TCSS 422 A — Spring 2023 4/4/2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 4/4

|= Questlons from 3/30 |
- 3 = C Review Survey - Due Friday Apr 7
Processes & \ ; / = Student Background Survey
The Process API ’ = Virtual Machine Survey: VM requests sent to S. Rondeau

= Assignment O

Wes J. Lond = Chapter 4: Processes
School of Engineering and Technology ® Process states, context switches

University of Washington - Tacoma = Kernel data structures for processes and threads

= Chapter 5: Process API
= fork(), wait(), exec()

‘TCS5422: Operating Systems [Spring 2023] B2

; TCS5422: Operating Systems [Spring 2023]
LnlV s School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington Gl 2k

VIRTUAL MACHINE SUPPORT

ON APPLE M1 TEXT BOOK COUPON

= Installing a Ubuntu Virtual Machine on Apple M1 MacBooks: = 15% off textbook code: BCORPA5! (through Friday Apr 7)

= FREE

" https://mac.getutm.app,

= MACs have switched to using ARM-based CPUs = https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-
softcover-version-100/paperback/product-14mjrrgk.html

= Motivation: faster, less expensive than Intel-based CPUs

= With coupon textbook is only $18.70 + tax & shipping

ilcometo
ure of M

TCS5422: Operating Systems [Spring 2023] s ‘ Al TCS5422: Operating Systems [Spring 2023] e

‘ April 4,2023

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

TCSS 422 - Online Daily Feedback Survey - 4/1

ONLINE DAILY FEEDBACK SURVEY Quiz Instructions

Question 1 0spes
Ona scae of 1 tn 10, lease classity your perspective on materlal covered i today's
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 &4 5 & 7 8 9 10
= Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p = e e

= Thursday surveys: due ~ Mon @ 9p, closes 11:59p
= TC55422A > Assignments

Sprng 2021
Question 2 05pes
Home

Piease rat | |
Announcements tease rate the pace of today’s class:

Zoom ~ Upcoming Assignments 1z 3 a4 s s 71 8 9 1
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
= i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e
TCS5422: Computer Operating Systems [Spring 2023] TCSS422: Computer Operating Systems [Spring 2023]
ril 4, 2023 Bs omputer Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma Aprild, 2023 School of Engineering and Technology, University of Washington - Tacoma L38

Slides by Wes J. Lloyd L3.1

https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-softcover-version-100/paperback/product-14mjrrgk.html

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/4/2023

MATERIAL / PACE

Please classify your perspective on material covered in today’s
class (52 respondents):
1-mostly review, 5-equal new/review, 10-mostly new

Average - 6.77 (T - previous 6.18)

Please rate the pace of today’s class:
1-slow, 5-just right, 10-fast
Average - 5.71 ({ - previous 5.91)

TCSS422: Computer Operating Systems [Spring 2023]

LDV 2 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 3/30

= I'm still having trouble understanding what Inodes are
and how they work.

= An inode is a data structure that tracks all of the files
and directories within a Linux or UNIX-based filesystem.

= Every file and directory stored on a disk Inode Entry
in a filesystem is allocated an inode as
a FILE RECORD

= File records are identified by a unique
integer known as the “inode”.

= File records store metadata about each
file or directory.

able (One entr

last madified time

acees: time

Hmastamps

Inode Metadota
ol File 1| jnode changed time

permizsions

‘TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 4, 2023

FEEDBACK - 2

What are the values of using threads compared to a
processes? When should each be used?

‘TCSS422: Operating Systems [Spring 2023]

April 4, 2023 School of Engineering and Technology, University of Washington - Tacoma.

[s]

FEEDBACK - 3

= In our example of concurrent threads exceeding their time slice and

causing wrong output, would there be a way to track whether a

thread completed its task or if it timed out before completion?

