TCSS 422 A — Spring 2023
School of Engineering and Technology

5/29/2023

TCSS 422: OPERATING S

Multi-Level Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2023]

May 23,2023 School of Engineering and Technology, University of Washington

OBJECTIVES - 5/25

|I Questions from 5/23 |
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2
= Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules
= Final exam - Thursday June 8 @ 3:40pm
= Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2023]

s School of Engineering and Technology, University of Washington - Tacoma

w72

= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

TCSS422: Computer Operating Systems [Spring 2023]

‘ RlayZei20zs) School of Engineering and Technology, University of Washington - Tacoma.

173

Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2023]

May 26,2023 School of Engineering and Technology, University of Washington - Tacoma L17.4

MATERIAL / PACE

class (36 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.65 (\ - previous 6.89)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.58 ({ - previous 6.01)

= Please classify your perspective on material covered in today’s

TCS5422: Computer Operating Systems [Spring 2023]

‘ LR School of Engineering and Technology, University of Washington -Tacoma

u7s

FEEDBACK FROM 5/23

= | would Ilke to ask about the last example, how do we
calculate it?

= We will review the 2-level page table example that we did
in the last minutes of class on Tuesday 5/23

TC55422: Operating Systems [Spring 2023]

(R School of Engineering and Technology, Universiy of Washington - Tacoma

66

Slides by Wes J. Lloyd

L17.1

TCSS 422 A — Spring 2023
School of Engineering and Technology

FEEDBACK - 2

= Address translatlon stlil isn’t completely clear to me.

= On the final, you will not perform address translation
directly

= |[nstead, the idea is to understand the process

= We will review how the Linux OS perform address
translation with multi-level page tables
= Linux uses 5-level page tables

= We only consider sizing questions for 2-level and 3-level
page tables

TCSS422: Operating Systems [Spring 2023]

LAERES RS School of Engineering and Technology, University of Washington - Tacoma

6.7

FEEDBACK - 4

= For simplicity rounding Is often acceptable:

= 1 kilobyte (2710) = 1,024 bytes > 1,000 bytes

= 1,024 kilobytes (2720) = 1 megabyte > 1,000,000 bytes
= 1,024 megabytes = 1 gigabyte (2730)~>1,000,000,000 bytes
= 1,024 gigabytes = 1 terabyte (2”°40)-1,000,000,000,000 bytes
= 1,024 terrabytes = 1 petabyte (2*50) - 1,000,000,000,000,000 bytes

TCSS422: Operating Systems [Spring 2023]

[May25;2023) School of Engineering and Technology, University of Washington - Tacoma.

179

FEEDBACK - 6

= How many blts are required to Index the following amounts of
memory?

1. 1,024 bytes = 1 kilobyte (2°10)

2. 1,024 kilobytes = 1 megabyte (2°20)

3. 1,024 megabytes = 1 gigabyte (2730)

4. 1,024 gigabytes = 1 terabyte (2"40)

5. 1,024 terrabytes = 1 petabyte (2°50)

TCS5422: Operating Systems [Spring 2023]

LR School of Engineering and Technology, University of Washington - Tacoma

ura

FEEDBACK - 3

= Some tIps for problems with exponential math and bits:
= >>> |t is good to review charts and patterns:
= 8 bits = 1 byte

= 16 bits = 2 bytes

= 32 bits = 4 bytes

= 64 bits = 8 bytes

= 1,024 bytes = 1 kilobyte (2710)

= 1,024 kilobytes = 1 megabyte (2720)

= 1,024 megabytes = 1 gigabyte (2730)

= 1,024 gigabytes = 1 terabyte (2740)

= 1,024 terrabytes = 1 petabyte (2250)

TCS5422: Operating Systems [Spring 2023]

