TCSS 422 A — Spring 2023
School of Engineering and Technology

4/20/2023

TCSS 422: OPERATING SYSTEMS

Linux Completely Fair Scheduler, ¢
Introduction to Concurrency,
Linux Thread API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2023]

Al k) School of Engineering and Technology, University of Washington

TEXT BOOK COUPON

= 15% off textbook code: EARTHWEEK15
(through Friday Apr 21)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-14mjrrgk.html

= With coupon textbook is only $18.70 + tax & shipping

‘TCSS422: Operating Systems [Spring 2023]
Eeaia0i202 School of Engineering and Technology, University of Washington - Tacoma 82

OFFICE HOURS - SPRING 2023

=Tuesdays:
=2:30 to 3:30 pm - CP 229 / Zoom

=Fridays

=*1:30 to 2:30 pm - Zoom / (CP 229-on some days)
mAlso available after class
=0r email for appointment

> Office Hours set based on Student Demographics survey feedback
* time may be occasionally rescheduled due to faculty meeting conflicts

‘TCSS422: Operating Systems [Spring 2023]
[Apel2072023 School of Engineering and Technology, University of Washington - Tacoma. 183

TCSS 422 DISCORD SERVER

= Please join the TCSS 422 A - Spring 2023 Discord Server

= https://discord.gg/hqNanxEQ

= Under Edit Server Profile:
Please update your ‘Server Nickname’
to your real name or UW NET ID
THANK YOU

‘TCS5422: Operating Systems [Spring 2023]
Apel 20,2023, School of Engineering and Technology, University of Washington - Tacoma 84

OBJECTIVES - 4/20

L= Ouestlons from4/18 |
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCS5422: Operating Systems [Spring 2023]
CEmDERer) School of Engineering and Technology, University of Washington - Tacoma 185

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Sprng 2021
Home

Announcements

Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

: i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

School of Engineering and Technology, University of Washington - Tacoma

April 20,2023 ‘ TCS5422: Computer Operating Systems [Spring 2023] 56

Slides by Wes J. Lloyd

L8.1

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://discord.gg/hqNanxEQ

TCSS 422 A — Spring 2023
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes
On.a scale of 110 10, please classify your perspective on material covered in today's
el
1 2 3 4 5 s 7T 8 3 1
sty
i 10 e ol nevie o
Question 2 05pes

Please rate the pace of today’s dass:

TCSS422: Computer Operating Systems [Spring 2023]

April 20,2023 School of Engineering and Technology, University of Washington - Tacoma L2

FEEDBACK FROM 4/18

= | wonder if you can explain again how to draw the graph which
is the example in class about the priority boost? I'm not sure
how to get that result, such as B being the last job.

‘TCSS422: Operating Systems [Spring 2023]
‘ April 20,2023 School of Engineering and Technology, University of Washington - Tacoma. 189

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
en the priority boost fires, the current job is preempted, and the next scheduled job is run in

tound yobin order; SANITY CHECK: Consider the timing graph

Job Arrival Time Job Length x-axis shoulq not exceed the combined job
A T=0 e)/ 0 length of all jobs.

B T=0 1 ARAO

c 10 ¥ IW\0

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example
Please draw clearly. An unreadable graph will loose points

. N
HIGH }P,\BC_ A [CB: CD} S (P
MED } M% wy bb BY

|

|

|

H : v)
' Yo

4/20/2023

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (43 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.58 (T - previous 7.26)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 6.14 (T - previous 5.79)

TCS5422: Computer Operating Systems [Spring 2023]
‘ Srl2072022 School of Engineering and Technology, University of Washington - Tacoma a8

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin

rouncbrobin order. SANITY CHECK: Consider the timing graph

Job Arrival Time Job Length x-axis should not exceed the combined job
A T=0 4 9 length of all jobs.

B T=0 16

C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example
Please draw clearly. An unreadable graph will loose points

HIGH

=
m
o

b
=

10

FEEDBACK - 2

= If we will not be working with legacy systems, my question is:
What is the usefulness of, and how important is it for our long-
term careers to remember these older methods of scheduling
that are no longer considered to be relevant or have been
replaced with schedulers such as CFS?