It is necessary to monitor the # of context switches for each thread

This is available from the virtual file: /proc/[pid]/status

= There are two lines: cat status | grep ctxt

voluntary_ctxt_switches:8084285

nonvoluntary_ ctxt_switches: 39709

= This is very difficult though - must determine thread IDs

Program is so fast, by the time the thread IDs are determined,

there is not much time before pthread reaches its specified count

= This is an example of an OS monitoring problem

It is easier to observe context switches if the threads run for awhile

TCS5422: Operating Systems [Spring 2023]

April4,2023 School of Engineering and Technology, University of Washington - Tacoma

SEE example: pthread-check.sh
1310

10

FEEDBACK - 4

an number o
change during runtime?
Yes

The heap will dynamically change to accommodate program
memory requirements

= Requests to malloc()/realloc() gradually increase the heap size

= Requests to free() will shrink the heap size

The stack segment could increase if the requirements increase for
tracking data involved with function calls

I checked a small C program

The stack size was 132 KB (33 x 4KB pages)

Check the stack size in KB for a process using the command:
pidstat -p [pid] -l -s

The stack can be seen in the process virtual memory map -

must do hexadecimal math to calculate size:

cat /proc/[pld]/maps | grep stack

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

13.11

April 4, 2023

WHY VIRTUAL MEMORY?

= Trying to conceptualize the reason for virtual addresses

in ratin, m

= Securlty: if physical addresses were exposed, an attacker could
acquire the physical address and attempt to read, modify, write the
data

= Program Relocatlon: because users only see virtual addresses, the
0S can physically move programs to new locations without changing
any user pointers

= Memory defragmentation: OS can dynamically reorganize memory
for better efficiency. All user pointers are virtual. Virtual pointers still
work and are translated to new addresses

= Shared Llbrarles: Two programs can have a virtual address (pointer)
to a shared library that is mapped by the OS to a single physical
address. The sharing and library location are abstracted. Shared

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

libraries are important to save memory.
B2

April 4, 2023

11

Slides by Wes J. Lloyd

12

L3.2

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/4/2023

MOTIVATION FOR LINUX

= |t is worth noting the importance of Linux for today’s
developers and computer scientists.

= The CLOUD runs many virtual machines, recently in 2019 a key
milestone was reached.

= Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

= https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server

= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= The majority of application back-ends (server-side), cloud or
not, run on Linux.
= This is due to licensing costs, example:

TCSS422: Operating Systems [Spring 2023] 313
School of Engineering and Technology, University of Washington - Tacoma

l April 4, 2023

MOTIVATION FOR LINUX - 2

= Consider an example where you're asked to develop a web
services backend that requires 10 x 8-CPU-core virtual servers

= Your organization investigates hosting costs on Amazon cloud
= 8-core VM is “c5d.2xlarge”

Tnstance fype Tint
5. dlarge s
c5d 16xiarge
5 large
50 2aniarge 54608000 houry”
| csd axiame S0 765000 hourly
=———== =TS
<50 2xiarge 0364000 hourly
c5axiarge | 720 GIB | 36 VCPUS | S1.728000 houry

= Windows hourly price 75.2F
= Linux hourly price 38.4¢
= See: https://instances.vantage.sh/

[TC55422: Operating Systems [Spring 2023]

[Apdlly2023 School of Engineering and Technology, University of Washington - Tacoma

13

14

MOTIVATION FOR LINUX - 2

(cs nan-cl [}
= Linu

Windows comes at a 95.8% price premium
= See: https://www.ec2Instances.Info/

TCS5422: Operating Systems [Spring 2023] s
School of Engineering and Technology, University of Washington - Tacoma

l April 4,2023

X ry
10 VMs x 8,760 hours x $.384 = $33,638.40 Tamm|
ary |

OBJECTIVES - 4/4

= Questions from 3/30
| = C Review Survey - Due Friday Apr7__|
= Student Background Survey
= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2023]

[Ann|5,2023 School of Engineering and Technology, University of Washington - Tacoma

15

16

C REVIEW SURVEY -

AVAILABLE THRU 4/7

TCSS422: Operating Systems [Spring 2023]

peril iz School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/4

= Questions from 3/30
= C Review Survey - Due Friday Apr 7
| = Student Background Survey |
= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

l April 4, 2023

TCS5422: Operating Systems [Spring 2023] 18
School of Engineering and Technology, University of Washington - Tacoma

17

Slides by Wes J. Lloyd

18

L3.3

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A — Spring 2023 4/4/2023
School of Engineering and Technology

