
TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.1Slides by Wes J. Lloyd

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 4/4

 Installing a Ubuntu Vir tual Machine on Apple M1 MacBooks:

 FREE

 https://mac.getutm.app/

 MACs have switched to using ARM-based CPUs

▪ Motivation: faster, less expensive than Intel-based CPUs

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

VIRTUAL MACHINE SUPPORT

ON APPLE M1

 15% off textbook code: BCORP15! (through Friday Apr 7)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

softcover-version-100/paperback/product-14mjrrgk.html

 With coupon textbook is only $18.70 + tax & shipping

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

TEXT BOOK COUPON

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p

 Thursday surveys: due ~ Mon @ 9p, closes 11:59p

April 4, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ONLINE DAILY FEEDBACK SURVEY

April 4, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.6

1 2

3 4

5 6

https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (52 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.77 (- previous 6.18)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.71 (- previous 5.91)

April 4, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

MATERIAL / PACE

 I 'm sti ll having trouble understanding what inodes are

and how they work.

 An inode is a data structure that tracks all of the files

and directories within a Linux or UNIX -based filesystem.

 Every file and directory stored on a disk

in a filesystem is allocated an inode as

a FILE RECORD

 File records are identified by a unique

integer known as the “ inode”.

 File records store metadata about each

file or directory.

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK FROM 3/30

 What are the values of using threads compared to a

processes? When should each be used?

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 2

 In our example o f concurrent threads exceeding their t ime s l ice and

causing wrong output, would there be a way to track whether a

thread completed i ts task or i f i t t imed out before completion?

 I t is necessary to monitor the # of context switches for each thread

 This is available from the vir tual fi le : /proc/[pid]/status

 There are two lines: cat status | grep ctxt

voluntary_ctxt_switches:8084285

nonvoluntary_ctxt_switches: 39709

 This is very dif ficult though – must determine thread IDs

 Program is so fast , by the t ime the thread IDs are determined,

there is not much t ime before pthread reaches its specified count

 This is an example of an OS monitoring problem

 It is easier to observe context switches if the threads run for awhile

 SEE example: pthread-check.sh

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

FEEDBACK - 3

 Can the number o f pages a program has fo r i t 's s tack and heap
change during runtime?

 Yes

 The heap wil l dynamically change to accommodate program
memory requirements

▪ Requests to malloc()/realloc() gradually increase the heap size

▪ Requests to free() will shrink the heap size

 The stack segment could increase if the requirements increase for
t racking data involved with funct ion calls

 I checked a small C program

 The stack size was 132 KB (33 x 4KB pages)

 Check the stack size in KB for a process using the command:
pidstat -p [p id] - l - s

 The stack can be seen in the process vir tual memory map -
must do hexadecimal math to calculate size:
cat /proc/[pid]/maps | grep stack

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

FEEDBACK - 4

 Trying to conceptualize the reason for vir tual addresses

(in Operating Systems)

▪ Security: if physical addresses were exposed, an attacker could

acquire the physical address and attempt to read, modify, write the

data

▪ Program Relocation: because users only see virtual addresses, the

OS can physically move programs to new locations without changing

any user pointers

▪ Memory defragmentation: OS can dynamically reorganize memory

for better efficiency. All user pointers are virtual. Virtual pointers still

work and are translated to new addresses

▪ Shared Libraries: Two programs can have a virtual address (pointer)

to a shared library that is mapped by the OS to a single physical

address. The sharing and library location are abstracted. Shared

libraries are important to save memory.

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

WHY VIRTUAL MEMORY?

7 8

9 10

11 12

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.3Slides by Wes J. Lloyd

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many vir tual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Vir tual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft -developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it -runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

MOTIVATION FOR LINUX

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://instances.vantage.sh/

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

MOTIVATION FOR LINUX - 2

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS

10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

OBJECTIVES – 4/4

C REVIEW SURVEY -

AVAILABLE THRU 4/7

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.17

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 4/4

13 14

15 16

17 18

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.4Slides by Wes J. Lloyd

47 of 59 Responses as of 4/3 @ ~11pm

Current Standings:

▪Best Office Hours times so far:

▪Rank #1: Friday 12 – 2pm (52%)