= Understanding fundamental schedulers such as round-robin is
core-CS. It is possible to implement a system that will need
use this or a similar load distribution algorithm.
Understanding traditional schedulers is important when
innovating new ones.

= For example, a former student in 2021 implemented a load
distribution algorithm based on reinforcement learning a type
of deep-learning for a serverless cloud computing platform.

= One of the baseline schedulers we compared against in the paper
was round-robin load distribution: =/ /ti

TCS3422: Operating Systems [Spring 2023] 812
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

Low i ! L P B
2 &\ 75
o 3T AT Ry T END
11

Slides by Wes J. Lloyd

12

L8.2

https://tinyurl.com/4ure98ff

TCSS 422 A — Spring 2023 4/20/2023

School of Engineering and Technology

FEEDBACK - 3

= |t is difficult to understand concepts of the Linux
Completely Fair Scheduler (CFS) without understanding
core scheduling concepts, like RR, fairness, context-
switching, job time share, etc.

= Understanding how schedulers have evolved helps us
understand the problems encountered and the
corresponding solutions

TCSS422: Operating Systems [Spring 2023]

‘ Lnllen s School of Engineering and Technology, University of Washington - Tacoma

1813

FEEDBACK - 4

= | need some clarification on Assignment 0 question 2.
What Is the purpose of the command?:

./a0.sh > a0.out

= [t keeps saying no flle In directory

= This is how you run the “a0.sh” script and direct the
output of the script to go to the text file called ‘a0.out’.

= |f you have not yet created the ‘a0.sh’ script in the
working directory, there will be no script to run...
i.e. “no flle In directory”....

= Use an editor such as gedit, nano, or vim/vi to create
a0.sh and a0O_answers.txt

gedit a0.sh

‘TCSS422: Operating Systems [Spring 2023]

‘ Srl2072022 School of Engineering and Technology, University of Washington - Tacoma

13

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorlal - Polnters, Strings, Exec In C - Due Frl Apr 28]
= Assignment O - Due Fri Apr 21 | Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS8422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

1815

14

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
[=Assignment 0 - Due Fri Apr 21]| Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2023]

Apell20/2023) School of Engineering and Technology, University of Washington - Tacoma

15

ASSIGNMENT O - DUE FRI APR 21

= Due Friday April 21 @ 11:59pm
= Grace period: submission ok until Sun Apr 23 @ 11:59 AM
= Late submissions thru Tuesday Apr 25 @ 11:59pm

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

18.17

‘ April 20,2023

16

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Asslgnment O - Due Frl Apr 21
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 20,2023

17

Slides by Wes J. Lloyd

18

L8.3

TCSS 422

A — Spring 2023

School of Engineering and Technology

4/20/2023

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1
1" Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2) |
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2023]
Lnllen s School of Engineering and Technology, University of Washington - Tacoma L8.19

QuIZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

® Posted in Canvas
= Due Thursday April 27t at 11:59pm

= Link:
= https://faculty.washington.edu/wlloyd/courses/tcss422/
qulz/TCSS422_s2023_qulz_1.pdf

‘TCSS422: Operating Systems [Spring 2023]

‘ Srl2072022 School of Engineering and Technology, University of Washington - Tacoma

19

20

= Canvas Quiz - Practice CPU Scheduling Problems

" Posted in Canvas
= Unlimited attempts permitted
= Due Tuesday May 2" at 11:59pm

= Link:
= https://canvas.uw.edu/courses/1642522/asslgnments/8316759

‘TCSS422: Operating Systems [Spring 2023]
April 20,2023 School of Engineering and Technology, University of Washington - Tacoma. 1821

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
|_=Linux Completely Fair Scheduler |
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 20,2023

21

22

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

Large Google datacenter study:

“Profiling a Warehouse-scale Computer” (Kanev et al.)
Monitored 20,000 servers over 3 years

