TCSS 422 A — Spring 2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-level Feedback Queue I, #
Proportional Share Schedulers,
Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

. TCSS422: Operating Systems [Spring 2023]
Sl) School of Engineering and Technology, University of Washington

4/18/2023

TEXT BOOK COUPON

= 15% off textbook code: EARTHWEEK15
(through Friday Apr 21)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-14mjrrgk.html

= With coupon textbook is only $18.70 + tax & shipping

‘TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma .2

‘ April 18, 2023

OFFICE HOURS - SPRING 2023

=Tuesdays:
=2:30 to 3:30 pm - CP 229 / Zoom

=Fridays

=*1:30 to 2:30 pm - Zoom / (CP 229-on some days)
mAlso available after class
=0r email for appointment

> Office Hours set based on Student Demographics survey feedback
* time may be occasionally rescheduled due to faculty meeting conflicts

‘TCSS422: Operating Systems [Spring 2023]
[Apll18/2023 School of Engineering and Technology, University of Washington - Tacoma.

OBJECTIVES - 4/18

| = Questions from 4/13 |
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2023]

‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

sping 2021
Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
= i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Spring 2023]

(D) School of Engineering and Technology, University of Washington -Tacoma

Slides by Wes J. Lloyd

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2023]

Seiiie 202y School of Engineering and Technology, University of Washington - Tacoma L76

L7.1

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html

TCSS 422 A — Spring 2023
School of Engineering and Technology

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (47 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 7.26 ({ - prevlous 7.64)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.79 (4 - previous 6.31)

TCSS422: Computer Operating Systems [Spring 2023]

Ll i School of Engineering and Technology, University of Washington - Tacoma

4/18/2023

FEEDBACK FROM 4/13

= What does round robin do if multiple jobs arrive at the
same time? s thls something that can happen or Is there
always a time difference?
= For the scheduling problems we solve, a distinct job arrival
sequence will always be provided
= Jobs may share the same arrival time (t=0), but an arrival
sequence will be specified “AB C”
= For a scheduling problem that leads to equally probable
scheduling actions, both will be considered as legitimate in
problem grading

‘TCS5422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma e

‘ April 18,2023

FEEDBACK - 2

= For the multi-level feedback queue scheduler, Is there a way to
manually force a Low Priority job back to a High Priority
queue?

= For example, If our “Weather Simulation” is belng a CPU hog
and it gets pushed to the bottom, is there a way to force it

back to the Highest Priority queue, say if | need the simulation
to respond to user Input and Just don’t care

about anything else?

= We will next introduce solutions to ‘gaming the scheduler’ which are
situations where jobs may become starved for execution time on the
CPU

‘TCSS422: Operating Systems [Spring 2023]

[Apll18/2023 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/18

= Questions from 4/13
| = Assignment O - Due Fri Apr 21 |
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2023]

‘ Apel 1872023 School of Engineering and Technology, University of Washington - Tacoma

17.10

ASSIGNMENT O - DUE FRI APR 21

= Due Friday April 21 @ 11:59pm
= Grace period: submission ok until Sun Apr 23 @ 11:59 AM
= Late submissions thru Tuesday Apr 25 @ 11:59pm

TCS5422: Operating Systems [Spring 2023]

(D) School of Engineering and Technology, University of Washington - Tacoma

17.11

10

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
[="C Tutorlal - Polnters, Strings, Exec In C - Due Frl Apr 28 |
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

17.12

‘ April 18, 2023

11

Slides by Wes J. Lloyd

12

L7.2

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/18/2023

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Quiz1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2023]

‘ Ll i School of Engineering and Technology, University of Washington - Tacoma

17.13

QuIZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

® Posted in Canvas
= Due Thursday April 27t at 11:59pm

= Link:

= https://faculty.washington.edu/wlloyd/courses/tcss422/
qulz/TCSS422_s2023_qulz_1.pdf

‘TCS5422: Operating Systems [Spring 2023]
‘ Gl i) School of Engineering and Technology, University of Washington - Tacoma 1714

13

14

= Canvas Quiz - Practice CPU Scheduling Problems
" Posted in Canvas
= Unlimited attempts permitted

= Due Tuesday May 2" at 11:59pm

= Link:

= https://canvas.uw.edu/courses/1642522/asslgnments/8316759

TCS5422: Operating Systems [Spring 2023]

‘ [Apll18/2023 School of Engineering and Technology, University of Washington - Tacoma

17.15

COMING SOON...