‘ Ly School of Engineering and Technology, University of Washington - Tacoma w78
2|2 27 131072 2® [8589,934592 2% 1562,949 953,421,312
2[4 25 262,144 2% [17,179869,184 2% [1,125,899,906, 842,624
2 |8 2¥ (524288 2% 34359738368 2% 12,251,799,813,685,248
2 |16 2% k13576 2% [68,719476,736 214,503,599 627,370 A9
-
ERED 2 12097,152 27 137438953472 2% | 9,007,199,254,740,992
N 22 (4194304 238 | 274877906944 2% 18,014,398,50.481,984
27 |8 22 18,388,608 27 |549,755,813,888 2% | 36,028,797,018,963,968
T 2 16777216 ‘z:; i 1,099,511,627,776 2% | 72157,594/037,927,936
P (512 [2F |35 27 (2199023255582 25 [144,115,188,075 835,872
EANE] 2% ez 08864 |2 4398046511104 2% 268,230 376,151,711,744
ilobte
2 ams (27 [eaz7s |28 (8796093022208 2% | 576,460,752,303423488
22 Lame [2% 268435456 |2M (1759218644416 290 11,152,921, 504,606 846976
2P (g1 |2¥ [sesT0912 |25 3584372088802 290 2,305,843,009,213,693952
2M (16384 E:-hrl 107 7a 824 2% | 70,368,744,177 664 251 4,611,686018,427.387,904
25 2768 |2 2147483648 |27 |140,737,488,355,328 2% 19,223,372,036,854,775,808
20 [655% 2% 424967296 (2% 8147897671065 [0 11846,744,073,709,351 616
ubbahy1é
TCSS422: Of ting Systs IS 2023)
May 25,2023 School of Enginsering and Technalogy, Unversty of Washington - Tacoma e
= With paging, we divide an address space In fixed slzed pleces
(known as the page size)
=A ing a puter ind memory using
1 kllobyte memory pages (2210)
= How many unl re r Ir man Index memory?
= 1 kilobyte (2710) of memory
= 1 page

= 1 megabyte (2720) of memory
= 1024 pages (2°10)
= 1 gigabyte (2730) of memory
= 1,048,576 pages (2"20)
= 1 terabyte (2°40) of memory
= 1,073,741,824 pages (2°30)
= 1 petabyte (2750) of memory
= 1,099,511,627,776 pages (2°40)

TC55422: Operating Systems [Spring 2023]

(R School of Engineering and Technology, University of Washington - Tacoma

ur12

11

Slides by Wes J. Lloyd

12

5/29/2023

L17.2

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 5/25

= Questions from 5/23
|- Memory Segmentation Actlvity + s (avallable InC
= Assignment 2 - June 2
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 8 @ 3:40pm
= Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2023]
‘ LAERL SRS School of Engineering and Technology, University of Washington - Tacoma 1713

5/29/2023

OBJECTIVES - 5/25

= Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 8 @ 3:40pm
= Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2023]
‘ Ly School of Engineering and Technology, University of Washington - Tacoma 17.1e

13

OBJECTIVES - 5/25

= Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2
| = Asslgnment 3: (Tutorlal) Intro to Linux Kernel Modules - June 9|
= Final exam - Thursday June 8 @ 3:40pm
= Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2023]
‘ [May25;2023) School of Engineering and Technology, University of Washington - Tacoma. 7.1

14

ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

= Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

= Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures
= For example: Linux task_struct process data structure

= Assignment 3 is scored in the Quizzes / Activities /
Tutorials category

= Lowest two grades in this category are dropped

TCS5422: Operating Systems [Spring 2023]
‘ [May 25,12023) School of Engineering and Technology, University of Washington - Tacoma 1718

15

OBJECTIVES - 5/25

= Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
| = Final exam - Thursday June 8 @ 3:40pm |
® Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2023]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L

16

FINAL EXAM - THURSDAY JUNE 8 @

3:40PM™

= Thursday June 8 from 3:40 to 5:40 pm
= Final (100 points)
= SHORT: similar number of questions as the midterm
= 2-hours
= Focus on new content - since the midterm (~70% new, 30% before)

= Final Exam Review -
= Complete Memory Segmentation Activity
= Complete Quiz 4
= Practice Final Exam Questions - 2"¢ hour of June 15t class session
= Individual work
= 2 pages of notes (any sized paper), double sided
= Basic calculators allowed
= NO smartphones, laptop, book, Internet, group work

TCS3422: Operating Systems [Spring 2023] 718
School of Engineering and Technology, University of Washington - Tacoma