Found 20% of CPU time spent in the Linux kernel

= 5% of CPU time spent & i

in the CPU scheduler! %30

8 25
- T 20
L §tudy highlights g 15 _—
importance for 10
high performance F kernel/sched
0S kernels and s'srrrrorfor L
E & 5 & 2535 & 8 & 2
CPU schedulers ! FEFEFITTHFIE
Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.
So0: nttpe; .
TCS5422: Operating Systems [Spring 2023]
‘ CEmDERer) School of Engineering and Technology, University of Washington - Tacoma 1823

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In a perfect system every process of the same priority (class)
receives exactly 1/nt" of the CPU time

= Each scheduling class has a runqueue
= Groups processes of the same class
= In the class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

. 7CS3422: Operating Systems [Spring 2023]
‘ DA School of Engineering and Technology, University of Washington -Tacoma 1824

23

Slides by Wes J. Lloyd

24

L8.4

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1642522/assignments/8316759
https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A — Spring 2023
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):

= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)
= How to show scheduling class and priority:

" fclass
ps -elfc

= §priority (nice value)
Ps ax -o pid,ni,cls,pri,cmd

TCSS422: Operating Systems [Spring 2023]
‘ Lnllen s School of Engineering and Technology, University of Washington - Tacoma 18.25

25

COMPLETELY FAIR SCHEDULER - 4

= Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= If system has idle capacity, time slice exceeds the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched wakeup_granularity ns
(4ms)
Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ns/sched_min_granularity)
or
sched_min_granularity * number of processes in runqueue

Ret: https://www.systutorlals.com/schad_min_granularity_ns-schsd_latency_ns-ofs-attsct-timesiice-pracessss/

‘TCSS422: Operating Systems [Spring 2023] 1827
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

27

COMPLETELY FAIR SCHEDULER - 5

= Runqueues are stored using a Linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approx execution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed processes °
are removed

Nodes represent

sched_entity(s)

indexed by their
virtual runtime:

virtual runtime

Most need of CPU Least need of CPU

TCS5422: Operating Systems [Spring 2023] 1829
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

29

Slides by Wes J. Lloyd

4/20/2023

COMPLETELY FAIR SCHEDULER - 3

= Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

= Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU
= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysctl kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysct] kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

‘TCSS422: Operating Systems [Spring 2023]

Srl2072022 School of Engineering and Technology, University of Washington - Tacoma 1826
= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns
CFS features reduced context switching > less overhead
poor near-term fairness
= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns
CFS features increased context switching > more overhead
better near-term fairness
\ April 20,2023 oot o ghetvg s Tty sy of Washirgion - Tacoms w28

CFS: JOB PRIORITY

= Time slice: Linux “Nice value”
= Nice predates the CFS scheduler
= Top shows nice values
= Process command (nice & priority):
ps ax -o pid,ni,cmd, $cpu, pri
= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCS3422: Operating Systems [Spring 2023] 1830
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

30

L8.5

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A — Spring 2023
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

CFS tracks cumulative job run time with the vruntime variable

The task on a given runqueue with the lowest vruntime is scheduled
next

= struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= GOAL: Perfect scheduler >
achieve equal vruntime for all processes of same priority

Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

When tasks wait for I/0 they should receive a comparable share of
the CPU as if they were performing compute ops when run again

= Key takeaway:
Identifylng the next Job to schedule Is really fast!

TCSS422: Operating Systems [Spring 2023]

Lnllen s School of Engineering and Technology, University of Washington - Tacoma.

1831

31

OBJECTIVES - 4/

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler

= pthread cond wait/ signal/ broadcast
TCSS42 Systems [Spring 2023]
[Apel2072023 School of Engineering and Technology, University of Washington - Tacoma.

