
TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.1Slides by Wes J. Lloyd

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Translation Lookaside Buffer,
Smaller Tables,

Multi-level Page Tables

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables – To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES – 5/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 23, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

ONLINE DAILY FEEDBACK SURVEY

May 23, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.4

 Please classify your perspective on material covered in today’s

class (44 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.89 (- previous 6.78)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 6.01 (- previous 5.98)

May 23, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

MATERIAL / PACE

 I t was noted that f ragmentation can af fect RAM and d isk s torage.
S ince paging can avoid f ragmentation issues for RAM, is/can
paging a lso be used for d isk s torage?

 Tradit ional Hard Disk Drives (HDDs) stored data on tracks,
where each track was divided into sectors

 Sectors are typically 512 bytes

 Filesytems (e.g. ext4) determine the smallest blocksize for
reading/writ ing fi le data

 Filesystems must sett le on a minimize size of the block

 Having a small blocksize great ly increases the size of the fi le
system as it must be able to track smaller units consuming
much more disk space!

 #check filesystem health & stats:
sudo e2fsck -n -v -f {device-file}

 sudo blockdev --getbsz {device-file} #check blocksize

 {device-fi le} wil l be l ike /dev/sda3 (Vir tualbox)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

FEEDBACK FROM 5/18

1 2

3 4

5 6

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.2Slides by Wes J. Lloyd

 After buying and installing RAM it may not work as well

10 years later. What is it exactly that causes the actual

hardware to degrade over time, and is it related to how

our OS decides to allocate memory?

 Memory failure may be due to small manufacturing

imperfections, cumulative power spikes, etc.

 Typically, when DRAM fails it is critical and the system

will crash.

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK - 2

 MS Windows has a "Defragment and Optimize Drives"
application. I was wondering how this app moves data around
on the Hard Disk and why the process of creating more
contiguous f ree space for future f i le storage causes damage
over t ime, and if there is a trade-off between permanent
damage caused and the relative speed increase, and where it
is worth it given that the application now runs in the
background automatically and frequently, where we used to
have to do it manually prior to Windows Vista.

 There hopefully is no “damage” per se.

 Fragmentation may seem like damage due to its impact on
disk performance

 Sectors on physical disks can and do fail.

 The OS marks them as bad in the filesystem and avoids future
use

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK - 3

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

OBJECTIVES – 5/23

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

OBJECTIVES – 5/23

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

OBJECTIVES – 5/23

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 5/23

7 8

9 10

11 12

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.3Slides by Wes J. Lloyd

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

OBJECTIVES – 5/23

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

OBJECTIVES – 5/23

CHAPTER 18:

INTRODUCTION TO

PAGING

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.15

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

13 14

15 16

17 18

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.4Slides by Wes J. Lloyd

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef f icient?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.24

PAGE TABLE ENTRY

19 20

21 22

23 24

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.5Slides by Wes J. Lloyd

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dir ty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit) : Indicating that a page has been

accessed

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

25 26

27 28

29 30

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.6Slides by Wes J. Lloyd

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3
1

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3
2

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3
3

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3
4

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.3
5

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

PAGING SYSTEM EXAMPLE

31 32

33 34

35 36

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.7Slides by Wes J. Lloyd

WE WILL RETURN AT

4:55PM

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.37

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

OBJECTIVES – 5/23

CHAPTER 19:

TRANSLATION

LOOKASIDE BUFFER

(TLB)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.39

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

TRANSLATION LOOKASIDE BUFFER

 Example: Use this Array initialization Code

 Assembly equivalent:

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

37 38

39 40

41 42

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.8Slides by Wes J. Lloyd

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for - loop

iterations

 Move lookups

from RAM to TLB

by caching page

table entries

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.43

TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.45

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

OBJECTIVES – 5/23

 For: array based page table

 Hardware managed TLB

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

43 44

45 46

47 48

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.9Slides by Wes J. Lloyd

Key detail:

 For a TLB miss, we first access the page table in RAM to

populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

TLB – ADDRESS TRANSLATION CACHE

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

OBJECTIVES – 5/23

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not

in the TLB?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache
(how much history can you store?)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

TLB EXAMPLE - 4

49 50

51 52

53 54

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.10Slides by Wes J. Lloyd

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

OBJECTIVES – 5/23

CHAPTER 20:

PAGING:

SMALLER TABLES

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.56

Consider array -based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

OBJECTIVES – 5/23

55 56

57 58

59 60

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.11Slides by Wes J. Lloyd

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a

few variables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

OBJECTIVES – 5/23

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page

table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

MULTI-LEVEL PAGE TABLES - 2

61 62

63 64

65 66

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.12Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.67

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

4 GB computer (2^32) and 4KB pages (2^12)
1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?
2. How much memory can a single PD pointing to a single PT address?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L16.69

 Advantages

▪ Only allocates page table space in proportion to the

address space actually used

▪ Can easily grab next free page to expand page table

 Disadvantages

▪Multi-level page tables are an example of a time-space

tradeoff

▪ Sacrifice address translation time (now 2-level) for space

▪ Complexity: multi-level schemes are more complex

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages

= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table

entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)

= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

EXAMPLE - 2

67 68

69 70

71 72

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.13Slides by Wes J. Lloyd

 Now, let’s split the page table into two:

▪ 8 bit VPN to map 256 pages

▪ 4 bits for page directory index (PDI – 1st level page table)

▪ 6 bits offset into 64-byte page

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

▪ We need one page directory entry (PDE)

▪ One page table Index (PTI) – can address 16 pages

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 4 entries x 4 bytes (1 x 64 byte page)

 128 bytes required (2 x 64 byte pages)

▪ Savings = using just 12.5% the space !!!

