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TEXT BOOK COUPON

Tuesdays: 

▪2:30 to 3:30 pm  - CP 229 / Zoom

Fridays

▪*1:30 to 2:30 pm – Zoom / (CP 229-on some days)

Also available after class

Or email for appointment

> Of f ice  Hour s set  based on Student Demographics sur vey feedback

* t ime may be occasionally rescheduled due to faculty meeting conf l icts
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OFFICE HOURS – SPRING 2023

 It  is fine to view TCSS 422 lecture recording to attend this event :
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PANEL AND Q&A ON SOCIAL JUSTICE 

APRIL 18 

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6
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 Please classify your perspective on material covered in today’s 

class (39 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.64  ( - previous 7.58) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.31 ( - previous 6.08)
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MATERIAL / PACE

 I ’m having trouble wrapping my head around the scheduling 

metrics concepts, can you take some t ime to explain it  again?
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FEEDBACK FROM 4/11

 Metrics: A standard measure to quantify to what degree a 

system possesses some property.  Metrics provide repeatable

techniques to quantify and compare systems.

 Measurements are the numbers derived from the application 

of metrics

 Scheduling Metric #1: Turnaround t ime

 The time at which the job completes minus the time at which 

the job arrived in the system

 How is turnaround time dif ferent than execution time?
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SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness

▪ Jain’s fairness index

▪ Quantifies if jobs receive a fair share of system resources

 n processes

 x i is time share of each process

 worst case = 1/n

 best case = 1

 Consider n=3, worst case = .333, best case=1

 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62

 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

April 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.11

SCHEDULING METRICS - 2
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With n=3 and x1=.2, x2=.7, x3=.1
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Compute average turnaround time for 
Shortest Job First Scheduler

Job A arrives at t=0, runtime=100
Job B arrives at t=10, runtime=10
Job C arrives at t=20, runtime=10

 The most that is  not c lear to  me is  the context switch.

 Since context switching a l lows multiple processes to  make progress 
but a lso has some overhead that increases the overall  runtime, how 
do  we determine exactly  how of ten to  cause a  context 
switch/determine the s ize o f  a  t ime s l ice?

 It  is not  necessary for users to determine how often to context  
switch processes

 The Linux operat ing system scheduler does this for us

 This is discussed in Ch.9 - Linux Completely Fair Scheduler (CFS)

 In this course we seek to understand “the big picture”,  but not fine 
grained detail  on how CFS works

 Command to view context  switches: pidstat 1 -w
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FEEDBACK - 2

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 13, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L6.16

OBJECTIVES – 4/13

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7:  Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13

13 14

15 16

17 18
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CHAPTER 7-

SCHEDULING:

INTRODUCTION
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Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers
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CHAPTER 7

 Consider: duration a=100sec, b/c=10sec

▪ Alen=100 Aarrival=0

▪ Blen=10, Barrival=10, Clen=10, Carrival=10
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STCF:

SHORTEST TIME TO COMPLETION FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎− 𝟎) + 𝟐𝟎− 𝟏𝟎 + (𝟑𝟎− 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers
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CHAPTER 7

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO 

▪ can perform poorly with respect to response time

April 13, 2023
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𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help 
minimize response time?

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers
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CHAPTER 7

19 20

21 22

23 24
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 Run each job awhile, then switch to another distributing the 

CPU evenly (fair ly)

 Scheduling Quantum

is called a time slice

 Time slice must be

a multiple of the

timer interrupt

period.

April 13, 2023
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RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

April 13, 2023
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RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎+ 𝟓+ 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not 
considered

 Time slice impact:

▪Turnaround time (for earlier example): 
ts(1,2,3,4,5)=14,14,13,14,10

▪Fairness: round robin is always fair, J=1

April 13, 2023
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ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice  STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 13, 2023
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SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)
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SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 13, 2023
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Which scheduler, this far, best addresses fairness 

and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 13, 2023
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QUESTION: SCHEDULING FAIRNESS

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 

average response time (ART) and 

average turnaround time (ATT) scheduling metrics for the 

FIFO scheduler. 