= Assignment #1
=To be posted for next class, Thursday Apr 20

= Midterm Exam
= Thursday May 4th
=In Class

TCS5422: Operating Systems [Spring 2023]
‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma 1718

15

16

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
|_= Gaming the Scheduler |
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2023]

‘ (D) School of Engineering and Technology, University of Washington - Tacoma

17.17

MLFQ: ISSUES - 2

= Gaming the scheduler
= Issue I/0 operation at 99% completion of the time slice
= Keeps job priority fixed - never lowered

= Job behavioral change
= CPU/batch process becomes an interactive process
[Migh Priority] Q# ——s (A) —= (8) —=(C |—= (D |—=(F |—=(F

ry.

@

@

Priority becomes stuck ‘ (Low Priorty] QL s (G) (1) CPU boundbatch jobis)
. TCS$422: Operating Systems [Spring 2023]
‘ LGN School of Engineering and Technology, University of Washington -Tacoma 1718

17

Slides by Wes J. Lloyd

18

L7.3

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A — Spring 2023 4/18/2023
School of Engineering and Technology

RESPONDING TO BEHAVIOR CHANGE

RESPONDING TO BEHAVIOR CHANGE - 2

- %&gﬁfﬁ% = With priority boost
| |

= Prevents starvation
Q1

Q
(=]

— Starvation

a 50 100 200

a9

Without Priority Boost 4. B:§ C:% .

= Priority Boost

= Reset all jobs to topmost queue after some time interval S

With Priority Boost A:. a_ c E

‘ Ao Le 203 TCs5422: Operating Systems [Spring 2023]

‘TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma 1719 ‘ Gl i) School of Engineering and Technology, University of Washington - Tacoma 17.20

19

20

KEY TO UNDERSTANDING MLFQ - PB

STARVATION EXAMPLE

= Without priority boost: = Conslder 3 queues:

® Q2 - HIGH PRIORITY - Time Quantum 10ms

= Q1 - MEDIUM PRIORITY - Time Quantum 20 ms
= Q0 - LOW PRIORITY - Time Quantum 40 ms

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Job A: 200ms no I/0

o R
= KEY: If time quantum of a higher queue is filled, = Job B: 5ms then I/0 []
then we don’t run any jobs in lower priority queues!!!

= Job C: 5ms then I/0

Q1L o=
= Q2 fills up, et R
starves Q1 & QO =
= A makes no progress 0 50 100 150 200
Without Priority Boost a. I B § c %
‘TCSS422: Operating Systems [Spring 2023] ‘TCS5422: Operating Systems [Spring 2023]
‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma. 21 ‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma .22

21

22

PREVENTING GAMING

MLFQ: TUNING

= I[mproved time accounting:

= Consider the tradeoffs:
= Track total job execution time in the queue = How many queues?
= Each job receives a fixed time allotment = What is a good time slice?
= When allotment is exhausted, job priority is lowered

= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

QZI§
-
UL L) | .

o 100 200
Without{Left) and With(Right) Gaming Tolerance Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest
. TCS5422: Operating Systems [Spring 2023] . TC55422: Operating Systems [Spring 2023]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma 172 AL School of Engineering and Technology, University of Washington - Tacoma 7

24

Slides by Wes J. Lloyd L7.4

TCSS 422 A — Spring 2023 4/18/2023
School of Engineering and Technology

PRACTICAL EXAMPLE MLFQ RULE SUMMARY

= Legacy Oracle Solaris (Unix) MLFQ implementation (v2.6) = The refined set of MLFQ rules:

=60 Queues 2> w/ slowly increasing time slice . 4: If Priority(A) > Priority(B), A Bd s
(high to low priority) Rule 1: riority(A) riority(B), A runs (oesn’t).

