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TCSS 422: OPERATING SYSTEMS

 15% off textbook code: EARTHWEEK15
(through Friday Apr 21 )

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-14mjrrgk.html

 With coupon textbook is only $18.70 + tax & shipping
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TEXT BOOK COUPON

Tuesdays: 

▪2:30 to 3:30 pm  - CP 229 / Zoom

Fridays

▪*1:30 to 2:30 pm – Zoom / (CP 229-on some days)

Also available after class

Or email for appointment

> Of f ice  Hour s set  based on Student Demographics sur vey feedback

* t ime may be occasionally rescheduled due to faculty meeting conf l icts
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OFFICE HOURS – SPRING 2023

 Please join the TCSS 422 A – Spring 2023 Discord Server

https://discord.gg/hqNanxEQ

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID 

THANK YOU
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TCSS 422 DISCORD SERVER

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 20, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://discord.gg/hqNanxEQ
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 Please classify your perspective on material covered in today’s 

class (43 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.58  ( - previous 7.26) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.14 ( - previous 5.79)
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MATERIAL / PACE

 I wonder if you can explain again how to draw the graph which 

is the example in class about the priority boost? I'm not sure 

how to get that result, such as B being the last job.
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FEEDBACK FROM 4/18
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SANITY CHECK: Consider the timing graph 
x-axis should not exceed the combined job 
length of all jobs.
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SANITY CHECK: Consider the timing graph 
x-axis should not exceed the combined job 
length of all jobs.

 I f  we wil l not be working with legacy systems, my question is : 
What is  the usefulness of , and how important is  i t  for our long -
term careers to remember these older methods of  scheduling 
that are no longer considered to be relevant or have been 
replaced with schedulers such as CFS?

 Understanding fundamental schedulers such as round -robin is 
core-CS.  It is possible to implement a system that will need 
use this or a similar load distribution algorithm.  
Understanding traditional schedulers is important when 
innovating new ones.  

 For example, a former student in 2021 implemented a load 
distribution algorithm based on reinforcement learning a type 
of deep-learning for a serverless cloud computing platform.

▪ One of the baseline schedulers we compared against in the paper 
was round-robin load distribution: https://tinyurl.com/4ure98ff
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FEEDBACK - 2

7 8

9 10

11 12

https://tinyurl.com/4ure98ff
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 It is difficult to understand concepts of the Linux 

Completely Fair Scheduler (CFS) without understanding 

core scheduling concepts, like RR, fairness, context -

switching, job time share, etc. 

 Understanding how schedulers have evolved helps us 

understand the problems encountered and the 

corresponding solutions 
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FEEDBACK - 3

 I  need some clarification on Assignment 0 question 2. 
What is  the purpose of the command?:

./a0.sh > a0.out

 I t  keeps saying no f i le in directory

 This is how you run the “a0.sh” script and direct the
output of the script to go to the text file called ‘a0.out’.

 If you have not yet created the ‘a0.sh’ script in the 
working directory, there will be no script to run…
i.e. “no f i le in directory”….

 Use an editor such as gedit, nano, or vim/vi to create 
a0.sh and a0_answers.txt

gedit a0.sh

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L8.14

FEEDBACK - 4

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 Due Friday April 21 @ 11:59pm

 Grace period: submission ok until Sun Apr 23 @ 11:59 AM

 Late submissions thru Tuesday Apr 25 @ 11:59pm
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ASSIGNMENT 0 - DUE FRI APR 21

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

13 14

15 16

17 18
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 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 27 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2023_quiz_1.pdf
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QUIZ 1

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Tuesday May 2nd at 11:59pm

 Link:

 ht tps://canvas.uw.edu/courses/1642522/assignments/8316759
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QUIZ 2

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent 

in the CPU scheduler!

 Study highlights 

importance for 

high performance 

OS kernels and

CPU schedulers !

S e e :  h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In a perfect system every process of the same priority (class) 

receives exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups processes of the same class 

▪ In the class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches 

(e.g. 3 ms)
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

19 20

21 22

23 24

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1642522/assignments/8316759
https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
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 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd
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COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime)  to track how long 

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:
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COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000  

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceeds the min as long as

difference in vruntime between running process and process with 

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling t ime period is: total cycle t ime for iterat ing through a 

set  of processes where each is allowed to run

(l ike round robin)

 Example:

sched_latency_ns (24ms)

i f  (proc in runqueue < sched_latency_ns/sched_min_granularity )

or

sched_min_granularity * number of processes in runqueue

R e f :  h t t p s : / / w w w . sy s t u t o r i a l s . c om / s c h e d_ m i n _ g r a n u l a r i t y_ n s - s c h e d _ l a t e nc y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /
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COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakeup_granularity_ns

CFS features reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakreup_granularity_ns

CFS features increased context switching → more overhead

better near-term fairness
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CFS TRADEOFF
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COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a Linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest 

vruntime (approx execution time)

 Walking tree to find left 

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed processes 

are removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a 

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree
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CFS: JOB PRIORITY

25 26

27 28

29 30

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
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 CFS tracks cumulat ive job run t ime with the vruntime variable

 The task on a given runqueue with the lowest vruntime is scheduled 
next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ GOAL: Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs:  upon return a temporary vruntime can be used to 
increase temporari ly the priority of the task

 When tasks wait  for I/O they should receive a comparable share of 
the CPU as if they were per forming compute ops when run again

 Key takeaway:
identifying the next job to schedule is  really fast!
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COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf
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COMPLETELY FAIR SCHEDULER - 7

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION
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TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.34

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program

with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is  an embarrassingly parallel program?
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THREADS - 2

31 32

33 34

35 36

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
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 Thread Control Block vs. Process Control Block
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

37 38

39 40

41 42
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 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is  the counter example embarrassingly parallel?

 What does the parallel counter program require?
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COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads
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PROCESSES VS. THREADS

WE WILL RETURN AT 

4:55PM
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 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 What is happening with our counter? 

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52
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RACE CONDITION

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

43 44

45 46

47 48
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 Code that accesses a shared variable must not be 

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 

race condition .

 Atomic execution (all code executed as a unit )  must be 

ensured in critical sections

▪ These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT  - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is 16 million Lock & Unlock API calls
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COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L8.52

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 pthread_create

 thread: thread struct

 attr :  stack size, scheduling priority…  ( optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine ( optional)
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THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value

type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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WAITING FOR THREADS TO FINISH
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting 

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);
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ADDING CASTS
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 pthread_join

int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function

int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;
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ADDING CASTS - 2

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.64

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If  NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked
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LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if  lock is unavailable

 timelock – tr ies to obtain a lock for a specified duration
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LOCKS - 3
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 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Assignment 0 - Due Fri Apr 21 | Assignment 1

 Quiz 1 (Due Thur Apr 27) – Quiz 2 (Due Tue May 2)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/20

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits)    (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released 

▪ Waits (listens) for a “signal”   (NON-BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread
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CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the 
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.69

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.70

CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to 

execute when it should not.  (e.g. too early)
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CONDITION AND SIGNALS - 4

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

April 20, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L8.72

PTHREADS LIBRARY
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 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS
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