▪Rank #2: Tues/Thur before class (12 – 3:30p) (48%)

▪Best lecture format:

▪Rank #1: Hybrid synchronous w/ recordings (84%)

▪Rank #2: In-person w/ recordings

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

STUDENT BACKGROUND SURVEY

 Fridays 1:30 – 2:30pm – Online (Zoom)

▪ This session will be primarily by Zoom, but some days in-

person will be available in CP 229

▪ Zoom link and reminder will be sent weekly

 Tuesdays 2:30 - 3:30pm – Hybrid (In-Person/Zoom)

▪ This session will be in person in CP 229. Zoom will be

monitored when there is no student in CP 229.

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

TCSS 422 – OFFICE HRS – SPRING 2023

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Vir tual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

OBJECTIVES – 4/4

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/V2sg4iW1awvhFx4W8

Will close Thursday 4/6…

 VM requests will be sent to Stephen Rondeau for set up

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

VIRTUAL MACHINE SURVEY

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

OBJECTIVES – 4/4

March 28, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L1.24

19 20

21 22

23 24

https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.5Slides by Wes J. Lloyd

 To perform parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while

sharing global data in memory

 B. Launch multiple processes to execute code in parallel

without sharing global data in memory

 C. Both A and B

 D. None of the above

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

PARALLEL PROGRAMMING

 ABSTRACTING THE HARDWARE

▪ Makes programming code easier to write

▪ Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE

▪ Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/O)

▪ Share resources fairly

▪ Attempt to tradeoff performance vs. fairness → consider
priority

 PROVIDE ISOLATION

▪ User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

▪ OS must not crash, 24/7 Up-time

▪ Poor user programs must not bring down the system:

Blue Screen

 Other Issues:

▪ Energy-efficiency

▪ Security (of data)

▪ Cloud: Virtual Machines

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS - 2

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

OBJECTIVES – 4/4

CHAPTER 4:

PROCESSES

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.29

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

VIRTUALIZING THE CPU

25 26

27 28

29 30

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.6Slides by Wes J. Lloyd

 Process comprises of:

▪Memory

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

PROCESS

A process is a running program.

 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl -c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl -z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

PROCESS API

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

PROCESS API: CREATE

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

PROCESS API: CREATE

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

WE WILL RETURN AT

4:50PM

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.36

31 32

33 34

35 36

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.7Slides by Wes J. Lloyd

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

OBJECTIVES – 4/4

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

PROCESS STATES

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process -id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

CONTEXT SWITCH

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.42

37 38

39 40

41 42

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.8Slides by Wes J. Lloyd

 When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

QUESTION: WHEN TO CONTEXT SWITCH

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

OBJECTIVES – 4/4

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

PROCESS DATA STRUCTURES

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

April 4, 2023 TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of
Washington - Tacoma

L3.46

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register

int ecx; // Called the counter register

int edx; // Called the data register

int esi; // Source index register

int edi; // Destination index register

int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

char *mem; // Start of process memory

uint sz; // Size of process memory

char *kstack; // Bottom of kernel stack

// for this process

enum proc_state state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the

// current interrupt

};

43 44

45 46

47 48

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.9Slides by Wes J. Lloyd

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 – 1852

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

LINUX: STRUCTURES

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 5.11)

 Process ID

 pid_t pid; LOC #857

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 volatile long state; LOC #666

 Process t ime s l ice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #710

▪ unsigned int time_slice; LOC #503

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

STRUCT TASK_STRUCT

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #779

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #874

 Child processes (as a list)

 struct list_head children; LOC #879

 Open f i les

 struct files_struct *files; LOC #981

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

STRUCT TASK_STRUCT - 2

 List of Linux data structures:

http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux -kernel-

development/9780768696974/cover.html

3rd edition is online (dated from 2010):

See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login

Linux Kernel Development, 3 rd edition

Robert Love

Addison-Wesley

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

LINUX STRUCTURES - 2

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

OBJECTIVES – 4/4

CHAPTER 5:

C PROCESS API

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.54

49 50

51 52

53 54

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.10Slides by Wes J. Lloyd

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

OBJECTIVES – 4/4

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

fork()

 p1.c

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)

printf("hello, I am parent of %d (pid:%d)\n",

rc, (int) getpid());