= Ch r 26: Concurrency: An Intr. ion
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

1833

33

Process. Multithreaded Process

Process State: PC, Theesd | | Theend
registers, SP, ef e] [Stet
. N

¢ en
Single {
Threaded vases SHARED 1M::ggtlieed
Process ~ || Process

&

000
——

1+

©Alfred Park, http://randu.org/tutorials/threads

TCS5422: Operating Systems [Spring 2023]

CEmDERer) School of Engineering and Technology, University of Washington - Tacoma

1835

4/20/2023

COMPLETELY FAIR SCHEDULER - 7

= More information:

= Man page: “man sched” : Describes Linux scheduling API
" http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

‘TCSS422: Operating Systems [Spring 2023]

‘ Eeaia0i202 School of Engineering and Technology, University of Washington - Tacoma

32

CHAPTER 26 -
CONCURRENCY
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2023]

I ATE School of Engineering and Technology, University of Washington -

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= This is parallel programming...

= Supports independent path(s) of execution within a program
with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Threads share code segment, memory, and heap are shared

= What Is an embarrassingly parallel program?

TCS5422: Operating Systems [Spring 2023]

‘ April 20,2023 School of Engineering and Technology, University of Washington - Tacoma

1836

35

Slides by Wes J. Lloyd

36

L8.6

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A — Spring 2023

4/20/2023
School of Engineering and Technology

= Thread Control Block vs. Process Control Block = Every thread has it’s own stack / PC
OKB """ The code segment: L a——
ProGram Code | where instruciions fve Program Code
1K8 The b 1K8
t:
Thread identification Process identification Heap T e Heap
Thread state Process status 28 dynamic data structures 2K8
CPU information: Process state: (it grows downward)
Program counter Process status word -
Register contents e Ui
Thead priority Resources (free)
Pointer to process that created this theead Process priarity
Pointers to all other threads created by this thread Accounting acieq
it grows upward)
The stack segment: (free)
158 contains local variables 15kB
Stack (1) arguments ta routines, Stack (1)
16KB return values, ofc 16K8 _
A single-Threaded Two threaded
Address Space Address Space
TC55422: Operating Systems [Spring 2023] TC55422; Operating Systems [Spring 2023]
‘ Lnllen s School of Engineering and Technology, University of Washington - Tacoma 1837 ‘ Eeaia0i202 School of Engineering and Technology, University of Washington - Tacoma 1838

37 38

tinciude staion> | mmamp | Theadl ice2
#include <assert.h> Starts running
#include <pthread.h>
Prints ‘main: begin’
void smythread(void rarg) {
printf ("$s\n®, (char) arg); (Bt IEEL L
| e oL Creates Thread 2
Waits for T4
int
main(int arge, char +argv(l} (KD
promead© pls pl; Prints ‘A'
printf("main: begin\n"); Returns
L, mychread, assert (rc == 0);
, mythread, assert (rc == 0); »WailsforTZ
o finish
ead_join(pl, NULL); assert(rc == 0); (I
ead_join (p2, NULL); assert(rc == 0]; Prints ‘B’
prints ("main: end\n");
return 0; Returns
}
» Prints ‘main: end’
TCS5422: Operating Systems (Spring 2023] TCS5422: Operating Systems [Spring 2023
‘ April 20,2023 School of Engineering and Technology, University of Washington - Tacoma 1839 Bl 20 School of Engineering and Technology, University of Washington - Tacoma 1840

39 40

POSSIBLE ORDERINGS OF EVENTS - 2 POSSIBLE ORDERINGS OF EVENTS - 3

 mmem | vt | wem: [mmem | twewst | o2
Starts running

Starts running
Prints ‘main: begin' Prints ‘main: begin’
Creates Thread 1 Creates Thread 1

Runs Creates Thread 2

Prints ‘A"
Rotums What if execution order of
e . e events in the program matters?