‘ May 25, 2023

17

Slides by Wes J. Lloyd

18

L17.3

TCSS 422 A — Spring 2023 5/29/2023
School of Engineering and Technology

OBJECTIVES - 5/25 OBJECTIVES - 5/25
= Questions from 5/23 = Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas) = Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2 = Assignment 2 - June 2
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9 = Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 8 @ 3:40pm = Final exam - Thursday June 8 @ 3:40pm
|-Quiz4 - Page Tables - Due June 8 @ 11:59 am | = Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables |I Chapter 20: Paging: Smaller Tables |
= Smaller Tables, Multi-level Page Tables, N-level Page Tables = Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory = Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies = Swapping Mechanisms, Swapping Policies
I was I e wao
19 20

OBJECTIVES - 5/25

= Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2

i = Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
CHAPTER 20: =] = Final exam - Thursday June 8 @ 3:40pm

PAGING' : = Quiz 4 - Page Tables - Due June 8 @ 11:59 am
B = Chapter 20: Paging: Smaller Tables
SMALLER TABLES i] = Smaller TablesN-IeveI Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
May 25,2023 School of Engineering and Technalogy, University of Washington - Thlma (e 2D School of Engineering and Technology, University of Washington - Tacoma W

21 22

MULTI-LEVEL PAGE TABLES MULTI-LEVEL PAGE TABLES - 2
= Consider a page table: = Add level of indirection, the “page directory”
= 32-bit addressing, 4KB pages Linear Page Table Muld-level Page Table
PETR 00 PETR 200
= 220 page table entries
= Even if memory is sparsely populated the per process page it PN § PEN ‘3’ E
table requires: A N e 1 R ST
Page table size = 2o + 4Byte = 4MByte - il i
= = = B -
9 212 w [g Fhe fage Directory [Page 1 of PNt Allocated)
= Often most of the 4MB per process page table is empty : E
= Page table must be placed in 4MB contiguous block of RAM B H] LoTs
[e] g &
el =" A
= MUST SAVE MEMORY! Hmw] &
Linear (Left) And Multi-Level (Right) Page Tables
[mam | o e o vt cns wra [mmam | o ey vt e wra

23 24

Slides by Wes J. Lloyd L17.4

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/29/2023

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PETR [o

220 pages addressed with
two level-indexing
(page directory index, page table index)

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2023]

‘ avEsaa2s School of Engineering and Technology, University of Washington - Tacoma

u7.25

4 GB computer (2432) and 4KB pages (212

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

2. How much memory can a single PD pointing to a single PT address?

v Pt ‘Obl"o PT S

25

1023] 102>
e 4096 b
fo2dx el < ‘\ oz Y04%
o 4046
R 1024 % 4 kB
1L byfes
2-0 Lll
z. ZLL—" 4mb —7 §mb
wiTH A
secon®> PT
26

car’
1 NPEX

TCSS422: Operating Systems [Spring 2023]

May 23, 2023 School of Engineering and Technology, University of Washington - Tacoma

L16.27

MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

27

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 = 256 (pages)

oooo papd_Eo8e |
oo 0o0y]__eode Detail
16 KB

64 byre

tree)

heap Virtus! address. 14 bit
N .

Otfsct

Page table entry B2se)

stack
JRISRELS e

A 16-KB Address Space With 64-byte Pages

[13[12[nfw[ofs]7[6[s[a]3a]2]1]0]
b Offsat

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 25, 2023

u7.29

29

Slides by Wes J. Lloyd

\ May 25,2023 St o egem an st Unhersiyof Washingion - acoma s
28
EXAMPLE - 2
= 256 total page table entries (64 bytes each)
= 1,024 bytes page table size, stored using 64-byte pages
=(1024/64) = 16 page directory entries (PDEs)
= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups
= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs
= Key idea: the page table is stored using pages too!
IEEEE e
30

L17.5

TCSS 422 A — Spring 2023
School of Engineering and Technology

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

Page Directory Index
\ .

IlElanm] o [s [7[e[s]a]3]2]1]0]

VPN Offset
14-bits Virtual address

TCSS422: Operating Systems [Spring 2023]
‘ LAERL SRS School of Engineering and Technology, University of Washington - Tacoma 731

= For this example, how much space Is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space Is required for a two-level page table with
only 4 page table entrles (PTEs) ?
= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)
= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2023] 1733
School of Engineering and Technology, University of Washington - Tacoma

‘ May 25, 2023

33

How much space is required for a two-level page table with only 4 page table entries

(PTEs) ? (one page each for code stack heap data)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size
3 o1 VPN e € R
PD P A VL C
o [[coe)°
swa< : 6 < € ‘\
15 (ULl) ¥ oz‘\ \,ﬁ-tﬁ
1o % Yoytes lo X Iy s
£ oy + LY bytes
0 !
{24 by tes Yo
-1