STUDENT BACKGROUND SURVEY TCSS 422 - OFFICE HRS - SPRING 2023
247 of 59 Responses as of 4/3 @ ~11pm = Fridays 1:30 - 2:30pm - Online (Zoom)
=Current Standings- = This session will be primarily by Zoom, but some days in-

person will be available in CP 229
=Zoom link and reminder will be sent weekly
Rank #1: Friday 12 - 2pm \I (52%) = Tuesdays 2:30 - 3:30pm - Hybrid (In-Person/Zoom)
Rank #2: Tues/Thur before class (12 - 3:30p) 1] (48%) = This session will be in person in CP 229. Zoom will be
e iy Sma— monitored when there is no student in CP 229.
Rank #1: Hybrid synchronous w/ recordings v (84%)
Rank #2: In-person w/ recordings

=Best Office Hours times so far:

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma .19 Gall ek School of Engineering and Technology, University of Washington - Tacoma

19 20

OBJECTIVES - 4/4 VIRTUAL MACHINE SURVEY

= Questions from 3/30 = Please complete the Virtual Machine Survey to request

= C Review Survey - Due Friday Apr 7 a “School of Engineering and Technology” remote
= Student Background Survey hosted Ubuntu VM

| = Virtual Machine Survey: VM requests sent to S. Rondeau |
= Assignment O mhttps://forms.gle/V2sg4iWiawvhFx4W8

= Chapter 4: Processes
= Process states, context switches =Will cl Th 4
= Kernel data structures for processes and threads il close ursday /6

= Chapter 5: Process API = VM requests wlll be sent to Stephen Rondeau for set up
= fork(), wait(), exec()

TCS5422: Operating Systems (Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ April 4,2023 School of Engineering and Technology, University of Washington - Tacoma. 21 April4,2023 School of Engineering and Technology, University of Washington - Tacoma .22

21 22

[.11) < Activities @) Visual settings £ Edie < >
I
OBJECTIVES - 4/4 © © When poll s sctive, respond ot PollEv.comwesleylloydsa1
& = Text WESLEYLLOYD641 to 22333 once to join ©

= Questions from 3/30

o perform parallel work, a single process may
= C Review Survey - Due Friday Apr 7

1ch multi
ile

= Student Background Survey
= Virtual Machine Survey: VM requests sent to S. Rondeau

= Asslgnment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

Total Results: 0

Powered by @) Poll Everywhere

TCS5422: Operating Systems [Spring 2023]
‘ CEEDbE) School of Engineering and Technology, University of Washington - Tacoma 132

23 24

Slides by Wes J. Lloyd L3.4

https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A — Spring 2023 4/4/2023
School of Engineering and Technology

CHAPTER 2 SUMMARY :
OPERATING SYSTEM DESIGN GOALS

PARALLEL PROGRAMMING

= To perform parallel work, a single process may: = ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= A. Launch multiple threads to execute code in parallel while * Automate sharing resources - save programmer burden

SIEGTE G i [Geery = PROVIDE HIGH PERFORMANCE

= Minimize overhead from 0S abstraction
= B. Launch multiple processes to execute code in parallel (Virtualization of CPU, RAM, I/0)

without sharing global data in memory = Share resources fairly

= Attempt to tradeoff performance vs. fairness > consider
= C. Both Aand B priority

= PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying 0S, or the sharing of resources

" D. None of the above

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma 1325 [Apdlly2023 School of Engineering and Technology, University of Washington - Tacoma

25 26

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS - 2 OBJECTIVES - 4/4

= RELIABILITY = Questions from 3/30
= 0S must not crash, 24/7 Up-time = C Review Survey - Due Friday Apr 7
= Poor user programs must not bring down the system: = Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

| = Chapter 4: Processes|

= Process states, context switches

Blue Screen

= Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems (Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ Aprl4;2023 School of Engineering and Technology, University of Washington - Tacoma. 1327 [Ann|5,2023 School of Engineering and Technology, University of Washington - Tacoma 1328

27 28

——
Process State

VIRTUALIZING THE CPU

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

. = The act of swapping process A out of the CPU to run
CHAPTER 4 process B is called a:

PROCESSES * CONTEXT SWITCH

= How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap
= OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

. TCSS422: Operating Systems [Spring 2023] 7CS5422: Operating Systems [Spring 2023]
RELICEED School of Engineering and Technology, University of Washington - April4,2023 School of Engineering and Technology, University of Washington - Tacoma 1330