Prints ‘B’ Runs
Returns Prints ‘A"
Waits for T1 Returns immediately Returns
Waits for T2 Returns immediately Waits for T2 Immediately returns
Prints ‘main: end’ Prints ‘main: end’
[mms [Comomemems [mmn [omommemmimm

41 42

Slides by Wes J. Lloyd L8.7

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/20/2023

COUNTER EXAMPLE

= Counter example

= A + B : ordering

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

= Counter: incrementing global variable by two threads

TCSS422: Operating Systems [Spring 2023]
CIERETD School of Engineering and Technology, University of Washington - Tacoma

18.43

PROCESSES VS. THREADS

= What’s the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

coda data ties code data files.
7 gt [t [
. Lo ot o]

s
e

AN

S,
? rea

singlohreaded procass mustithroadsd pracess

‘TCS5422: Operating Systems [Spring 2023]
Eeaia0i202 School of Engineering and Technology, University of Washington - Tacoma 1844

43

WE WILL RETURN AT
4:55PM

; TCSS422: Operating Systems [Spring 2023]
Apai20.2022 School of Engineering and Technology, University of Washington -

45

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Thread1 Thread2 PC_ %eax counter
before critical section 00 0 50
mov 0x804%alc, Yeax 105 50 50
add $0x1, %eax 108 81 50
5ave T1
restore 00 0 50
mov 0xa04galc, teax 105 50 50
add $0x1, &eax 108 51 50
mov teax, 0xE04%alc 113 51 51
2 T 108 51 50
mov %eax, 0x8 13 51 [s1

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

Slides by Wes J. Lloyd

44

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
[__=Race condition]
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

‘TCS5422: Operating Systems [Spring 2023] L8.46
School of Engineering and Technology, University of Washington - Tacoma

‘ April 20,2023

46

OBJECTIVES - 4/20

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
L itical section |
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

TCS5422: Operating Systems [Spring 2023]

April 20,2023 School of Engineering and Technology, University of Washington - Tacoma

48

L8.8

TCSS 422 A — Spring 2023 4/20/2023
School of Engineering and Technology

CRITICAL SECTION

= Code that accesses a shared variable must not be = To demonstrate how critical section(s) can be executed
concurrently executed by more than one thread “atomically-as a unit” Chapter 27 & beyond introduce locks

= Multiple active threads inside a critical sectlon produce a
race conditlon.

= Atomlc executlon (all code executed as a unit) must be lock_t mutex:

1
i N 2
ensured in critical sections 3 b et o) £
= These sections must be mutually exclusive 4 Critical section
5

unlock (smutex) ;

= Counter example revisited

TCSS422: Operating Systems [Spring 2023]
‘ CIERETD School of Engineering and Technology, University of Washington - Tacoma

49 50

‘TCS5422: Operating Systems [Spring 2023]
‘ Eeaia0i202 School of Engineering and Technology, University of Washington - Tacoma

COUNTER EXAMPLE

= With locks
= 2 threads count to 16 million
= ~1.4 seconds

= COUNT IS CORRECT - no data loss CHAPTER 27 _
= Without locks LINUX

= 2 threads count to 16 million

= ~0.03 seconds TH READ API

= COUNT IS INCORRECT - DATA IS LOST

= Correct version is 46.6 x slower
= Cost is 16 million Lock & Unlock API calls

TCS5422: Operating Systems (Spring 2023] . TCSS422: Operating Systems [Spring 2023]
‘ GlED, 2 School of Engineering and Technology, University of Washington - Tacoma 1851 otz 202 School of Engineering and Technology, University of Washington -

51 52

OBJECTIVES - 4/20 THREAD CREATION

= Questions from 4/18

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1 Finclude <pthread.h>
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)

= pthread_create

pthread create(pthread t* thread,

= Chapter 9: Proportional Share Schedulers pthread_attr t* attr,
= Linux Completely Fair Scheduler e :;;:.?n routine) (void*),

= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
|__= pthread_create/_Joln |

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast
TCS5422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
Gl 2 School of Engineering and Technology, University of Washington - Tacoma 1853 ‘ DA School of Engineering and Technology, University of Washington - Tacoma e

53 54

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

Slides by Wes J. Lloyd L8.9

TCSS 422 A — Spring 2023
School of Engineering and Technology

PTHREAD_CREATE - PASS ANY DATA

#incluge <pthread.n»

_ myarg t {

} myarg t:

LI
yarg_t *) args
*, m->a, m->bl

main(*argv(]) {
‘ args.a = 107
rc = pthread_create(ép, NULL, mythread, gargs)s
}
TCSS422: Operating Systems [Spring 2023]
‘ Lnllen s School of Engineering and Technology, University of Washington - Tacoma 1855

55

WAITING FOR THREADS TO FINISH

pthread_join(pthread t thread, i **value_ptr}:

= thread: which thread?

