_t *H,
20 Tint bucket = key %
21 List_Leokup(sH->1ists (bucket], key):
22)
‘ e TCS5422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

19107

OBJECTIVES - 4/25

= Questions from 4/20
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue,

‘TCS5422: Operating Systems [Spring 2023]
‘ Sl 2e72022) School of Engineering and Technology, University of Washington - Tacoma Lo104

104

INSERT PERFORMANCE -
CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
© Simpie Concurient List
X Cancurrent Hash Table

Time (seconds)

0 10 20 30 40
Inserts (Thousands)

scales
magnificently

perating Systems [Spring 2023]
gineering and Technology, Us

April 25,2023

ersity of Washington - Tacoma

106

[| |
Whichisa major advantage of using concurrent data
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

e comtent hel |
™ o comten, .

107

Slides by Wes J. Lloyd

108

4/25/2023

L9.18

TCSS 422 A — Spring 2023 4/25/2023
School of Engineering and Technology

LOCK-FREE DATA STRUCTURES

QUESTIONS

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomicinteger

= AtomicintegerArray

= AtomicIntegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/
java. i il/concurren mi kage-summary.html

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 25,2023

109 110

Slides by Wes J. Lloyd L9.19

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/25
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/20
	Slide 7: Feedback - 2
	Slide 8: Bonus session – example scheduler problems
	Slide 9: OBJECTIVES – 4/25
	Slide 10: OBJECTIVES – 4/25
	Slide 11: OBJECTIVES – 4/25
	Slide 12: Quiz 1
	Slide 13: Quiz 2
	Slide 14: OBJECTIVES – 4/25
	Slide 15: Counter example
	Slide 16: Processes vs. threads
	Slide 17: OBJECTIVES – 4/25
	Slide 18: Race condition
	Slide 19: Race condition
	Slide 20: OBJECTIVES – 4/25
	Slide 21: Critical section
	Slide 22: locks
	Slide 23: Counter example
	Slide 24: Chapter 27 - Linux Thread API
	Slide 25: OBJECTIVES – 4/25
	Slide 26: Thread creation
	Slide 27: Pthread_create – pass any data
	Slide 28: Passing a single value
	Slide 29: Waiting for threads to finish
	Slide 30
	Slide 31
	Slide 32: ADDING CASTS
	Slide 33: Adding casts - 2
	Slide 34: We will return at 4:55pm
	Slide 35: OBJECTIVES – 4/25
	Slide 36: locks
	Slide 37: Locks - 2
	Slide 38: Lock initialization
	Slide 39: Locks - 3
	Slide 40
	Slide 41
	Slide 42: OBJECTIVES – 4/25
	Slide 43: Conditions and signals
	Slide 44: Conditions and signals - 2
	Slide 45: conditions and signals - 3
	Slide 46: Condition and SIGNALS - 4
	Slide 47: Pthreads library
	Slide 48: Sample Makefile
	Slide 49
	Slide 50: Chapter 28 – LOCKS
	Slide 51: OBJECTIVES – 4/25
	Slide 52: Locks
	Slide 53: Locks - 2
	Slide 54: Locks - 3
	Slide 55: OBJECTIVES – 4/25
	Slide 56: Locks - 4
	Slide 57: Fine grained?
	Slide 58: Fine grained parallelism
	Slide 59: Lock granularity trade-off space
	Slide 60: Evaluating lock implementations
	Slide 61: Building locks
	Slide 62: Historical implementation
	Slide 63: OBJECTIVES – 4/25
	Slide 64: Spin lock implementation
	Slide 65: DIY: Correct?
	Slide 66: DIY: PERFORMANT?
	Slide 67: OBJECTIVES – 4/25
	Slide 68: Test-and-set instruction
	Slide 69: DIY: Test-and-set - 2
	Slide 70: Spin Lock evaluation
	Slide 71: OBJECTIVES – 4/25
	Slide 72: Compare and Swap
	Slide 73: Compare and swap
	Slide 74
	Slide 75: Two more “lock Building” CPU instructions
	Slide 76: LL/SC Lock
	Slide 77: LL/SC lock - 2
	Slide 78: Chapter 29 – LOCK Based data structures
	Slide 79: OBJECTIVES – 4/25
	Slide 80: Lock-based concurrent data structures
	Slide 81: Counter structure w/o lock
	Slide 82: concurrent counter
	Slide 83: Concurrent counter - 2
	Slide 84: Concurrent counters - Performance
	Slide 85: Perfect scaling
	Slide 86: OBJECTIVES – 4/25
	Slide 87: Sloppy counter
	Slide 88: Sloppy counter – main points
	Slide 89: Sloppy counter - 2
	Slide 90: Threshold value S
	Slide 91: Sloppy counter - example
	Slide 92: OBJECTIVES – 4/25
	Slide 93: Concurrent linked list - 1
	Slide 94: Concurrent linked list - 2
	Slide 95: Concurrent linked list - 3
	Slide 96: Concurrent linked list
	Slide 97: Ccl – second implementation
	Slide 98: Ccl – second implementation - 2
	Slide 99: Concurrent Linked list performance
	Slide 100: OBJECTIVES – 4/25
	Slide 101: Michael and scott concurrent queues
	Slide 102: Concurrent queue
	Slide 103: Concurrent queue - 2
	Slide 104: OBJECTIVES – 4/25
	Slide 105: Concurrent hash table
	Slide 106: Insert performance – concurrent hash table
	Slide 107: Concurrent hash table
	Slide 108
	Slide 109: Lock-free data structures
	Slide 110: Questions