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 2 20 pages

 Only 4 mapped pages

 Single level : 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

32-BIT EXAMPLE

 Questions from 5/18

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -May 26

 Assignment 3 (as a Tutorial) - June 9

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

OBJECTIVES – 5/23

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

MORE THAN TWO LEVELS

73 74

75 76

77 78

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.14Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (2 30=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (2 30=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (2 30=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4

entries on a 512-byte page? (let’s say 4 32 -bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- leve l) / 8,388,608 (1- leve l) = .0183% !!!

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct – process’s memory map struct

// vpage – virtual page address

// Define page struct pointers

pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

ADDRESS TRANSLATION CODE

79 80

81 82

83 84

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.15Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);

if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;

p4d = p4d_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))

return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;

if (!(pte = pte_offset_map(pmd, vpage)))

return 0;

if (!(page = pte_page(*pte)))

return 0;

physical_page_addr = page_to_phys(page);

pte_unmap(pte);

return physical_page_addr; // param to send back

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct

for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

▪ Which process uses each page

▪ Which process virtual page (from process virtual address

space) maps to the physical page

 All processes share the same page table for memory mapping,

kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 2 20 pages

 Hash table: can index memory and speed lookups

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.87

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.

 HelloWorld.c requires vir tual address translation for 4 pages:

▪ 1 – code page 1 – stack page

▪ 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry

(PTE) requires 4 bytes:

▪ 6 bits for the Page Directory Index (PDI)

▪ 6 bits for the Page Table Index (PTI)

▪ 12 offset bits

▪ 8 status bits

 (#8) How much total memory is required to index the

HelloWorld.c program using a two-level page table when we

only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page

Table…

 HINT: how many entries are in the PD and PT

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a

single page table (PT), if all of the slots of the page table (PT)

are in use, what is the total amount of memory a two -level

page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),

how much memory does the 2-level page table scheme

consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

MULTI LEVEL PAGE TABLE EXAMPLE - 4

85 86

87 88

89 90

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/23/2023

L16.16Slides by Wes J. Lloyd

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page

With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 → 3.125%

May 23, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

ANSWERS QUESTIONS

91 92

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/18
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: OBJECTIVES – 5/23
	Slide 10: OBJECTIVES – 5/23
	Slide 11: OBJECTIVES – 5/23
	Slide 12: OBJECTIVES – 5/23
	Slide 13: OBJECTIVES – 5/23
	Slide 14: OBJECTIVES – 5/23
	Slide 15: Chapter 18: Introduction to paging
	Slide 16: Paging: example
	Slide 17: Paging: Address translation
	Slide 18: Example: paging address translation
	Slide 19: Paging design questions
	Slide 20: (1) Where are page tables stored?
	Slide 21: Page table example
	Slide 22: Now for an entire OS
	Slide 23: (2) What’s actually in the page table
	Slide 24: Page table entry
	Slide 25: Page table entry - 2
	Slide 26: (3) How big are page tables?
	Slide 27: (4) Does paging make the system too slow?
	Slide 28: Paging memory access
	Slide 29: Counting memory accesses
	Slide 30: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Paging system example
	Slide 37: We will return at 4:55Pm
	Slide 38: OBJECTIVES – 5/23
	Slide 39: Chapter 19: Translation lookaside buffer (TLB)
	Slide 40: Translation lookaside buffer
	Slide 41: Counting memory accesses
	Slide 42: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 43: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 44: Translation lookaside buffer (TLB)
	Slide 45: Translation lookaside buffer (TLB)
	Slide 46: OBJECTIVES – 5/23
	Slide 47: Tlb basic algorithm
	Slide 48: Tlb basic algorithm - 2
	Slide 49: TLb – address translation cache
	Slide 50: OBJECTIVES – 5/23
	Slide 51: Tlb example
	Slide 52: Tlb Example - 2
	Slide 53: Tlb Example - 3
	Slide 54: Tlb example - 4
	Slide 55: OBJECTIVES – 5/23
	Slide 56: Chapter 20: Paging: smaller tables
	Slide 57: Linear page tables
	Slide 58: Linear page tables - 2
	Slide 59: Linear page tables - 2
	Slide 60: OBJECTIVES – 5/23
	Slide 61: Paging: use larger pages
	Slide 62: Page tables: wasted space
	Slide 63: Page tables: wasted space
	Slide 64: OBJECTIVES – 5/23
	Slide 65: Multi-level page tables
	Slide 66: Multi-level page tables - 2
	Slide 67: Multi-level page tables - 2
	Slide 68
	Slide 69
	Slide 70: Multi-level page tables - 3
	Slide 71: example
	Slide 72: Example - 2
	Slide 73: Page directory index
	Slide 74: Page table index
	Slide 75: Example - 3
	Slide 76: 32-bit example
	Slide 77: OBJECTIVES – 5/23
	Slide 78: More than two levels
	Slide 79: More than two levels - 2
	Slide 80: More than two levels - 3
	Slide 81: More than two levels - 3
	Slide 82: More than two levels - 3
	Slide 83: More than two levels - 4
	Slide 84: Address translation code
	Slide 85: Address translation - 2
	Slide 86: Inverted page tables
	Slide 87: Multi-level page table example
	Slide 88: Multi level page table example - 2
	Slide 89: Multi level page table example - 3
	Slide 90: Multi level page table example - 4
	Slide 91: Answers
	Slide 92: Questions