A6 spnakS 1N \>./'}'!S
Page directory = 16 entries x 4 bytes (1 x 64 byte page) \28 / lozY = 2. 5%
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

5/29/2023

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1st level)
= 4 bits page table index (PTI - 2" |evel)

| Page Diractory Index | Page Table Index

[3]12]11]w0] ¢ [4]3]2]1]0]
VPN Offset
14-bits Virtual address

8]7]

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCS5422: Operating Systems [Spring 2023]
‘ Ly School of Engineering and Technology, University of Washington - Tacoma w732

32

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

P

oM 16%B am

ZQ —> Y bytes Pale sv2Ze

29/,62 282 pages 2256

255 Wke’\#r_/ cests 4 L,/+f5

256 entres ® qk/-r-est I)OZ“{ bytes
[1%

Storage requirement: bytes required (single level)

34

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

\’]__‘:q::
= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = usingjust.j__s % the space !!!

= 100 sparse processes now require < 1MB for page tables
= 8KB x 100 = 800KB
—_—

TCS3422: Operating Systems [Spring 2023] 1736
School of Engineering and Technology, University of Washington - Tacoma

‘ May 25, 2023

35

Slides by Wes J. Lloyd

36

L17.6

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/29/2023

OBJECTIVES - 5/25

= Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 8 @ 3:40pm
= Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2023]
l LAERL SRS School of Engineering and Technology, University of Washington - Tacoma 1737

WE WILL RETURN AT

5:00 PM

TCSS422: Operating Systems [Spring 2023]
by 2 School of Engineering and Technology, University of Washington -

37

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

232827262524232221201916171615141312111098 7654 3 21 0

[T T I

< >

Page Dircctary Index

VPN offset

Flag [»
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset bt
Page entry per page | 128 PTEs —— > log, 128 =7
[v [um o smentom s g moms

39

MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 239=1GB RAM, 512-byte (2° pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Pagomi : : -

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Virtual address 0 bit

Page size 512 byte
VeN 21t
Offset o bit
Page entry per page | 128 PTEs —— > log,128 =7
TCS5422: Operating Systems [Spring 2023]
l LR School of Engineering and Technology, University of Washington - Tacoma L

41

Slides by Wes J. Lloyd

38

MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 239=1GB RAM, 512-byte (2° pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes * 4 bytes per addr

292827262524232221 019 1817161514 131211109 8 7654 3 21 0
B A i
Page Directory index N > i
VPN offset
Flag il
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 kit
Page entry per page | 128 PTEs — > log,128 =7
TCS5422: Operating Systems [Spring 2023]
l May 25, 2023 School of Engineering and Technology, University of Washington - Tacoma .40

40

MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 23°=1GB RAM, 512-byte (2° pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Paggmd .

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual acaress go
Page size 512 byte
VPN 21 bit
Offset Tobit
Page entry per page | 128 PTES —— > log,128 =7
[wmam o o e ety worgton- o

42

L17.7

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/29/2023

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

302928 272625242322 212019 18 1716 15 14 13 12 11 105 8 7 6 5 4 3
» sge bl dex .)
VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

TCSS422: Operating Systems [Spring 2023]
‘ LAERL SRS School of Engineering and Technology, University of Washington - Tacoma L1743

22 :\6B 27 : s by rasesize swvele
Level
2°[27 o 2™ pves — 2 million PhGeS P
PES TABLE
15 s > 2 2[5 79
UPN -2| biFs
o
Threg
Ltevt L
Pe-
e TasLL
pevasiziy Sihool o Engneag and Toshmady. Unversyof Washigton - Tacora 7

43

ADDRESS TRANS

// 5-level Linux page table address lookup
//

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2023]
‘ [May25;2023) School of Engineering and Technology, University of Washington - Tacoma L1745

45

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page
= Which process virtual page (from process virtual address

space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages

= Hash table: can index memory and speed lookups

TCS5422: Operating Systems [Spring 2023]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L

47

Slides by Wes J. Lloyd

44

ADDRESS TRANSLATION - 2

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad (*pgd))| forthe process, returns the PGD entry that
return 0; covers the requested address...