20ms high priority time slice = Rule 2: If Priority(A) = Priority(B), A & B run in RR.
100ms low priority time slice
boost every second

= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Giving the scheduler advice
= Provide OS with hints about the process
= Nice command - Linux

TCSS422: Operating Systems [Spring 2023] ‘TCSS422: Operating Systems [Spring 2023]
‘ Ll i School of Engineering and Technology, University of Washington - Tacoma 1725 Gl i) School of Engineering and Technology, University of Washington - Tacoma 17.28

= Rule 3: When a job enters the system, it is placed in the
highest priority queue.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

25 26

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
OBJECTIVES - 4/18 rouncbrobin order. SANITY CHECK: Consider the timing graph
Job Arrival Time Job Length x-axis should not exceed the combined job
A T=0 4 length of all jobs.
= Questions from 4/13 B T=0 16
= Assignment O - Due Fri Apr 21 (o3 T=0 8
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Quiz 1 and Quiz 2 (11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
= Chapter 8: Multi-level Feedback Queue Draw vertical lines for key events and be sure to label Ih_& X-axis times as in the example
= Gaming the Scheduler Please draw clearly. An unreadable graph will loose points
l 0 Examgles
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler HIGH
= Linux Completely Fair Scheduler }
= Chapter 26: Concurrency: An Introduction |
= Introduction MED |
= Race condition |
= Critical section |
Low |
I B 0
Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
round-robin order. EXAMPLE
Job Arrival Time sblength TImt shiee 15 B +ime.
A T=0 4 1540 £
B T=0 16 maigHRBRYN Befopp C/j = Question:
c T=0 }5 RY ﬁbﬂﬁ\o "I\!& 4 = Given a system with a quantum length of 10 ms for all jobs in its
= . g !
(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above. highest queue, how often would you have to boost job A (the first

job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

Draw vertical lines for key events and be sure to label the X-axis times as in the example
Please draw clearly. An unreadable graph will loose points

PR (46} P8 {
S O
I) S e TR S
o B B
s 3 6 112 5 7 23 s Y
29 30

Slides by Wes J. Lloyd L7.5

TCSS 422 A — Spring 2023 4/18/2023
School of Engineering and Technology

EXAMPLE EXAMPLE

= Question: = Question:
= Given a system with a quantum length of 10 ms ﬂO..Lﬂ.lLLO.D.S.iH'itS = Given a system with a quantum length of 10 ms for all Jobs in its
highest queue, how often would you have to boost job A (the first highest queue, how often would you have to boost jobs back to the

job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

B

highest priority level to guarantee that a single long-running (and
potentially starving) job gets at least 5% of the CPU?

= Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs =1 ms ea

& -05 PB = ID = n jobs always uses full time quantum in highest queue (10 ms)
Q = Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue
0 f PB = | o _ 200 ns = All other jobs run and context switch totaling the quantum per cycle
- = = If 10ms is 5% of the CPU, when must the priority boost be ???
405 = ANSWER -> Prlorlty boost should occur every 200ms
I o I e o

31 32

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler CHAPTER 9 =
= Examples

= c.hf::tn:rr9;°::Jdpuolgtrional Share Schedulers PRO PO RTIO NAL SHAR E

= Ticket mechanisms SCH EDULER

= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

‘ ‘April 18, 2023 TCS5422: Operating Systems [Spring 2023] 733 April 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington -

33 34

PROPORTIONAL SHARE SCHEDULER LOTTERY SCHEDULER

= Also called fair-share scheduler = Simple implementation

or lottery scheduler
= Just need a random number generator

= Guarantees each job receives some percentage of CPU Picks the winning ticket

time based on share of “tickets” - . . .
= Maintain a data structure of jobs and tickets (list)

= Each job receives an allotment of tickets . . .
= Traverse list to find the owner of the ticket

= % of tickets corresponds to potential share of a resource c id ting the list f d
= Consider sortin e list for spee

= Can conceptually schedule any resource this way
CPU, disk 1/0, memory

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
‘ IR School of Engineering and Technology, University of Washington - Tacoma 73 LGN School of Engineering and Technology, University of Washington - Tacoma 3