29 30

Slides by Wes J. Lloyd L3.5

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/4/2023

PROCESS

= Process comprises of:
= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

TCS5422: Operating Systems [Spring 2023]

‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma

1331

PROCESS API

= Modern OSes provide a Process API for process support

= Create
= Create a new process

= Destroy

= Terminate a process (ctrl-c)
= Wait

= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)

= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

‘TCS5422: Operating Systems [Spring 2023] 1332

‘ [Apdlly2023 School of Engineering and Technology, University of Washington - Tacoma

31

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running
= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation

= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Spring 2023]

‘ Aprl4;2023 School of Engineering and Technology, University of Washington - Tacoma 1333
CPU Memory
[code
| static data
: eap
|
Loading:
Reads program from
disk into the address
" Fregam) space of process
TCS5422: Operating Systems [Spring 2023]
‘ CEEDbE) School of Engineering and Technology, University of Washington - Tacoma B3

35

Slides by Wes J. Lloyd

32

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= 1/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCS5422: Operating Systems [Spring 2023] 1334

‘ [Ann|5,2023 School of Engineering and Technology, University of Washington - Tacoma

34

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2023]

i)]
Aerl 202 School of Engineering and Technology, University of Washington -

36

L3.6

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/4

= Questions from 3/30
= C Review Survey - Due Friday Apr 7
= Student Background Survey

= Assignment O

= Chapter 4: Processes
| = Process states, context switches|
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

= Virtual Machine Survey: VM requests sent to S. Rondeau

TCSS422: Operating Systems [Spring 2023]

‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma

13.37

37

PROCESS STATE TRANSITIONS

/ \ Descheduled \
| Running) _ Ready |

Scheduled

Blocked

\

//0 done

_ /

TCS5422: Operating Systems [Spring 2023]

‘ April 4, 2023 School of Engineering and Technology, University of Washington - Tacoma

13.39

39

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
= 2,000 context switches is near 100ms

Without CPU affnlty

TCS5422: Operating Systems [Spring zozs]

‘ B School of Engineering and Technology, University of Washington - Tacoma

13.41

41

Slides by Wes J. Lloyd

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on I/0 from disk(s) or other devices

‘TCS5422: Operating Systems [Spring 2023]

‘ Gall ek School of Engineering and Technology, University of Washington - Tacoma

38

OBSERVING PROCESS META-DATA

= Can inspect the number of CONTEXT SWITCHES made by a
process

= Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status

-
= proc “status” is a virtual file generated by Linux

= Provides a report with process related meta-data

= What appears to happen to the number of context switches
the longer a process runs? (mem.c)

TCSS422: Oy iting Syste [2023]

[romoams [rstmosimsmemtonedos) | e - oo
[.11) < Activities € Visual settings &) Edit < >
ol

spond at PollEv.com/wesleylloyd641
& % Text WESLEYLLOYD641 to 22333 once to join, then 1, 2, 3,4, or §

When a process is in this state, it is advantageous for
the Operating System to perform a CONTEXT SWITCH
to perform other work

RUNNING 1
READY 2
BLOCKED 3

All of the above 4
None of the above 5

Total Resuits: 0
powered by @) Poll Everywhere

TCSS 422 A — Spring 2023
School of Engineering and Technology

QUESTION: WHEN TO CONTEXT SWITCH

= When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

TCSS422: Operating Systems [Spring 2023]
‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma L343

43

PROCESS DATA STRUCTURES

= 0S provides data structures to track process information

= Process list

Process Data

State of process: Ready, Blocked, Running
= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCS5422: Operating Systems [Spring 2023]
‘ April 4,2023 School of Engineering and Technology, University of Washington - Tacoma 145

45

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures shown in book

struct context {
eip;
esp;
ebx;
ecx;
edx;
esi;
edi;
ebp;

enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

‘ April 4, 2023

TCS5422: Operating Systems [Spring 2023] 47
School of Engineering and Technology, University of Washington - Tacoma

47

Slides by Wes J. Lloyd

4/4/2023

OBJECTIVES - 4/4

= Questions from 3/30

= C Review Survey - Due Friday Apr 7

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes
= Process states, context switches
|- Kernel data structures for processes and threads|
= Chapter 5: Process API
= fork(), wait(), exec()