= value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCS5422: Operating Systems [Spring 2023]
‘ April 20,2023 School of Engineering and Technology, University of Washington - Tacoma 1857

57

struct myarg {
it How about this code?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
prmtf("a-%d b=%d\n",input->a, input->b);
1nput >a
input->b = 2;

return (void *) &input;

} $ /pthread struct

int main (int argc, char * argv[])

returned 1 2

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&l, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2023]

April 20, 2023 School of Engineering and Technology, University of Washington - Tacoma L8.59

59

Slides by Wes J. Lloyd

4/20/2023

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,

How large (in bvtes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

——
pthread_create (ép, HULL, my\.h:euc.@l.
pthread_ JDlh(p, (void **) &m);

12 printf (“re &d\n”, m);

H]

‘TCS5422: Operating Systems [Spring 2023]

‘ Eeaia0i202 School of Engineering and Technology, University of Washington - Tacoma

56

struct myarg { .
intas at will this code do?
}

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);

truct tput;
quSEt ,Zyirﬁ;“ pu « Data on thread stack
output.b =

$./pthread_struct
a=10 b=20

2;
return (void *) &output;

Segmentation fault (core dumped)

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20;
pthread_
pthread

i How can this code be fixed?

return 0

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.58

April 20, 2023

58

ADDING CASTS

= Casting
= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return

In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **' but argument
is of type ‘int **'

extern int pthread_join (pthread_t __th, void **__thread_return);

TC55422: Operating Systems [Spring 2023]
‘ (DD School of Engineering and Technology, University of Washington -Tacoma 180

60

TCSS 422 A — Spring 2023 4/20/2023
School of Engineering and Technology

ADDING CASTS - 2 OBJECTIVES - 4/20

u pthread_join = Questions from 4/18

G * plval; = C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
p2val; = Assignment O - Due Fri Apr 21 | Assignment 1
pthread_join(pl, (veid *)&plval); = Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
peireReLIoTn(@2, Coid “Demvaldt = Chapter 9: Proportional Share Schedulers

= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

= return from thread function

int * counterval = malloc(sizeof(int)); .
*counterval = counter; = Race condition
return (void *) counterval; = Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread cond wait/ signal/ broadcast

TCS5422: Operating Systems [Spring 2023] TC5422: Operating Systems (Spring 2023]
‘ Lnllen s School of Engineering and Technology, University of Washington - Tacoma 1861 Srl2072022 School of Engineering and Technology, University of Washington - Tacoma 1862

61 62

LOCKS

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Excluslon”

= pthread_mutex_t data type
= /usr/include/bits/pthread_types.h

// Global Address Space
static volatile int counter = 0; = API

pthread_mutex_lock (pthread_mutex_t *mutex);

void *worker(void *arg) t pthread_mutex_unlock(pthread mutsx_t *mutex):

= Example w/o initialization & error checking

int di;
for (i=0;1<10000000;i++) { Prhresd muten & look:
thread mutex lock (slock) ;
assert(rc==0); S ke+7’|"f ex_lock(&lock)
counter = counter + 1; N ‘
+ pthread mutex_unlock(&lock):

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

‘ April 20, 2023 TC55422: Operating Systems [Spring 2023] 1863 ‘ April 20, 2023 TC55422: Operating Systems [Spring 2023 e

3
return NULL;

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

63 64

LOCK INITIALIZATION LOCKS - 3

= Assigning the constant = Error checking wrapper

| pthread mutex_t lock = PTHREAD MUTEX INITIALIZER; ‘

lock (pthread mutex t *mutex) {
|_mutex_lock (mutex) ;

i Pthread mut.
= API call: £ rc = pt

assert (rc

rc =
assert (rc 1 5

+

mutex_init (slock, NULL); ‘

= What if lock can’t be obtained?