p4d = pdd_offset(pgd, vpage); T
if (p4d *pdd 4d_bad (*pad p4d/pud/pmd_offset():
if (pdd_none(*pdd) || pdd_bad(*pdd)) Takes a vpage address and the

iz 0;
retumn pgd/p4d/pud entry and returns the

pud = pud_offset(p4d, vpage);

if (pud_none (*pud) || pud_bad (*pud)) relevant p4d/pud/pmd.
return 0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad (*pmd))
return 0;

if (!(pte = pte_offset_map(pmd, vpage)))
return 0;

) 7 B 00

if (!(page = pte_page (*pte))) te_unma

release temporary kernel mapping

return 0; for the page table entry

physical_page_addr = page_to_phys (page)

pte_unmap (pte) ;
return physical_page_addr; // param to send back

TCS5422: Operating Systems [Spring 2023]
‘ [May 25,12023) School of Engineering and Technology, University of Washington - Tacoma 7.46

46

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

7CS5422: Operating Systems [Spring 2023]
‘ (R School of Engineering and Technology, University of Washington - Tacoma L4

48

TCSS 422 A — Spring 2023
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Spring 2023]
‘ LAERL SRS School of Engineering and Technology, University of Washington - Tacoma L1749

49

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2023]
‘ [May25;2023) School of Engineering and Technology, University of Washington - Tacoma 71

51

OBJECTIVES - 5/25

= Questions from 5/23

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 2 - June 2

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

® Final exam - Thursday June 8 @ 3:40pm

= Quiz 4 - Page Tables - Due June 8 @ 11:59 am

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

| = Chapter 21,/22: Beyond Physical Memory |

= Swapping Mechanisms, Swapping Policies

‘ May 25, 2023

TCS5422: Operating Systems [Spring 2023] 1753
School of Engineering and Technology, University of Washington - Tacoma

5/29/2023

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page

Table...
= HINT: how many entries are in the PD and PT
TCS5422: Operating Systems [Spring 2023]
‘ Ly School of Engineering and Technology, University of Washington - Tacoma u7.s0

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCS5422: Operating Systems [Spring 2023] urs2
School of Engineering and Technology, University of Washington - Tacoma

‘ May 25, 2023

52

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2023]
eayjes 202 School of Engineering and Technology, University of Washington -

53

Slides by Wes J. Lloyd

54

L17.9

TCSS 422

A — Spring 2023

School of Engineering and Technology

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory ™

/" Mass Storage(hard disk, tape, etc.) .

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2023]

LAERL SRS School of Engineering and Technology, University of Washington - Tacoma

u7.55

LATENCY TIMES

= Design considerations:
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (s)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25ns
Main memary reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec $5D
Read 1 MB sequentially from memory 250,000 ns 350 s
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 ps_| 1 ms ~1GB/sec SSD, 4X memory

Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps | 20 ms 80x memory, 20X SSD

= Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt

TCSS422: Operating Systems [Spring 2023]

[May25;2023) School of Engineering and Technology, University of Washington - Tacoma

u7.57

SWAP SPACE

= Disk space for storing memory pages
= “Swap” them in and out of memory to disk as needed

PFN D PEN 1 PN 2 PN 3
Physical | = poeg Proc 1 Proc 1 Prac 2
Memory | PN O] VPN 2] VPN 3] VPN 0]
Block Block1 Block? Block3 Blockd Block5 Block6 Block?
Swap | poco | Proco oo | Proct | procy | prac3 | Pree2 | Proc3
space | Ny | Nz | I WPNO] | VPN | MPNO) | VPND) | [N T)
Physical Memory and Swap Space
TCS5422: Operating Systems [Spring 2023]
‘ LR School of Engineering and Technology, University of Washington - Tacoma u7ee

5/29/2023

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

= Provide the illusion of an address space larger than
physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space supports running
many concurrent processes. . .