35 36

Slides by Wes J. Lloyd L7.6

TCSS 422 A — Spring 2023

4/18/2023
School of Engineering and Technology

LOTTERY SCHEDULER IMPLEMENTATION

P ~
JobB | { Jobic |

’;—H\ Tixzs f—>NULL
s AN k,,-”

counter = 0;

| WE WILL RETURN AT
D L g e 4:50PM

12 (current)
13 counter = counter + current->tickets;
1 (counter > winner)
15 :
16 current = current->next:
b)
1s
TCS5422: Operating Systems [Spring 2023] : TCSS422: Operating Systems [Spring 2023]
‘ Ll i School of Engineering and Technology, University of Washington - Tacoma 1737 Aprilis 2022 School of Engineering and Technology, University of Washington -

37 38

OBJECTIVES - 4/18 TICKET MECHANISMS

= Questions from 4/13

= Assignment O - Due Fri Apr 21 = Ticket currency / exchange
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28 = User allocates tickets in any desired way
® Quiz 1 and Quiz 2 R
= Chapter 8: Multi-level Feedback Queue = 0S converts user currency into global currency
= Gaming the Scheduler
= Examples 3 .
xample:
= Chapter 9: Proportional Share Schedulers p
= Lottery scheduler =There are 200 global tickets assigned by the 0S
|_= Ticket mechanisms |
= Stride scheduler User A = 500 (A's currency) to Al - 50 (global currency)
= Linux Completely Fair Scheduler > 500 (A's currency) to A2 2 50 (global currency)
= Chapter 26: Concurrency: An Introduction
= Introduction User B

= 10(B's currency) to B1 - 100 (global currency)
= Race condition

= Critical section

TCS5422: Operating Systems (Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ April 18, 2023 School of Engineering and Technology, University of Washington - Tacoma 173 CEDERTFD School of Engineering and Technology, University of Washington - Tacoma 740

TICKET MECHANISMS - 2 LOTTERY SCHEDULING

= Ticket transfer
= Temporarily hand off tickets to another process

= Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Ticket inflation

= Example:
= Process can temporarily raise or lower the number of = Given 100 tickets in the pool
tickets it owns Job A has 75 tickets: 0 - 74
= If a process needs more CPU time, it can boost tickets. Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: &4 B A A B A A A A A A B A B A

= But what do we know about probability of a coin flip?

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
(D) School of Engineering and Technology, University of Washington - Tacoma 4 CEIFERrD School of Engineering and Technology, University of Washington - Tacoma 2

41 42

Slides by Wes J. Lloyd L7.7

TCSS 422 A — Spring 2023
School of Engineering and Technology

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips!

20 Al heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Incressing number of con losees

TCSS422: Operating Systems [Spring 2023]
‘ Ll i School of Engineering and Technology, University of Washington - Tacoma 1743

43

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TCS5422: Operating Systems [Spring 2023]
‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma 1745

45

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

= |nstead of guessing a random number to select a
job, simply count...

TCS5422: Operating Systems [Spring 2023]
‘ (D) School of Engineering and Technology, University of Washington -Tacoma a7

47

Slides by Wes J. Lloyd

4/18/2023

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

10

Unfairness [Avarage)

1 10

Job Lenglh

When the job length is not very lo
average unfairness can be

TCss4:
School

rems [Spring

April 18, 2023 and Technoloy

44

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
|~ Stride scheduler |
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2023]
‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma L7.48

46

STRIDE SCHEDULER - 2

= Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is Inverse In proportlon to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > A4, = 10000/100 = 100 stride
= Job B has 50 tickets = Bg,q. = 10000/50 = 200 stride
= Job C has 250 tickets > Cqe = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

. 7CS5422: Operating Systems [Spring 2023]
‘ AL School of Engineering and Technology, University of Washington -Tacoma 1748

48

L7.8

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/18/2023

STRIDE SCHEDULER - 3

= Basic algorithm:
1. Stride scheduler picks job with the lowest pass value
2. Scheduler increments job’s pass value by its stride and
starts running
3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Spring 2023]

Ll i School of Engineering and Technology, University of Washington - Tacoma

17.49

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
riorit

=Lower stride = more chances to run (higher

Priority
C stride = 40
A stride = 100
B stride = 200

‘TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

17.50

April 18,2023

49

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

® Increment counter until > 100 cTilikze;;
" Pick a new job: two-way tie A =100
Pass(A) Pass(£) Pass(C) Whe Runs? B = 50
(stride=100) (stride=200) (stride=40)
o 0 0 . Initial job selection
100 4] 0 is random. All @ 0
100 200 0 C
100 200 40 c 4 C has the most tickets
100 200 80 c and receives a lot of
100 200 120 A opportunities to run...
200 200 120 c
200 200 160 C
200 200 200

TCS5422: Operating Systems [Spring 2023]

[Apll18/2023 School of Engineering and Technology, University of Washington - Tacoma.