‘TCS5422: Operating Systems [Spring 2023]
‘ Gall ek School of Engineering and Technology, University of Washington - Tacoma

44

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

=Process Control
Block (PCB)

process state
process number
program counter

mKey data regarding a

process registers
memory limits
list of open files
“ e
April 4, 2023 TCSS422: Operating Systems [Spring 2023] L3.46

School of Engineering and Technology, University of
i 2

46

XV6 KERNEL DATA STRUCTURES - 2

proc (

“har *mem;
iint sz;

“har *kstack;

num proc_state state;
pid;

ict proc *parent;
d *chan;

killed;

-t file *ofile[NOFILE];
inode *cwd;
context context;
trapframe *tf;

. 7CS5422: Operating Systems [Spring 2023]
‘ AT School of Engineering and Technology, University of Washington -Tacoma 1348

48

L3.8

TCSS 422 A — Spring 2023 4/4/2023

School of Engineering and Technology

LINUX: STRUCTURES

Estruct task struct, equivalent to struct proc
= The Linux process data structure

= Kernel data type (i.e. record) that describes
individual Linux processes

= Structure is VERY LARGE: 10,000+ bytes

= Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h
Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 - 1394
Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 - 1852

TCSS422: Operating Systems [Spring 2023]
‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma 1349

49

STRUCT TASK_STRUCT - 2

= Address space of the process:

= “mm” is short for “memory map”
=struct mm_struct *mm; LOC #779
= Parent process, that launched this one

= struct task_struct __rcu *parent; LOC #874

= Chlld processes (as a list)

51

OBJECTIVES - 4/4

= Questions from 3/30

= C Review Survey - Due Friday Apr 7

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
| = Chapter 5: Process APl |
= fork(), wait(), exec()

‘ April 4, 2023

TCS5422: Operating Systems [Spring 2023] 53
School of Engineering and Technology, University of Washington - Tacoma

53

Slides by Wes J. Lloyd

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernelv 5.11)

= Process ID
=pid_t pid;
= Process State
= /* -1 unrunnable, 0 runnable, >0 stopped: */
=volatile long state; LOC #666
= Process time slice
how long the process will run before context switching
= Struct sched_rt_entity used in task_struct contains timeslice:
=struct sched_rt_entity rt; LOC #710
=unsigned int time_slice; LOC #503

LOC #857

‘TCS5422: Operating Systems [Spring 2023]

[Apdlly2023 School of Engineering and Technology, University of Washington - Tacoma

50

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html
3rd edition is online (dated from 2010):
See chapter 3 on Process Management

= struct list_head children; LOC #879
Safari online - accessible using UW ID SSO login
= Open flles Linux Kernel Development, 3" edition
= struct files_struct *files; LOC #981 Robert Love
Addison-Wesley
[s [e s B rwatintn - s o [mmomm om0y ot g s

52

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Spring 2023]

i)]
Rentiia02) School of Engineering and Technology, University of Washington -

54

L3.9

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/4

= Questions from 3/30
= C Review Survey - Due Friday Apr 7
= Student Background Survey

= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
= Chapter 5: Process API
wait(), exec()

= Virtual Machine Survey: VM requests sent to S. Rondeau

‘ LDV 2 ;gts:;\z:f‘E):;r::e’:\gnZy:‘rled"}seg\:gczgg:ulzli!versiwaf Washington - Tacoma 1355
55
FORK EXAMPLE
= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

main(int arge, *argv(]) {
printf("hello world (pid:%d)\n", (int) getpid());
|- 1t re = fork();
(re < 0) (;
fprintf (stderr, "fork failed\n");
exit(1l);

(re == 0) {
printf ("hello,

{
printf ("hello, I
rc, (int) getpid()):

ent of %d (pid:¥d)\n",

child (pid:%d)\n", (int) getpid());

TCS5422: Operating Systems [Spring 2023]

‘ April 4, 2023 School of Engineering and Technology, University of Washington - Tacoma

13.57

57

TCS5422: Operating Systems [Spring 2023]

‘ CEEDbE) School of Engineering and Technology, University of Washington - Tacoma