TCS5422: Operating Systems [Spring 2023]

s School of Engineering and Technology, University of Washington - Tacoma

11756

56

OBJECTIVES - 5/25

= Questions from 5/23
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 8 @ 3:40pm
= Quiz 4 - Page Tables - Due June 8 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
| Swapping Policies

TCS5422: Operating Systems [Spring 2023]

[May 25,12023) School of Engineering and Technology, University of Washington - Tacoma

758

58

SWAP SPACE - 2

= The size of the swap space can be seen using the Linux free
command: “free -h”

wiloyd@dione:~$ free -
t

al g s he available
116 17C

= With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM

TC55422: Operating Systems [Spring 2023]

(R School of Engineering and Technology, University of Washington - Tacoma

1760

Slides by Wes J. Lloyd

60

TCSS 422 A — Spring 2023 5/29/2023
School of Engineering and Technology

SWAP SPACE - 3 PAGE LOCATION

= Swap space lives on a separate logical volume in Ubuntu Linux = Memory pages are:
that is managed separately from the root file system = Stored in memory

= Check logical volumes with “sudo Ivdisplay” command: = Swapped to disk

= Present bit
=In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

= See also “lvm Ivs” command

TCSS422: Operating Systems [Spring 2023] TCS5422: Operating Systems [Spring 2023]
‘ LAERL SRS School of Engineering and Technology, University of Washington - Tacoma Li761 Ly School of Engineering and Technology, University of Washington - Tacoma .62

61 62

PAGE FAULT PAGE REPLACEMENTS

= OS steps in to handle the page fault = Page daemon
= Background threads which monitors swapped pages
= Loading page from disk requires a free memory page
= Low watermark (LW)

=Threshold for when to swap pages to disk
PN = FindFreePhysicalPage () = Daemon checks: free pages < LW

(e = 1 = Begin swapping to disk until reaching the highwater mark

= Page-Fault Algorithm

PFN = EvictPage ()

DiskRead (PTE.DiskAddr, pfn)

En PTE.present = = High watermark (HW)
o FE. ! = Target threshold of free memory pages
7 RetryInstruction()
= Daemon free until: free pages >= HW
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ [May25;2023) School of Engineering and Technalogy, University of Washington - Tacoma L1763 ‘ [May 25,12023) School of Engineening and Technalagy, Universiy of Washington - Tacoma 7.64

OBJECTIVES - 5/25

= Questions from 5/23

= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - June 2

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

® Final exam - Thursday June 8 @ 3:40pm REPLACEMENT

= Quiz 4 - Page Tables - Due June 8 @ 11:59 am

POLICY
= Chapter 20: Paging: Smaller Tables PO L|C| ES
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms| Swapping Policies

‘ May25, 2023 TCS5422: Operating Systems [Spring 2023] L1765 May 25, 2023 TCS$422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington -

65 66

Slides by Wes J. Lloyd L17.11

TCSS 422 A — Spring 2023 5/29/2023
School of Engineering and Technology

CACHE MANAGEMENT OPTIMAL REPLACEMENT POLICY
= Replacement policies apply to “any” cache = What if:
= Goal is to minimize the number of misses = We could predict the future (... with a magical oracle)
= Average memory access time (AMAT) can be estimated: = All future page accesses are known

= Always replace the page in the cache used farthest in the future

[AT = G+ T + P2 To) |

= Used for a comparison

T The cost of accessing memory (time) = Provides a “best case” replacement policy

Ty The cost of accessing disk (time)

Py | The probability of finding the data item in the cache(a hit)

Putiss The probability of not finding the data in the cache(a miss) = Consider a 3-element empty cache with the following page
= Consider Ty = 100 ns, T, = 10ms ACCESSEs:

= Consider Py = .9 (90%), Piss = -1

What is the hit/miss ratio?
= Consider Py, = .999 (99.9%), P, = .001

TCSS422: Operating Systems [Spring 2023] TCS5422: Operating Systems [Spring 2023]
‘ LAERL SRS School of Engineering and Technology, University of Washington - Tacoma L1767 Ly School of Engineering and Technology, University of Washington - Tacoma L7.68

01201303121

67 68

FIFO REPLACEMENT RANDOM REPLACEMENT
= Queue based = Pick a page at random to replace
= Always replace the oldest element at the back of cache = Simple and fast implementation

= Simple to implement = Performance depends on luck of random choices

= Doesn’t consider importance... just arrival ordering 01201303121

= Consider a 3-element empty cache with the following

page accesses: g"
01201303121 £ I
= What is the hit/miss ratio? m L l PR

= How is FIFO different than LRU? LRU incorporates history Randorm port Nw-vf"i"mmrl
ndom Performance over 10,000 Trials