April 13, 2023
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SCHEDULING METRICS

A B C

0 400  500 700

Example:
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 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 

average response time (ART) and 

average turnaround time (ATT) scheduling metrics for the 

SJF scheduler. 
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SCHEDULING METRICS

AB C

0 100 300 700

Example:
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WE WILL RETURN AT 

4:50PM

April 13, 2023
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 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 13, 2023
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OBJECTIVES – 4/13

CHAPTER 8 –

MULTI-LEVEL FEEDBACK 

QUEUE (MLFQ) SCHEDULER

April 13, 2023
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Objectives:

▪ Improve turnaround time:

Run shorter jobs first

▪Minimize response time:

Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 13, 2023
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MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

April 13, 2023
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MLFQ - 2 Round-Robin
within a Queue

37 38

39 40

41 42
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 New arriving jobs are placed into highest priority queue

 If  a job uses its entire time slice, priority is reduced ( ↓)

▪ Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 13, 2023
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MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

April 13, 2023
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MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms, 

 B run_time =20ms, Barrival_time =100ms

April 13, 2023
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MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

April 13, 2023
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MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13

Starvation

April 13, 2023
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MLFQ: ISSUES

43 44
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 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

April 13, 2023
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MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S
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RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

▪ Prevents starvation

April 13, 2023
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RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost: 

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY:  If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!
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KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

April 13, 2023
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STARVATION EXAMPLE

Starvation

49 50

51 52
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 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

April 13, 2023
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PREVENTING GAMING

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

April 13, 2023
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MLFQ: TUNING

 Oracle Solaris MLFQ implementation

▪ 60 Queues →

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority 

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

April 13, 2023
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PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the 

highest priority.

 Rule 4: Once a job uses up its time allotment at a given 

level (regardless of how many times it has given up the 

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the 

system to the topmost queue.
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MLFQ RULE SUMMARY

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/13
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 Question:

 Given a system with a quantum length of 10 ms fo r  a l l  jobs in its 

highest  queue, how often would you have to boost  jobs back to the 

highest  priority level to guarantee that  a single long -running (and 

potent ially starving) job gets at  least  5% of the CPU?

.
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EXAMPLE

 Quest ion:

 Given a system with a quantum length of 10 ms fo r  a l l  jobs in its 

highest queue, how often would you have to boost jobs back to the 

highest  priority level to guarantee that  a single long -running (and 

potent ially starving) job gets at  least  5% of the CPU?

.
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EXAMPLE

 Quest ion:

 Given a system with a quantum length of 10 ms fo r  a l l  jobs in its 

highest queue, how often would you have to boost jobs back to the 

highest  priority level to guarantee that  a single long -running (and 

potent ially starving) job gets at  least  5% of the CPU?

 Some combination of n shor t  jobs runs for a total of 10 ms per 

cycle without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms
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EXAMPLE

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction 

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9:  Proportional Share Schedulers
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OBJECTIVES – 4/13

CHAPTER 9 -

PROPORTIONAL SHARE 

SCHEDULER
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 Chapter 9:  Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 4/13

 Also called fair -share scheduler

or lottery scheduler

▪ Guarantees each job receives some percentage of CPU 

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed
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LOTTERY SCHEDULER
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LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9:  Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 4/13

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS
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TICKET MECHANISMS
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 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of 

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.
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TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?
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LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

April 13, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.
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LOTTERY FAIRNESS

 With two jobs 

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as 

desired

 How should the OS automatically distribute tickets upon 

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…
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LOTTERY SCHEDULING CHALLENGES

 Chapter 9:  Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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Addresses statistical probability issues with 

lottery scheduling

 Instead of guessing a random number to select a 

job, simply count…
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STRIDE SCHEDULER

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should 

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of 

tickets  (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 

the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 13, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L6.82

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …
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 Job counters support determining which job to run next 

 Over time jobs are scheduled to run based on their

priority represented as their share of  t ickets…

 Tickets are analogous to job pr iority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50

 Chapter 9:  Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 4/13

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent 

in the CPU scheduler!

 Study highlights 

importance for 

high performance 

OS kernels and

CPU schedulers !

S e e :  h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class) 

receive exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class 

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches 

(e.g. 3 ms)
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 13, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L6.89

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter ( vruntime) to track how long 

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 13, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L6.90

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000  

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000
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 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with 

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling t ime period is: total cycle t ime for iterat ing through a 

set  of processes where each is allowed to run

(l ike round robin)

 Example:

sched_latency_ns (24ms)

i f  (proc in runqueue < sched_latency_ns/sched_min_granularity )

or

sched_min_granularity * number of processes in runqueue

R e f :  h t t p s : / / w w w . sy s t u t o r i a l s . c om / s c h e d_ m i n _ g r a n u l a r i t y_ n s - s c h e d _ l a t e nc y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /
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COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

sched_latency_ns

sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness
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CFS TRADEOFF

April 13, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L6.93

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest 
vruntime (approx execution time)

 Walking tree to find left 

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed 

processes removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a 

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree
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CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is 
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in 
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf
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COMPLETELY FAIR SCHEDULER - 7

91 92

93 94

95 96

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf


TCSS 422 A – Spring 2023
School of Engineering and Technology

4/13/2023

L6.17Slides by Wes J. Lloyd

QUESTIONS
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