17.51

50

STRIDE SCHEDULER EXAMPLE - 3

= We set A’s counter (pass value) to A’s stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(t) Pass(C) Whe Runs? A =100
(stride=100) (stride=200) (stride=40) B =50
0 0 0
100 0 0
100 200 0 c
100 200 40 c ﬁ C has the most tickets
100 200 80 c and is selected to run
100 200 120 A more often ...
200 200 120 c
200 200 160 c
200 200 200
I e v

51

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
= Over time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priorit 2 = izg
Pass(A) Pass(c) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 c
100 200 40 c
100 200 80 C
100 200 120 A
200 200 120 c
200 200 160 c
200 200 200
TCSS422: Oy ing Sy [Spring 2023]
[waman [g e =

53

Slides by Wes J. Lloyd

52

] April 18, 2023

Which of the following is NOT a problem with

proportional share schedulers?

How tickets should be distributed to incoming
jobs | A

Lottery scheduler is only eventually fair | B

Glven 2 users A and B who both receive a 50%
timeshare of the system, the runtime for User A's | (C
Jobs is dependent an the runtime of User B

Allof the above | [[)

None of the abave | [E

TCSS422: Operating Systems [Spring 2023]

L7.58
|

54

TCSS 422

A — Spring 2023

School of Engineering and Technology

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
|___= Linux Completely Fair Scheduler |
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

April 18,2023

TCSS422: Operating Systems [Spring 2023] 1755
School of Engineering and Technology, University of Washington - Tacoma

55

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In a perfect system every process of the same priority (class)
receives exactly 1/n" of the CPU time

= Each scheduling class has a runqueue
= Groups processes of the same class
= In the class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

TCS5422: Operating Systems [Spring 2023]
April 18,2023 School of Engineering and Technology, University of Washington - Tacoma 1787

4/18/2023

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)

Monitored 20,000 servers over 3 years
Found 20% of CPU time spent in the Linux kernel

5% of CPU time spent 535
in the CPU scheduler! & 3of

8 25
; 1 T 20|
= Study highlights £l
. £ kemel
importance for 10
high performance 3 5 kermel/sened
0S kernels and s rrpofErELERL
5 2 5 & 253 o3¢t 2
CPU schedulers ! FEFEFITTHFIE
Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.
so0: nttpss
‘TCS5422: Operating Systems [Spring 2023]
‘ Gl k) School of Engineering and Technology, University of Washington - Tacoma 17:58

56

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
= §class
ps -elfc

" §priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

TCS5422: Operating Systems [Spring 2023]
‘ April 18,2023 School of Engineering and Technology, University of Washington - Tacoma 17.58

57

COMPLETELY FAIR SCHEDULER - 3

= Linux 2 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

= Linux maintains simple counter (vruntime) to track how long
each thread/process has run
= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU
= Kernel parameters that specify CFS behavior:
$ sudo sysct1 kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysct] kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysct] kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

TCS5422: Operating Systems [Spring 2023]
(D) School of Engineering and Technology, University of Washington - Tacoma 1759

58

COMPLETELY FAIR SCHEDULER - 4

Sched_min_granularity_ns (3ms)

= Time slice for a process: busy system (w/ full runqueue)

= If system has idle capacity, time slice exceeds the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity ns
(4ms)

Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

= Example:

sched_latency_ns (24ms)

if (procin runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

Ret: hed_min_granularity_ns-sched_latency_t

TCS5422: Operating Systems [Spring 2023] 60
School of Engineering and Technology, University of Washington - Tacoma

‘ April 18, 2023

59

Slides by Wes J. Lloyd

60

L7.10

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A — Spring 2023
School of Engineering and Technology

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

CFS features reduced context switching -> less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

CFS features increased context switching > more overhead
better near-term fairness

TCSS422: Operating Systems [Spring 2023]
‘ Ll i School of Engineering and Technology, University of Washington - Tacoma 1761