TCSS422: Operating Systems [Spring 2023] TCS5422: Operating Systems [Spring 2023]
‘ [May25;2023) School of Engineering and Technology, University of Washington - Tacoma L1769 [May 25,12023) School of Engineering and Technology, University of Washington - Tacoma uz.70

69 70

" Consider a 3-element cache. With a FIFO

replacement policy, how many hits occur with the
following page access sequence:

HISTORY-BASED POLICIES

= LRU: Least recently used
= Always replace page with oldest access time (front) 12013120213
= Always move end of cache when element is read again
= LRU requires constant reorganization of the cache

= Considers temporal locality (when pg was last accessed) 2 hits

What is the hit/miss ratio? .
01201303121 /| 3 hits

= LFU: Least frequently used 4 hits
= Always replace page with the fewest # of accesses (front)
= Incorporates frequency of use - must track pg accesses 5 hits

= Consider frequency of page accesses

01201303121 Hit/miss ratlo Is=6 hits 6 hits

‘ May 25, 2023 [Eosi22 Opeatnsbystme Lpune202] urn - My 282083 TCS3422: Operating Systems [Spring 2023]
e o

Li7M
2 m

School of Engineering and Technology, University of Washington - Tacoma

71 72

Slides by Wes J. Lloyd L17.12

TCSS 422 A — Spring 2023 5/29/2023
School of Engineering and Technology

Consider a 3-element cache. With an LRU "

replacement policy, how many hits occur with the
following page access sequence:

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload

12013120213 = Perform 10,000 random page accesses
= Across set of 100 memory pages
h The No-Locality Workload
2 hits e
. 0%
3 hits . When the cache is
2 on — ot large enough to fit
. T — LRI i
4 hits = L thg entire ’workload,
o — RAND it doesn’t matter
i which policy you use.
5 hits -
) I
6 hits Cache Size (Blocks)
TCSS422: Oy ting Syst [Spring 2023]
.. May 25, 2033 Mecelag e b Sy b e “37-. ‘ Ly School of E:geir:ee’:igngyzned":em:z:fgy, University of Washington - Tacoma u7.7e

73 74

WORKLOAD EXAMPLES: 80/20 WORKLOAD EXAMPLES: SEQUENTIAL

= 80/20 Workload = Looping sequential workload
= Perform 10,000 page accesses, against set of 100 pages = Refer to 50 pages in sequence: 0, 1, ..., 49
= 80% of accesses are to 20% of pages (hot pages) = Repeat loop
= 20% of accesses are to 80% of pages (cold pages) The Losping-Sequential Worldoad
The §0.20 Workload 100% —
wos - Random performs
. . L better than FIFO and
o] LRU is more likely o LRU for
3 to hold onto g —aer cache sizes < 50
2 ey - hot pages T T
= .| s — RAND
UecallEh =) 20 Algorithms should provide
,7‘ “scan resistance”
R N — b b A b
R
Cache Saze (Blocks) Cache Size (Blocks)
TCSS422: Operating Syste [Spring 2023] TCSS422: O iting Syst [Spring 2023]
‘ [May25;2023) school ofE:;:ele’:\gngy:nemesechnZ?fgv, University of Washington - Tacoma 7.7 ‘ [May 25,12023) School of Ervpgei’:ele’:?ngv:nemesechzr(:Egy, University of Washington - Tacoma 1776

75 76

[| |
® with small cache sizes, for the looping sequential "

workload, why do FIFO and LRU fail to provide cache
hits?

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages
Cache hits in this scenario require consideration of

how frequently accessed memory is for cache = Times can be tracked with a list
replacement Armf f f

= For cache eviction, we must scan an entire list
Memory accesses are unpredictable and too
random. Unpredictable accesses require a random = Consider: 4GB memory system (232),

cache replacement policy for cache hits with 4KB pages (212)
Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching . . 20 . O

= This requires 22° comparisons !!!
Unlike Random cache replacement, both FIFO
and LRU fail to speculate memary accessesin
advance to improve caching

= Simplification is needed

Hone of the above = Consider how to approximate the oldest page access
TCSS422: Operating Syste [Spring 2023]
- v ot . el ™ ‘ EESETD) Sl o o o e e g e e U e T 1778

77 78

Slides by Wes J. Lloyd L17.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/29/2023

IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0Ssetsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page
=Loops around
IF USE_BIT=1 set to USE_BIT = 0
IF USE_BIT=0 replace page

TCSS422: Operating Systems [Spring 2023]

‘ avEsaa2s School of Engineering and Technology, University of Washington - Tacoma

u7.79

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload

Cache Size (Blocks)

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

1780

May 25, 2023

79

80

CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

= Clock algorithm should favor no cost eviction

TCSS422: Operating Systems [Spring 2023]

[May25;2023) School of Engineering and Technology, University of Washington - Tacoma

u7.81

WHEN TO LOAD PAGES

= On demand > demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCS5422: Operating Systems [Spring 2023]

[May 25,12023) School of Engineering and Technology, University of Washington - Tacoma

u782

81

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch

= Thrashing

processes and is low in memory

=Grouping disk writes helps amortize latency costs

=Occurs when system runs many memory intensive

=Everything is constantly swapped to-and-from disk

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 25, 2023

17.83

83

Slides by Wes J. Lloyd

82

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

=When thrashing: prevent one or more working
set(s) from running

=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TC55422: Operating Systems [Spring 2023]

(R School of Engineering and Technology, University of Washington - Tacoma

1784

84

L17.14

TCSS 422 A — Spring 2023 5/29/2023
School of Engineering and Technology

QUESTIONS

85

Slides by Wes J. Lloyd L17.15

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/25
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/23
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10
	Slide 11: Feedback - 6
	Slide 12: Feedback - 7
	Slide 13: OBJECTIVES – 5/25
	Slide 14: OBJECTIVES – 5/25
	Slide 15: OBJECTIVES – 5/25
	Slide 16: Assignment 3: introduction to linux kernel modules
	Slide 17: OBJECTIVES – 5/25
	Slide 18: Final exam – Thursday June 8 @ 3:40pmth
	Slide 19: OBJECTIVES – 5/25
	Slide 20: OBJECTIVES – 5/25
	Slide 21: Chapter 20: Paging: smaller tables
	Slide 22: OBJECTIVES – 5/25
	Slide 23: Multi-level page tables
	Slide 24: Multi-level page tables - 2
	Slide 25: Multi-level page tables - 2
	Slide 26
	Slide 27
	Slide 28: Multi-level page tables - 3
	Slide 29: example
	Slide 30: Example - 2
	Slide 31: Page directory index
	Slide 32: Page table index
	Slide 33: Example - 3
	Slide 34
	Slide 35
	Slide 36: 32-bit example
	Slide 37: OBJECTIVES – 5/25
	Slide 38: We will return at 5:00 pm
	Slide 39: More than two levels - 2
	Slide 40: More than two levels - 3
	Slide 41: More than two levels - 3
	Slide 42: More than two levels - 3
	Slide 43: More than two levels - 4
	Slide 44
	Slide 45: Address translation code
	Slide 46: Address translation - 2
	Slide 47: Inverted page tables
	Slide 48: Multi-level page table example
	Slide 49: Multi level page table example - 2
	Slide 50: Multi level page table example - 3
	Slide 51: Multi level page table example - 4
	Slide 52: Answers
	Slide 53: OBJECTIVES – 5/25
	Slide 54: Chapter 21/22: Beyond physical memory
	Slide 55: Memory hierarchy
	Slide 56: Motivation for expanding the address space
	Slide 57: Latency times
	Slide 58: OBJECTIVES – 5/25
	Slide 59: Swap space
	Slide 60: Swap space - 2
	Slide 61: Swap space - 3
	Slide 62: Page location
	Slide 63: Page fault
	Slide 64: Page replacements
	Slide 65: OBJECTIVES – 5/25
	Slide 66: Replacement policies
	Slide 67: Cache management
	Slide 68: Optimal replacement policy
	Slide 69: FIFO replacement
	Slide 70: Random replacement
	Slide 71: History-based policies
	Slide 72
	Slide 73
	Slide 74: Workload examples: no-locality
	Slide 75: Workload examples: 80/20
	Slide 76: Workload examples: sequential
	Slide 77
	Slide 78: Implementing LRU
	Slide 79: Implementing lru - 2
	Slide 80: Clock algorithm
	Slide 81: Clock algorithm - 2
	Slide 82: When to load pages
	Slide 83: Other swapping policies
	Slide 84: Other swapping policies - 2
	Slide 85: Questions

