
TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.1Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Linux Completely Fair Scheduler,
Introduction to Concurrency,

Linux Thread API

Wes J. Lloyd

School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 15% off textbook code: EARTHWEEK15
(through Friday Apr 21)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-14mjrrgk.html

 With coupon textbook is only $18.70 + tax & shipping

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

TEXT BOOK COUPON

1

2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.2Slides by Wes J. Lloyd

Tuesdays:

▪2:30 to 3:30 pm - CP 229 / Zoom

Fridays

▪*1:30 to 2:30 pm – Zoom / (CP 229-on some days)

Also available after class

Or email for appointment

> Of f ice Hours set based on Student Demographics sur vey feedback

* time may be occasional ly rescheduled due to faculty meeting conf l icts

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

OFFICE HOURS – SPRING 2023

 Please join the TCSS 422 A – Spring 2023 Discord Server

https://discord.gg/hqNanxEQ

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.4

TCSS 422 DISCORD SERVER

3

4

https://discord.gg/hqNanxEQ

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.3Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.5

OBJECTIVES – 4/20

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 20, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

ONLINE DAILY FEEDBACK SURVEY

5

6

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.4Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.7

 Please classify your perspective on material covered in today’s

class (43 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.58 ( - previous 7.26)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 6.14 ( - previous 5.79)

April 20, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.8

MATERIAL / PACE

7

8

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.5Slides by Wes J. Lloyd

 I wonder if you can explain again how to draw the graph which

is the example in class about the priority boost? I'm not sure

how to get that result, such as B being the last job.

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

FEEDBACK FROM 4/18

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.10

SANITY CHECK: Consider the timing graph
x-axis should not exceed the combined job
length of all jobs.

9

10

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.6Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.11

SANITY CHECK: Consider the timing graph
x-axis should not exceed the combined job
length of all jobs.

 If we will not be working with legacy systems, my question is:
What is the usefulness of, and how important is it for our long -
term careers to remember these older methods of scheduling
that are no longer considered to be relevant or have been
replaced with schedulers such as CFS?

 Understanding fundamental schedulers such as round -robin is
core-CS. It is possible to implement a system that will need
use this or a similar load distribution algorithm.
Understanding traditional schedulers is important when
innovating new ones.

 For example, a former student in 2021 implemented a load
distribution algorithm based on reinforcement learning a type
of deep-learning for a serverless cloud computing platform.

▪ One of the baseline schedulers we compared against in the paper
was round-robin load distribution: https://tinyurl.com/4ure98ff

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.12

FEEDBACK - 2

11

12

https://tinyurl.com/4ure98ff

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.7Slides by Wes J. Lloyd

 It is difficult to understand concepts of the Linux

Completely Fair Scheduler (CFS) without understanding

core scheduling concepts, like RR, fairness, context -

switching, job time share, etc.

 Understanding how schedulers have evolved helps us

understand the problems encountered and the

corresponding solutions

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.13

FEEDBACK - 3

 I need some clarification on Assignment 0 question 2.
What is the purpose of the command?:

./a0.sh > a0.out

 It keeps saying no file in directory

 This is how you run the “a0.sh” script and direct the
output of the script to go to the text file called ‘a0.out’.

 If you have not yet created the ‘a0.sh’ script in the
working directory, there will be no script to run…
i.e. “no file in directory”….

 Use an editor such as gedit, nano, or vim/vi to create
a0.sh and a0_answers.txt

gedit a0.sh

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

FEEDBACK - 4

13

14

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.8Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

OBJECTIVES – 4/20

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.16

OBJECTIVES – 4/20

15

16

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.9Slides by Wes J. Lloyd

 Due Friday April 21 @ 11:59pm

 Grace period: submission ok until Sun Apr 23 @ 11:59 AM

 Late submissions thru Tuesday Apr 25 @ 11:59pm

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

ASSIGNMENT 0 - DUE FRI APR 21

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

OBJECTIVES – 4/20

17

18

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.10Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

OBJECTIVES – 4/20

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 27 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2023_quiz_1.pdf

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.20

QUIZ 1

19

20

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.11Slides by Wes J. Lloyd

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Tuesday May 2nd at 11:59pm

 Link:

 https://canvas.uw.edu/courses/1642522/assignments/8316759

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.21

QUIZ 2

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.22

OBJECTIVES – 4/20

21

22

https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.12Slides by Wes J. Lloyd

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In a perfect system every process of the same priority (class)

receives exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups processes of the same class

▪ In the class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.24

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

23

24

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.13Slides by Wes J. Lloyd

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

25

26

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.14Slides by Wes J. Lloyd

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceeds the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns (24ms)

if (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakeup_granularity_ns

CFS features reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakreup_granularity_ns

CFS features increased context switching → more overhead

better near-term fairness

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

CFS TRADEOFF

27

28

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.15Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.29

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a Linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed processes

are removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

CFS: JOB PRIORITY

29

30

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.16Slides by Wes J. Lloyd

 CFS tracks cumulative job run time with the vruntime variable

 The task on a given runqueue with the lowest vruntime is scheduled
next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ GOAL: Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

 When tasks wait for I/O they should receive a comparable share of
the CPU as if they were performing compute ops when run again

 Key takeaway:
identifying the next job to schedule is really fast!