pthread mutex_trylock(pthread mutex t *mutex):

= |f NULL, then default attributes are used int pthread mutex_timelock (pthread mutex_t *mutex,
struct timespec *abs_timecut);

= |nitializes mutex with attributes specified by 2" argument

= Upon initialization, the mutex is initialized and unlocked O e — rEis M eeeiely (G2 1 [eek 1 oreval e

= timelock - tries to obtain a lock for a specified duration

TCS5422: Operating Systems [Spring 2023] . TC55422: Operating Systems [Spring 2023]
‘ CEmDERer) School of Engineering and Technology, University of Washington - Tacoma 1865 DA School of Engineering and Technology, University of Washington - Tacoma .

65 66

Slides by Wes J. Lloyd L8.11

TCSS 422 A — Spring 2023

4/20/2023
School of Engineering and Technology

OBJECTIVES - 4/20

CONDITIONS AND SIGNALS

= Questions from 4/18
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment O - Due Fri Apr 21 | Assignment 1

= Condition variables support “signaling”
between threads

int pthread cond wait (pthread cond t *cond,
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2) pthread mutex t *mutex);
= Chapter 9: Proportional Share Schedulers ! p‘;mad’condj'gml‘rmreadjmd) cond) :
= Linux Completely Fair Scheduler = pthread_cont_t datatype
= Chapter 26: Concurrency: An Introduction o e e Elo)
- R ComdiiEg « Puts thread to “sleep” (waits) (THREAD is BLOCKED)
® Critical section = Threads added to >FIFO queue<, lock is released
= Chapter 27: Linux Thread API

= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
= pthread_create/_join = When signal occurs, interrupt fires, wakes up first thread,
= pthread_mutex_lock/_unlock/_trylock/_timelock (THREAD is RUNNING), lock is provided to thread

Systems [Spring 2023] Anel| 20,2023 TCS5422; Operating Systems [Spring 2023 1868
School of Engineering and Technology, University of Washington - Tacoma. i School of Engineering and Technology, University of Washington - Tacoma

April 20,2023

67 68

CONDITIONS AND SIGNALS -2

CONDITIONS AND SIGNALS -3

int pthread_cond_signal(pthread_cond_t * cond); = Wait example:
int pthread_cond_broadcast(pthread_cond_t * cond);

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

= pthread_cond_signal () pthread mutex_lock (&lock) ;
= Called to send a “signal” to wake-up first thread in FIFQ “wait” queue ‘

while (initialized == 0)
= The goal is to unblock a thread to respond to the signal pthread cond_wait (&cond, &lock);

// Perform work that requires lock
a=a+b;
= pthread_cond_broadcast() pthread_mutex_unlock (&lock) ;
= Unblocks all threads in FIFO “walt” queue, currently blocked on the
specified condition variable

= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released bv this code

= When initialized, another thread signals En:é?:;?;gﬂﬁr:;z(s)

= Broadcast is used when all threads should wake-up for the signal

= Which thread is unblocked first?
= Determined by OS scheduler (based on priority)

prhread mutex lock (slogk): to proceed above.
= Thread(s) awoken based on placement order in FIFQ walt queue initialized = <
. . . h d t 1 K pthread_cond_signal (einit);
When awoken threads acquire lock as in pthread_mutex_lock () pthread mutex unlock(5lock) ;
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ April 20,2023 School of Engineering and Technology, University of Washington - Tacoma 18.69 ‘ April 20,2023 School of Engineering and Technology, University of Washington - Tacoma 1870

69 70

CONDITION AND SIGNALS - 4 PTHREADS LIBRARY

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER; = [
pthread cond_t cond = PTHREAD_COND_INITIALIZER; Compilation:

gcc requires special option to require programs with pthreads:
thread mutex lock (&lock) ;

hile (initialized 0) = gcc -pthread pthread.c -o pthread
pthread cond wait(&cond, &lock); = Explicitly links library with compiler flag
// Perform work that requires lock
a=a+b; = RECOMMEND: using makefile to provide compiler arguments
pthread_mutex_unlock (slock) ;