4/18/2023

COMPLETELY FAIR SCHEDULER - 5

= Runqueues are stored using a Linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime

= Leftmost node has lowest
vruntime (approx execution time

= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes

= Completed processes °
are removed

Nodes represent

sched_entity(s)

indexed by their
virtual runtime:

virtual runtime

Most need of CPU

‘TCS5422: Operating Systems [Spring 2023] 762
School of Engineering and Technology, University of Washington - Tacoma

Least need of CPU

‘ April 18,2023

61

CFS: JOB PRIORITY

" Time slice: Linux “NIce value”
= Nice predates the CFS scheduler
=Top shows nice values

= Process command (nice & priority):
ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=vruntime is a weighted time measurement
= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCS5422: Operating Systems [Spring 2023] 1763
School of Engineering and Technology, University of Washington - Tacoma

‘ April 18,2023

62

COMPLETELY FAIR SCHEDULER - 6

CFS tracks cumulative job run time with the vruntime variable

The task on a given runqueue with the lowest vruntime is scheduled
next

= struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= GOAL;: Perfect scheduler >
achieve equal vruntime for all processes of same priority

Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

= When tasks wait for I/0 they should receive a comparable share of
the CPU as if they were performing compute ops when run again

= Key takeaway:
Identifying the next job to schedule Is really fast!

TCS5422: Operating Systems [Spring 2023] 768
School of Engineering and Technology, University of Washington - Tacoma

‘ April 18, 2023

63

64

COMPLETELY FAIR SCHEDULER - 7

= More information:

= Man page: “man sched” : Describes Linux scheduling API
= http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores

= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

. TCS5422: Operating Systems [Spring 2023]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma 1765

OBJECTIVES - 4/18

Questions from 4/13

Assignment O - Due Fri Apr 21

C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
Quiz 1 and Quiz 2

Chapter 8: Multi-level Feedback Queue

= Gaming the Scheduler

= Examples

Chapter 9: Proportional Share Schedulers
= Lottery scheduler

= Ticket mechanisms

= Stride scheduler

= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction
= Introduction

= Race condition

= Critical section

. 7CS5422: Operating Systems [Spring 2023]
‘ AL ‘ School of Engineering and Technology, University of Washington - Tacoma 1760

65

Slides by Wes J. Lloyd

66

L7.11

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/18/2023

CHAPTER 26 -

CONCURRENCY
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2023]

SEHlE202 School of Engineering and Technology, University of Washington -

THREADS

Process Multithreaded Process
Process State: PC, Process State: PC,
ters, SP, registers, SP, ctc..
Singl Code Seg
ingle Multiple
Data Segment Data Seg)
;hreaded s SHA Threaded
rocess | ICT IR Process
& v @
GAlred Park, hitp:/randu.org/tutorials/hreads
‘TCS5422: Operating Systems [Spring 2023]
l Al it [School of Engineering and Technology, University of Washington - Tacoma L7.68

67

THREADS - 2

= This is parallel programming...

= Enables a single process (program) to have multiple “workers”

68

= Supports independent path(s) of execution within a program

with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= What Is an embarrassingly parallel program?

= Threads share code segment, memory, and heap are shared

TCS5422: Operating Systems [Spring 2023]

l CIDEREED School of Engineering and Technology, University of Washington - Tacoma

17.69

PROCESS AND THREAD META

= Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:

Process identification
Process status
Process state:

Program counter Process status word
Register contents Registr contents
2 3in memory
Thread priority Resources
Pointer to process that created this thread Process priorty
Pointers to all other threads created by this thread Accounting

TCS5422: Operating Systems [Spring 2023]

Ane| 18,2023 School of Engineering and Technology, University of Washington - Tacoma

17.70

69

70

SHARED ADDRESS SPACE

= Every thread has it's own stack / PC

School of Engineering and Technology, University of Washington - Tacoma

OKB 1 The code segment: 0KB
Program Code | mhers imctnutoms e Pragram Code
1kB 1B
Hesp o e o Heap
2k8 dynamic data structures 2K8
it grows dewnward)
free)
(free)
Stack (2)
(it qrews upward)
The stack segment: (free)
15K8 contains local variabies 15KB
Stack (1) arguments to routines, Stack (1)
16K8 return values, ctc 16K8
A Single-Threaded Two threaded
Address Space Address Space
l Pl TCS5422: Operating Systems [Spring 2023] o