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.32

COMPLETELY FAIR SCHEDULER - 7

31

32

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.17Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

OBJECTIVES – 4/20

CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.34

33

34

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.18Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program

with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.36

THREADS - 2

35

36

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.19Slides by Wes J. Lloyd

 Thread Control Block vs. Process Control Block

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.37

PROCESS AND THREAD METADATA

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

37

38

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.20Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

POSSIBLE ORDERINGS OF EVENTS

39

40

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.21Slides by Wes J. Lloyd

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

41

42

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.22Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

PROCESSES VS. THREADS

43

44

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.23Slides by Wes J. Lloyd

WE WILL RETURN AT

4:55PM

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.45

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.46

OBJECTIVES – 4/20

45

46

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.24Slides by Wes J. Lloyd

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.47

RACE CONDITION

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.48

OBJECTIVES – 4/20

47

48

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.25Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a

race condition .

 Atomic execution (all code executed as a unit) must be

ensured in critical sections

▪ These sections must be mutually exclusive

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.49

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

LOCKS

49

50

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.26Slides by Wes J. Lloyd

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is 16 million Lock & Unlock API calls

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.52

51

52

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.27Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

OBJECTIVES – 4/20

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

THREAD CREATION

53

54

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.28Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

55

56

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.29Slides by Wes J. Lloyd

 thread: which thread?

 value_ptr: pointer to return value

type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.57

WAITING FOR THREADS TO FINISH

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.58

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

57

58

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.30Slides by Wes J. Lloyd

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.59

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.60

ADDING CASTS

59

60

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.31Slides by Wes J. Lloyd

 pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.61

ADDING CASTS - 2

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.62

OBJECTIVES – 4/20

61

62

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.32Slides by Wes J. Lloyd

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.63

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.64

LOCKS - 2

63

64

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.33Slides by Wes J. Lloyd

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.65

LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.66

LOCKS - 3

65

66

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.34Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.67

OBJECTIVES – 4/20

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits) (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released

▪ Waits (listens) for a “signal” (NON -BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.68

CONDITIONS AND SIGNALS

67

68

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.35Slides by Wes J. Lloyd

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.69

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.70

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

69

70

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.36Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.71

CONDITION AND SIGNALS - 4

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.72

PTHREADS LIBRARY

71

72

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/20/2023

L8.37Slides by Wes J. Lloyd

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.73

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS

73

74

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Office hours – Spring 2023
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/20
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/18
	Slide 10
	Slide 11
	Slide 12: Feedback - 2
	Slide 13: Feedback - 3
	Slide 14: Feedback - 4
	Slide 15: OBJECTIVES – 4/20
	Slide 16: OBJECTIVES – 4/20
	Slide 17: Assignment 0 - Due Fri Apr 21
	Slide 18: OBJECTIVES – 4/20
	Slide 19: OBJECTIVES – 4/20
	Slide 20: Quiz 1
	Slide 21: Quiz 2
	Slide 22: OBJECTIVES – 4/20
	Slide 23: Linux: completely fair scheduler (CFS)
	Slide 24: Linux: Completely fair scheduler (CFS)
	Slide 25: Completely fair scheduler - 2
	Slide 26: Completely fair scheduler - 3
	Slide 27: Completely fair scheduler - 4
	Slide 28: Cfs TRADEOFF
	Slide 29: Completely fair scheduler - 5
	Slide 30: CFS: job priority
	Slide 31: Completely fair scheduler - 6
	Slide 32: Completely fair scheduler - 7
	Slide 33: OBJECTIVES – 4/20
	Slide 34: Chapter 26 -Concurrency: An introduction
	Slide 35: Threads
	Slide 36: Threads - 2
	Slide 37: Process and thread metadata
	Slide 38: Shared Address space
	Slide 39: Thread creation example
	Slide 40: Possible Orderings of events
	Slide 41: Possible Orderings of events - 2
	Slide 42: Possible orderings of events - 3
	Slide 43: Counter example
	Slide 44: Processes vs. threads
	Slide 45: We will return at 4:55pm
	Slide 46: OBJECTIVES – 4/20
	Slide 47: Race condition
	Slide 48: OBJECTIVES – 4/20
	Slide 49: Critical section
	Slide 50: locks
	Slide 51: Counter example
	Slide 52: Chapter 27 - Linux Thread API
	Slide 53: OBJECTIVES – 4/20
	Slide 54: Thread creation
	Slide 55: Pthread_create – pass any data
	Slide 56: Passing a single value
	Slide 57: Waiting for threads to finish
	Slide 58
	Slide 59
	Slide 60: ADDING CASTS
	Slide 61: Adding casts - 2
	Slide 62: OBJECTIVES – 4/20
	Slide 63: locks
	Slide 64: Locks - 2
	Slide 65: Lock initialization
	Slide 66: Locks - 3
	Slide 67: OBJECTIVES – 4/20
	Slide 68: Conditions and signals
	Slide 69: Conditions and signals - 2
	Slide 70: conditions and signals - 3
	Slide 71: Condition and SIGNALS - 4
	Slide 72: Pthreads library
	Slide 73: Sample Makefile
	Slide 74: Questions