13.59

4/4/2023

fork()

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
= Creates “child” process of the program from the current
executlon point
= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent

= 0 to child
‘TCS5422: Operating Systems [Spring 2023]
‘ Gall ek School of Engineering and Technology, University of Washington - Tacoma 13.58
= Non deterministic ordering of execution
prompt> ./pl
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, T am child (pid:29147)
prompt>
or
prompt> ./pl
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>
= CPU scheduler determines which to run first
TCS5422: Operating Systems [Spring 2023]
‘ B EED School of Engineering and Technology, University of Washington - Tacoma 1358

58

OBJECTIVES - 4/4

= Questions from 3/30

= C Review Survey - Due Friday Apr 7

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S. Rondeau
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork()[walt()] exec()

. 7CS5422: Operating Systems [Spring 2023]
‘ AT ‘ School of Engineering and Technology, University of Washington - Tacoma 1360

59

Slides by Wes J. Lloyd

60

L3.10

TCSS 422 A — Spring 2023
School of Engineering and Technology

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCSS422: Operating Systems [Spring 2023]

‘ LDV 2 School of Engineering and Technology, University of Washington - Tacoma

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

main(int arge, r *argvi]) (
printf ("hello world (pid:%d)\n", (int) getpid());

, "fork failed\n");

(0 { (
printf("hello, I am child (pid:%d)\n", (int) getpid());
{ ()
we = wait (NULL);
hello, I am parent of %
, (int) getpid());

‘TCS5422: Operating Systems [Spring 2023]

61

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)
hello, I am child (pid:29267
hello, I am parent of 29267
prompt>

9267) (pid:29266)

TCS5422: Operating Systems [Spring 2023]

‘ April 4, 2023 School of Engineering and Technology, University of Washington - Tacoma

13.63

‘ Gall ek School of Engineering and Technology, University of Washington - Tacoma 1362
= Linux example
TCS5422: Operating Systems [Spring 2023]
‘ April4,2023 School of Engineering and Technology, University of Washington - Tacoma 1364

63

OBJECTIVES - 4/4

= Questions from 3/30
= C Review Survey - Due Friday Apr 7
= Student Background Survey

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(),[exec()]

= Virtual Machine Survey: VM requests sent to S. Rondeau

TCS5422: Operating Systems [Spring 2023]

‘ CEEDbE) School of Engineering and Technology, University of Washington - Tacoma

13.65

64

exec()

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argi, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

. 7CS5422: Operating Systems [Spring 2023]
‘ AT School of Engineering and Technology, University of Washington -Tacoma 1360

65

Slides by Wes J. Lloyd

66

TCSS 422 A — Spring 2023 4/4/2023
School of Engineering and Technology

EXEC() - 2 EXEC EXAMPLE

= Common use case:
= Write a new program which wraps a legacy one
= Provide a new interface to an old system: Web services

#include <stdio.h>
<stdlib.h>

” # 1ud
= Legacy program thought of as a “black box etees
main (arge, ar *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());

= We don’t want to know what is inside..

rc = fork();
(rc < 0) (

fprintf (stderr, "fork failed\n");

} { (
printf("hello, I am child (pid:%d)\n", (int) getpid());

Ouput myargs (0] = strdup("wc"); mwe
myargs[1] = strdup("p3.c");
put ——— myargs[2] = NULL; t

Irternal behavior ofthe cade 1 unkrawn

TCSS422: Operating Systems [Spring 2023]
LDV 2 School of Engineering and Technology, University of Washington - Tacoma 1367

‘TCS5422: Operating Systems [Spring 2023] 1368

Gall ek School of Engineering and Technology, University of Washington - Tacoma

67 68

EXEC EXAMPLE - 2 EXEC WITH FILE REDIRECTION (OUTPUT)

q execvp (myargs[0], myargs);
printf ("this shouldn’t print out";
1 {
wait (NULL) ;
printf("hello, I am parent of &d (woi%d) (pidisd)\n",
e, we, (int) getpid());

fprintf (stderr, "fork failed\n");
exit(1);

prompt> ./p3 (rc == 0)
hello world (pid:29383) close (STDOUT_FILENO) ;

hello, T am child (pid:29384) q open (. /pd.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCS5422: Operating Systems (Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ April 4,2023 School of Engineering and Technology, University of Washington - Tacoma 1369 April4,2023 School of Engineering and Technology, University of Washington - Tacoma .70