THREAD CREATION EXAMPLE

#include <stdic.h»
#include <assert.h>
tinclude <pthread.h>

void smythread(void rarg) {
printf("$s\n", (char +) arg);
return NULL;

)

int
main(int arge, char +argv(l) {

pthread_t pl, p2;

t rc;

printf("main: begin\n");

rc = pthread create(spl, NULL, mythread, "A"); assert (rc == 0);

rc = pthread create(sp2, NULL, mythread, "B"); assert (rc == 0);

// join waits for the threads to finish

rc = pthread_join(pl, NULL); assert(rc == 0);

rc = pthread_join(p2, NULL); assert(rc == 0);

printf ("main: end\n");

return 0;

TCS5422: Operating Systems [Spring 2023]

April 18,2023 School of Engineering and Technology, University of Washington - Tacoma

.2

71

Slides by Wes J. Lloyd

72

L7.12

TCSS 422 A — Spring 2023
School of Engineering and Technology

POSSIBLE ORDERINGS OF EVENTS

Thread 1 Thread 2

Starts running

‘Pvlnts‘maln: begin'
Creates Thread 1

Creates Thread 2
Waits for T4
Runs
‘ Prints ‘&'
Returns
‘ Waits for T2
Runs
‘ Prints ‘B’
Returns
‘ Prints ‘main: end’
‘ Ll i S ‘E):;r::e’:\gn:y:‘rled"“lseg\::::zgg\iulzli!versilv of Washington - Tacoma .73

4/18/2023

POSSIBLE ORDERINGS OF EVENTS - 2

mmem | Tweass | o2

Starts running

Prints ‘main: begin’

Creates Thread 1
Runs
Prints ‘A"
Returns
Creates Thread 2
Runs
Prints ‘B’
Returns
Waits for T1 Returns immediately
Waits for T2 Returns immediately
Prints ‘main: end’
I .

73

POSSIBLE ORDERINGS OF EVENTS - 3

mtmem | vt | wem:

Starts running
Prints ‘main: begin'
Creates Thread 1
Creates Thread 2

What if execution order of

events in the program matters?

Waits for T
Runs
Prints ‘A
Returns
Waits for T2 Immediately returns
Prints ‘main: end’
TCS5422: Operating Systems [Spring 2023]
‘ [Apll18/2023 School of Engineering and Technology, University of Washington - Tacoma 1775

74

COUNTER EXAMPLE

= Counter example

= A + B : ordering
= Counter: incrementing global variable by two threads

=|sth nter example embarrassingl, rallel?

= What does the parallel counter program require?

TCS5422: Operating Systems [Spring 2023]
‘ Apel 1872023 School of Engineering and Technology, University of Washington - Tacoma 1776

75

PROCESSES VS. THREADS

= What’s the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

oode data ties code data files
Process Process d |
ey | [oot]| gt ogein[rsser]
e etc reghters, P, etc_
EE=e=
c
e | T Hew | 2 S 2
— e— — — thepad — < Co—r thread
* ‘ < e
stack stack
singio-thenadod procass enutithwaacod process.
TCS5422: Operating Systems [Spring 2023]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma 77

76

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
- on

= Critical section

. 7CS5422: Operating Systems [Spring 2023]
‘ CEIFERrD ‘ School of Engineering and Technology, University of Washington - Tacoma 177

77

Slides by Wes J. Lloyd

78

L7.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1
= If synchronized, counter will = 52

(after instruction)

Fave T s state
restors Ti's 3
mov eax, 0

¢ 113

Qs Threadl Thread2 PC %eax counter

before critical section 100 0 50

mov 0xB04%alc, Yeax 105 50 50

add $0x1, seax 108 51 50

w00 o 50

mov Ox@04%ale, teax 105 50 50

add §0x1, eea: 108 51 50

mov beax, 0x@04%alc 113 51 51

108 51 50

¥

TCSS422: Operating Systems [Spring 2023]

‘ LATlIE) School of Engineering and Technology, University of Washington - Tacoma

17.79

79

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

race conditlon.