= Why do we wait inside a while loop? = List of pthread manpages

= The while ensures upon awakening the condition is rechecked = = [irees
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TCS5422: Operating Systems [Spring 2023] . TC55422: Operating Systems [Spring 2023]
‘ CEmDERer) School of Engineering and Technology, University of Washington - Tacoma 187 DA School of Engineering and Technology, University of Washington - Tacoma e

71 72

Slides by Wes J. Lloyd L8.12

TCSS 422 A — Spring 2023 4/20/2023

School of Engineering and Technology

SAMPLE MAKEFILE

QUESTIONS

CC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $A -0 $@

cl

ean:

$(RM) -f $(binaries) *.o
= Example builds multiple single file programs
= All target

= pthread_mult
= Example if multiple source files should produce a single executable

= clean target

TCSS422: Operating Systems [Spring 2023]
l Lnllen s School of Engineering and Technology, University of Washington - Tacoma 1873

73 74

Slides by Wes J. Lloyd L8.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Office hours – Spring 2023
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/20
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/18
	Slide 10
	Slide 11
	Slide 12: Feedback - 2
	Slide 13: Feedback - 3
	Slide 14: Feedback - 4
	Slide 15: OBJECTIVES – 4/20
	Slide 16: OBJECTIVES – 4/20
	Slide 17: Assignment 0 - Due Fri Apr 21
	Slide 18: OBJECTIVES – 4/20
	Slide 19: OBJECTIVES – 4/20
	Slide 20: Quiz 1
	Slide 21: Quiz 2
	Slide 22: OBJECTIVES – 4/20
	Slide 23: Linux: completely fair scheduler (CFS)
	Slide 24: Linux: Completely fair scheduler (CFS)
	Slide 25: Completely fair scheduler - 2
	Slide 26: Completely fair scheduler - 3
	Slide 27: Completely fair scheduler - 4
	Slide 28: Cfs TRADEOFF
	Slide 29: Completely fair scheduler - 5
	Slide 30: CFS: job priority
	Slide 31: Completely fair scheduler - 6
	Slide 32: Completely fair scheduler - 7
	Slide 33: OBJECTIVES – 4/20
	Slide 34: Chapter 26 -Concurrency: An introduction
	Slide 35: Threads
	Slide 36: Threads - 2
	Slide 37: Process and thread metadata
	Slide 38: Shared Address space
	Slide 39: Thread creation example
	Slide 40: Possible Orderings of events
	Slide 41: Possible Orderings of events - 2
	Slide 42: Possible orderings of events - 3
	Slide 43: Counter example
	Slide 44: Processes vs. threads
	Slide 45: We will return at 4:55pm
	Slide 46: OBJECTIVES – 4/20
	Slide 47: Race condition
	Slide 48: OBJECTIVES – 4/20
	Slide 49: Critical section
	Slide 50: locks
	Slide 51: Counter example
	Slide 52: Chapter 27 - Linux Thread API
	Slide 53: OBJECTIVES – 4/20
	Slide 54: Thread creation
	Slide 55: Pthread_create – pass any data
	Slide 56: Passing a single value
	Slide 57: Waiting for threads to finish
	Slide 58
	Slide 59
	Slide 60: ADDING CASTS
	Slide 61: Adding casts - 2
	Slide 62: OBJECTIVES – 4/20
	Slide 63: locks
	Slide 64: Locks - 2
	Slide 65: Lock initialization
	Slide 66: Locks - 3
	Slide 67: OBJECTIVES – 4/20
	Slide 68: Conditions and signals
	Slide 69: Conditions and signals - 2
	Slide 70: conditions and signals - 3
	Slide 71: Condition and SIGNALS - 4
	Slide 72: Pthreads library
	Slide 73: Sample Makefile
	Slide 74: Questions