69 70

FILE MODE BITS

) [so

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner *mya
S_IXUSR myargs (0]
execute/search permission, owner myargs[1]
S IRWXG myargs[2]
read, write, execute/search by group L (myargs (01, myarg
S_IRGRP nt we = wait (NULL);
read permission, group L *
S_IWGRP
write permission, group }
S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH prompt> ./pd

read permission, others prompt> cat p4.output
S_IWOTH 32 109 846 pd.c

write permission, others prompt>

TCS5422: Operating Systems [Spring 2023] . TC55422: Operating Systems [Spring 2023]
‘ CEEDbE) School of Engineering and Technology, University of Washington - Tacoma B AT School of Engineering and Technology, University of Washington - Tacoma s

71 72

Slides by Wes J. Lloyd L3.12

TCSS 422 A — Spring 2023
School of Engineering and Technology

L

ol

< Activities

© Visualsetings) Edit

@ When poll is active, respond at PollEv.com/wesleylloyd641

= Text WESLEYLLOYD&41 to 22333 once to join

Which Process API callis used to launch a different

program from the current program?

Fork()
Exec()
Wait()
None of the above

All of the above

powered by @) Poll Everywhere

Total Results: 0

4/4/2023

= Which Process API call is used to launch a different

QUESTION: PROCESS API

program from the current program?

= (a) Fork()
= (b) Exec()
= (c) Wait()

= (d) None of the above
= (e) All of the above

April 4,2023

‘TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

73

QUESTIONS

75

Slides by Wes J. Lloyd

L3.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/4
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 3/30
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Why virtual memory?
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 4/4
	Slide 17: C Review Survey - available thru 4/7
	Slide 18: OBJECTIVES – 4/4
	Slide 19: student Background survey
	Slide 20: Tcss 422 – office hrs – spring 2023
	Slide 21: OBJECTIVES – 4/4
	Slide 22: Virtual machine survey
	Slide 23: OBJECTIVES – 4/4
	Slide 24
	Slide 25: Parallel programming
	Slide 26: Chapter 2 summary : operating system design goals
	Slide 27: Chapter 2 summary : operating system design goals - 2
	Slide 28: OBJECTIVES – 4/4
	Slide 29: Chapter 4: processes
	Slide 30: Virtualizing the cpu
	Slide 31: Process
	Slide 32: Process API
	Slide 33: Process api: create
	Slide 34: Process api: create
	Slide 35
	Slide 36: We will return at 4:50pm
	Slide 37: OBJECTIVES – 4/4
	Slide 38: Process states
	Slide 39: Process state transitions
	Slide 40: Observing process meta-data
	Slide 41: Context switch
	Slide 42
	Slide 43: Question: WHEN TO CONTEXT SWITCH
	Slide 44: OBJECTIVES – 4/4
	Slide 45: Process data structures
	Slide 46: Struct Task_struct process control block
	Slide 47: Xv6 kernel data structures
	Slide 48: Xv6 kernel data structures - 2
	Slide 49: Linux: structures
	Slide 50: Struct Task_struct
	Slide 51: Struct task_struct - 2
	Slide 52: Linux structures - 2
	Slide 53: OBJECTIVES – 4/4
	Slide 54: Chapter 5: C process api
	Slide 55: OBJECTIVES – 4/4
	Slide 56: fork()
	Slide 57: Fork example
	Slide 58: Fork example - 2
	Slide 59: :(){ :|: & };:
	Slide 60: OBJECTIVES – 4/4
	Slide 61: wait()
	Slide 62: Fork With wait
	Slide 63: Fork with wait - 2
	Slide 64: Fork example
	Slide 65: OBJECTIVES – 4/4
	Slide 66: exec()
	Slide 67: Exec() - 2
	Slide 68: Exec example
	Slide 69: Exec example - 2
	Slide 70: Exec with file redirection (output)
	Slide 71: File mode bits
	Slide 72: exec w/ File redirection (output) - 2
	Slide 73
	Slide 74: Question: PROCESS API
	Slide 75: Questions

