
TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.1Slides by Wes J. Lloyd

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Multi-level Feedback Queue II,
Proportional Share Schedulers,

Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 15% off textbook code: EARTHWEEK15
(through Friday Apr 21)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-14mjrrgk.html

 With coupon textbook is only $18.70 + tax & shipping

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

TEXT BOOK COUPON

Tuesdays:

▪2:30 to 3:30 pm - CP 229 / Zoom

Fridays

▪*1:30 to 2:30 pm – Zoom / (CP 229-on some days)

Also available after class

Or email for appointment

> Of f ice Hour s set based on Student Demographics sur vey feedback

* t ime may be occasionally rescheduled due to faculty meeting conf l icts

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

OFFICE HOURS – SPRING 2023

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

OBJECTIVES – 4/18

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 18, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

ONLINE DAILY FEEDBACK SURVEY

April 18, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.6

1 2

3 4

5 6

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (47 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.26 (- previous 7.64)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.79 (- previous 6.31)

April 18, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

MATERIAL / PACE

 What does round robin do if multiple jobs arrive at the

same time? Is this something that can happen or is there

always a time difference?

▪ For the scheduling problems we solve, a distinct job arrival

sequence will always be provided

▪ Jobs may share the same arrival time (t=0), but an arrival

sequence will be specified “A B C”

▪ For a scheduling problem that leads to equally probable

scheduling actions, both will be considered as legitimate in

problem grading

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

FEEDBACK FROM 4/13

 For the multi -level feedback queue scheduler, is there a way to

manually force a Low Priority job back to a High Priority

queue?

 For example, i f our “Weather S imulation” is being a CPU hog

and it gets pushed to the bottom, is there a way to force it

back to the Highest Priority queue, say if I need the simulation

to f inish immediately respond to user input and just don’t care

about anything else?

▪ We will next introduce solutions to ‘gaming the scheduler’ which are

situations where jobs may become starved for execution time on the

CPU

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

FEEDBACK - 2

 Quest ions from 4/13

 Assignment 0 - Due Fr i Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

OBJECTIVES – 4/18

 Due Friday April 21 @ 11:59pm

 Grace period: submission ok until Sun Apr 23 @ 11:59 AM

 Late submissions thru Tuesday Apr 25 @ 11:59pm

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

ASSIGNMENT 0 - DUE FRI APR 21

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Po inters, S trings, Exec in C - Due Fr i Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

OBJECTIVES – 4/18

7 8

9 10

11 12

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.3Slides by Wes J. Lloyd

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

OBJECTIVES – 4/18

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 27 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2023_quiz_1.pdf

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

QUIZ 1

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Tuesday May 2nd at 11:59pm

 Link:

 ht tps://canvas.uw.edu/courses/1642522/assignments/8316759

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

QUIZ 2

 Assignment #1

▪ To be posted for next class, Thursday Apr 20

 Midterm Exam

▪ Thursday May 4th

▪ In Class

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

COMING SOON...

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

OBJECTIVES – 4/18

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

MLFQ: ISSUES - 2

Priority becomes stuck

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.4Slides by Wes J. Lloyd

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

▪ Prevents starvation

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

STARVATION EXAMPLE

Starvation

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

PREVENTING GAMING

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

MLFQ: TUNING

19 20

21 22

23 24

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.5Slides by Wes J. Lloyd

 Legacy Oracle Solaris (Unix) MLFQ implementation (v2.6)

▪ 60 Queues → w/ slowly increasing time slice

(high to low priority)

20ms high priority time slice

100ms low priority time slice

boost every second

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority

changes, etc.

 Giving the scheduler advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed in the

highest priority queue.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced (i .e., it moves down one queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

MLFQ RULE SUMMARY

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

OBJECTIVES – 4/18

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.28

SANITY CHECK: Consider the timing graph
x-axis should not exceed the combined job
length of all jobs.

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.29

 Quest ion:

 Given a system with a quantum length of 10 ms fo r a l l jobs in its
highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potent ially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

.

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

EXAMPLE

25 26

27 28

29 30

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.6Slides by Wes J. Lloyd

 Question:

 Given a system with a quantum length of 10 ms fo r a l l jobs in its
highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potent ially starving) job gets at
least 5% of the CPU assuming that on priority boost job execut ion
resets to the front of the queue?

.

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms fo r a l l jobs in its

highest queue, how often would you have to boost jobs back to the

highest priority level to guarantee that a single long -running (and

potent ially starving) job gets at least 5% of the CPU?

 Some combination of n shor t jobs runs for a total of 10 ms per

cycle without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

EXAMPLE

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

OBJECTIVES – 4/18

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.34

 Also called fair -share scheduler

or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

LOTTERY SCHEDULER

31 32

33 34

35 36

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.7Slides by Wes J. Lloyd

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

WE WILL RETURN AT

4:50PM

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.38

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

OBJECTIVES – 4/18

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

LOTTERY SCHEDULING

Scheduled job:

37 38

39 40

41 42

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.8Slides by Wes J. Lloyd

 Equality of distribution (fairness) requires a lot of flips!