= Atomlc execution (all code executed as a unit) must be
ensured in critical sections

= These sections must be mutually exclusive

‘ P ES TCS5422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma -

= Multiple active threads inside a critical sectlon produce a

81

QUESTIONS

83

Slides by Wes J. Lloyd

4/18/2023

OBJECTIVES - 4/18

= Questions from 4/13
= Assignment O - Due Fri Apr 21
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition

[critical section]

‘TCS5422: Operating Systems [Spring 2023]

‘ Al it School of Engineering and Technology, University of Washington - Tacoma

17.80

80

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutexs

balance = balance + 1;

unlock (smutex) ;

Critical section

= Counter example revisited

TCS5422: Operating Systems [Spring 2023]

‘ April 18, 2023 School of Engineering and Technology, University of Washington - Tacoma

17.82

82

L7.14

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Office hours – Spring 2023
	Slide 4: OBJECTIVES – 4/18
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/13
	Slide 9: Feedback - 2
	Slide 10: OBJECTIVES – 4/18
	Slide 11: Assignment 0 - Due Fri Apr 21
	Slide 12: OBJECTIVES – 4/18
	Slide 13: OBJECTIVES – 4/18
	Slide 14: Quiz 1
	Slide 15: Quiz 2
	Slide 16: Coming soon...
	Slide 17: OBJECTIVES – 4/18
	Slide 18: Mlfq: issues - 2
	Slide 19: Responding to behavior change
	Slide 20: Responding to behavior change - 2
	Slide 21: Key to understanding MLFQ – PB
	Slide 22: Starvation example
	Slide 23: Preventing gaming
	Slide 24: MLFQ: TUNING
	Slide 25: Practical example
	Slide 26: Mlfq rule summary
	Slide 27: OBJECTIVES – 4/18
	Slide 28
	Slide 29
	Slide 30: example
	Slide 31: example
	Slide 32: example
	Slide 33: OBJECTIVES – 4/18
	Slide 34: Chapter 9 -Proportional Share Scheduler
	Slide 35: Proportional share scheduler
	Slide 36: Lottery scheduler
	Slide 37: Lottery scheduler implementation
	Slide 38: We will return at 4:50pm
	Slide 39: OBJECTIVES – 4/18
	Slide 40: Ticket mechanisms
	Slide 41: Ticket mechanisms - 2
	Slide 42: Lottery scheduling
	Slide 43: Coin flipping
	Slide 44: Lottery fairness
	Slide 45: Lottery scheduling challenges
	Slide 46: OBJECTIVES – 4/18
	Slide 47: Stride scheduler
	Slide 48: Stride scheduler - 2
	Slide 49: Stride scheduler - 3
	Slide 50: Stride scheduler - example
	Slide 51: Stride scheduler example - 2
	Slide 52: Stride scheduler example - 3
	Slide 53: Stride scheduler example - 4
	Slide 54
	Slide 55: OBJECTIVES – 4/18
	Slide 56: Linux: completely fair scheduler (CFS)
	Slide 57: Linux: Completely fair scheduler (CFS)
	Slide 58: Completely fair scheduler - 2
	Slide 59: Completely fair scheduler - 3
	Slide 60: Completely fair scheduler - 4
	Slide 61: Cfs TRADEOFF
	Slide 62: Completely fair scheduler - 5
	Slide 63: CFS: job priority
	Slide 64: Completely fair scheduler - 6
	Slide 65: Completely fair scheduler - 7
	Slide 66: OBJECTIVES – 4/18
	Slide 67: Chapter 26 -Concurrency: An introduction
	Slide 68: Threads
	Slide 69: Threads - 2
	Slide 70: Process and thread metadata
	Slide 71: Shared Address space
	Slide 72: Thread creation example
	Slide 73: Possible Orderings of events
	Slide 74: Possible Orderings of events - 2
	Slide 75: Possible orderings of events - 3
	Slide 76: Counter example
	Slide 77: Processes vs. threads
	Slide 78: OBJECTIVES – 4/18
	Slide 79: Race condition
	Slide 80: OBJECTIVES – 4/18
	Slide 81: Critical section
	Slide 82: locks
	Slide 83: Questions