}

return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

:(){ :|: & };:

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

OBJECTIVES – 4/4

55 56

57 58

59 60

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.11Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

wait()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

 Deterministic ordering of execution

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

FORK EXAMPLE

 Questions from 3/30

 C Review Survey – Due Friday Apr 7

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S. Rondeau

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

OBJECTIVES – 4/4

 Supports running an external program by “transferring control”

 6 types: execl() , execlp() , execle() , execv(), execvp(), execvpe()

 execl() , execlp() , execle() : const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, . . argn)

 Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

exec()

61 62

63 64

65 66

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.12Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new inter face to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

EXEC() - 2

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

printf("hello world (pid:%d)\n", (int) getpid());

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child (new process)

printf("hello, I am child (pid:%d)\n", (int) getpid());

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p3.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

…

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

EXEC EXAMPLE - 2

…

execvp(myargs[0], myargs); // runs word count

printf("this shouldn’t print out");

} else { // parent goes down this path (main)

int wc = wait(NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());

}

return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");

exit(1);

} else if (rc == 0) { // child: redirect standard output to a file

close(STDOUT_FILENO);

open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

…

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.72

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

// now exec "wc"...

char *myargs[3];

myargs[0] = strdup("wc"); // program: "wc" (word count)

myargs[1] = strdup("p4.c"); // argument: file to count

myargs[2] = NULL; // marks end of array

execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)

int wc = wait(NULL);

}

return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

67 68

69 70

71 72

TCSS 422 A – Spring 2023
School of Engineering and Technology

4/4/2023

L3.13Slides by Wes J. Lloyd

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L3.73

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 4, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L3.74

QUESTION: PROCESS API

QUESTIONS

73 74

75

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/4
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 3/30
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Why virtual memory?
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 4/4
	Slide 17: C Review Survey - available thru 4/7
	Slide 18: OBJECTIVES – 4/4
	Slide 19: student Background survey
	Slide 20: Tcss 422 – office hrs – spring 2023
	Slide 21: OBJECTIVES – 4/4
	Slide 22: Virtual machine survey
	Slide 23: OBJECTIVES – 4/4
	Slide 24
	Slide 25: Parallel programming
	Slide 26: Chapter 2 summary : operating system design goals
	Slide 27: Chapter 2 summary : operating system design goals - 2
	Slide 28: OBJECTIVES – 4/4
	Slide 29: Chapter 4: processes
	Slide 30: Virtualizing the cpu
	Slide 31: Process
	Slide 32: Process API
	Slide 33: Process api: create
	Slide 34: Process api: create
	Slide 35
	Slide 36: We will return at 4:50pm
	Slide 37: OBJECTIVES – 4/4
	Slide 38: Process states
	Slide 39: Process state transitions
	Slide 40: Observing process meta-data
	Slide 41: Context switch
	Slide 42
	Slide 43: Question: WHEN TO CONTEXT SWITCH
	Slide 44: OBJECTIVES – 4/4
	Slide 45: Process data structures
	Slide 46: Struct Task_struct process control block
	Slide 47: Xv6 kernel data structures
	Slide 48: Xv6 kernel data structures - 2
	Slide 49: Linux: structures
	Slide 50: Struct Task_struct
	Slide 51: Struct task_struct - 2
	Slide 52: Linux structures - 2
	Slide 53: OBJECTIVES – 4/4
	Slide 54: Chapter 5: C process api
	Slide 55: OBJECTIVES – 4/4
	Slide 56: fork()
	Slide 57: Fork example
	Slide 58: Fork example - 2
	Slide 59: :(){ :|: & };:
	Slide 60: OBJECTIVES – 4/4
	Slide 61: wait()
	Slide 62: Fork With wait
	Slide 63: Fork with wait - 2
	Slide 64: Fork example
	Slide 65: OBJECTIVES – 4/4
	Slide 66: exec()
	Slide 67: Exec() - 2
	Slide 68: Exec example
	Slide 69: Exec example - 2
	Slide 70: Exec with file redirection (output)
	Slide 71: File mode bits
	Slide 72: exec w/ File redirection (output) - 2
	Slide 73
	Slide 74: Question: PROCESS API
	Slide 75: Questions