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

LOTTERY SCHEDULING CHALLENGES

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

OBJECTIVES – 4/18

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

STRIDE SCHEDULER

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

STRIDE SCHEDULER - 2

43 44

45 46

47 48

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.9Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of t ickets…

 Tickets are analogous to job pr iority

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.53

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.54

49 50

51 52

53 54

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.10Slides by Wes J. Lloyd

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

OBJECTIVES – 4/18

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In a perfect system every process of the same priority (class)

receives exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups processes of the same class

▪ In the class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceeds the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling t ime period is: total cycle t ime for iterat ing through a

set of processes where each is allowed to run

(l ike round robin)

 Example:

sched_latency_ns (24ms)

i f (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . sy s t u t o r i a l s . c om / s c h e d_ m i n _ g r a n u l a r i t y_ n s - s c h e d _ l a t e nc y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.60

COMPLETELY FAIR SCHEDULER - 4

55 56

57 58

59 60

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.11Slides by Wes J. Lloyd

 HIGH sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakeup_granularity_ns

CFS features reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakreup_granularity_ns

CFS features increased context switching → more overhead

better near-term fairness

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

CFS TRADEOFF

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a Linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed processes

are removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

CFS: JOB PRIORITY

 CFS tracks cumulat ive job run t ime with the vruntime variable

 The task on a given runqueue with the lowest vruntime is scheduled
next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ GOAL: Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return a temporary vruntime can be used to
increase temporari ly the priority of the task

 When tasks wait for I/O they should receive a comparable share of
the CPU as if they were per forming compute ops when run again

 Key takeaway:
identifying the next job to schedule is really fast!

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.64

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

COMPLETELY FAIR SCHEDULER - 7

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.66

OBJECTIVES – 4/18

61 62

63 64

65 66

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.12Slides by Wes J. Lloyd

CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L7.67

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.68

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program

with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

THREADS - 2

 Thread Control Block vs. Process Control Block

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

PROCESS AND THREAD METADATA

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.72

THREAD CREATION EXAMPLE

67 68

69 70

71 72

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.13Slides by Wes J. Lloyd

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.73

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.74

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.75

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.76

COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.77

PROCESSES VS. THREADS

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.78

OBJECTIVES – 4/18

73 74

75 76

77 78

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/18/2023

L7.14Slides by Wes J. Lloyd

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.79

RACE CONDITION

 Quest ions from 4/13

 Assignment 0 - Due Fri Apr 21

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

 Quiz 1 and Quiz 2

 Chapter 8: Mult i - level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proport ional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduct ion

▪ Introduction

▪ Race condition

▪ Critical section

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.80

OBJECTIVES – 4/18

 Code that accesses a shared variable must not be

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a

race condition .

 Atomic execution (all code executed as a unit) must be

ensured in critical sections

▪ These sections must be mutually exclusive

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.81

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L7.82

LOCKS

QUESTIONS

79 80

81 82

83

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Office hours – Spring 2023
	Slide 4: OBJECTIVES – 4/18
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/13
	Slide 9: Feedback - 2
	Slide 10: OBJECTIVES – 4/18
	Slide 11: Assignment 0 - Due Fri Apr 21
	Slide 12: OBJECTIVES – 4/18
	Slide 13: OBJECTIVES – 4/18
	Slide 14: Quiz 1
	Slide 15: Quiz 2
	Slide 16: Coming soon...
	Slide 17: OBJECTIVES – 4/18
	Slide 18: Mlfq: issues - 2
	Slide 19: Responding to behavior change
	Slide 20: Responding to behavior change - 2
	Slide 21: Key to understanding MLFQ – PB
	Slide 22: Starvation example
	Slide 23: Preventing gaming
	Slide 24: MLFQ: TUNING
	Slide 25: Practical example
	Slide 26: Mlfq rule summary
	Slide 27: OBJECTIVES – 4/18
	Slide 28
	Slide 29
	Slide 30: example
	Slide 31: example
	Slide 32: example
	Slide 33: OBJECTIVES – 4/18
	Slide 34: Chapter 9 -Proportional Share Scheduler
	Slide 35: Proportional share scheduler
	Slide 36: Lottery scheduler
	Slide 37: Lottery scheduler implementation
	Slide 38: We will return at 4:50pm
	Slide 39: OBJECTIVES – 4/18
	Slide 40: Ticket mechanisms
	Slide 41: Ticket mechanisms - 2
	Slide 42: Lottery scheduling
	Slide 43: Coin flipping
	Slide 44: Lottery fairness
	Slide 45: Lottery scheduling challenges
	Slide 46: OBJECTIVES – 4/18
	Slide 47: Stride scheduler
	Slide 48: Stride scheduler - 2
	Slide 49: Stride scheduler - 3
	Slide 50: Stride scheduler - example
	Slide 51: Stride scheduler example - 2
	Slide 52: Stride scheduler example - 3
	Slide 53: Stride scheduler example - 4
	Slide 54
	Slide 55: OBJECTIVES – 4/18
	Slide 56: Linux: completely fair scheduler (CFS)
	Slide 57: Linux: Completely fair scheduler (CFS)
	Slide 58: Completely fair scheduler - 2
	Slide 59: Completely fair scheduler - 3
	Slide 60: Completely fair scheduler - 4
	Slide 61: Cfs TRADEOFF
	Slide 62: Completely fair scheduler - 5
	Slide 63: CFS: job priority
	Slide 64: Completely fair scheduler - 6
	Slide 65: Completely fair scheduler - 7
	Slide 66: OBJECTIVES – 4/18
	Slide 67: Chapter 26 -Concurrency: An introduction
	Slide 68: Threads
	Slide 69: Threads - 2
	Slide 70: Process and thread metadata
	Slide 71: Shared Address space
	Slide 72: Thread creation example
	Slide 73: Possible Orderings of events
	Slide 74: Possible Orderings of events - 2
	Slide 75: Possible orderings of events - 3
	Slide 76: Counter example
	Slide 77: Processes vs. threads
	Slide 78: OBJECTIVES – 4/18
	Slide 79: Race condition
	Slide 80: OBJECTIVES – 4/18
	Slide 81: Critical section
	Slide 82: locks
	Slide 83: Questions

