TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Free Space Management,
Introduction to Paging,

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2023]

iayils202y School of Engineering and Technology, University of Washington il Tacoma

FINAL EXAM SURVEY *NOW AVAILABLE IN CANVAS*
CLOSES MONDAY MAY 22

®TCSS 422 Final is scheduled for:
Thursday June 8th 3:40-5:40pm

® This is one of the last time slots of the final exams week.

® Please indicate your preference for scheduling of the
TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm
B. Thursday June 8, 3:40 to 5:40 pm
C. No Preference

= Regardless of the selected date, the content and
coverage on the Final Exam will remain the same.

m (please disregard scoring as the quiz is worth O points.)

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

May 18, 2023

Slides by Wes J. Lloyd L15.1

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

MIDTERM REVIEW SESSION

= RECORDING NOW AVAILABLE:

= Best viewed while looking at midterm paper

= Wednesday May 17, 6:30 pm

® Zoom / Live Stream / Recording

® Discussion and review of midterm exam problems
® Discussion of grading approach

m Details on partial credit

= Checking the grading

TCSS422: Operating Systems [Spring 2023]

L15.3
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

ZOOM RECORDING ANALYTICS

® Spring Fever? Stay tuned, many new concepts post-midterm
Cummulative Views of TCSS 422 Zoom Recordings

@
ERE]
3
2
2
B
g2 0
E
5
(]
0
N ~) W) o A %) CRRS a o
2 @ 2 2 @ 2 2 2 2 N & N N LS w X
ST S S S e T e e
SN N N N N O B AN AN N
“\S‘
Description
TCSS422: Operating Systems [Spring 2023]
L15.4
Ravite2u2s School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L15.2

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

OBJECTIVES - 5/18

| * Questions from 5/16 |
® Assignment 2 - June 2
B Quiz 3 - Synchronized Array - June 2
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
®m Assighment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

] =
TCSS422: Operating Systems [Spring 2023]
May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma 1155

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCS55422 A » Assignments

Spring 2021
Home

Announcements
* Upcoming Assignments

Zoom

Syllabus TCSS 422 - Online Daily Feedback Survey - 4/1
** " Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Dicruccinne i N el vl s s

TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

May 18, 2023

Slides by Wes J. Lloyd L15.3

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

[| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

1 2 3 4 5 6 7 8 9 1e
Mostly Equal Mostly
Review To Me New and Review New to Me

[| Question 2 0.5 pts

Please rate the pace of today's class:

1 2 3 4 5 6 7 8] 160

Slow Just Right Fast

TCSS422: Computer Operating Systems [Spring 2023]

Maviieanzs School of Engineering and Technology, University of Washington - Tacoma L15.7

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (40 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.78 ({ - previous 7.22)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.98 (T - previous 5.72)

TCSS422: Computer Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma 1158

May 18, 2023

Slides by Wes J. Lloyd L15.4

TCSS 422 A — Spring 2023
School of Engineering and Technology

FEEDBACK FROM 5/16

= For base bound memory allocation when does the 0S
decide what the base and bounds should be?

= Base and bounds registers were used in early computer
systems to track location of memory segments for the
code, stack, heap, etc.

= Today they may not be used at all:

= On most modern operating systems (e.g. FreeBSD, Linux or
Windows) use a memory model that points nearly all
segment registers to the same place (and use paging
instead)

From:
https://en.wikibooks.org/wiki/X86_Assembly/X86_ Architecture#Segment Registers

TCSS422: Operating Systems [Spring 2023]

L15.9
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

FEEDBACK - 2

= What if the amount of memory needed is really large or
really small?
= A modern system will manage memory using paging which
enables code, heap, and stack storage to exceed a single
segment through the use of memory paging

= Chapter 18

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.10

May 18, 2023

10

Slides by Wes J. Lloyd

5/18/2023

L15.5

https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#Segment_Registers

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/16
|I Assignment 2 - June 2 |
B Quiz 3 - Synchronized Array - June 2
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] 115.11
School of Engineering and Technology, University of Washington - Tacoma :

May 18, 2023

11

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
|I Quiz 3 - Synchronized Array - June 2|
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assighment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] 115.12
School of Engineering and Technology, University of Washington - Tacoma .

May 18, 2023

12

Slides by Wes J. Lloyd

5/18/2023

L15.6

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
B Quiz 3 - Synchronized Array - June 2
|I Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 2'5
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] 115.13
School of Engineering and Technology, University of Washington - Tacoma :

May 18, 2023

13

OBJECTIVES - 5/18

® Questions from 5/16

® Assignment 2 - June 2

® Quiz 3 - Synchronized Array - June 2

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
|I Assignment 3 (as a Tutorial) to be posted... |

® Chapter 16: Segmentation

® Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] L15.14
School of Engineering and Technology, University of Washington - Tacoma .

May 18, 2023

14

Slides by Wes J. Lloyd

5/18/2023

L15.7

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
B Quiz 3 - Synchronized Array - June 2

m Assignment 3 (as a Tutorial) to be posted...
| = Chapter 16: Segmentation |
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
s Smaller Tables Multi-level Page Tahles N-level Page Tabhle

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

TCSS422: Operating Systems [Spring 2023]
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.15

15

CHAPTER 16:
SEGMENTATION

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington -

May 18, 2023

16

Slides by Wes J. Lloyd

5/18/2023

L15.8

TCSS 422 A — Spring 2023
School of Engineering and Technology

= Address space
= Contains significant unused memory
= |s relatively large
= Preallocates space to handle stack/heap growth

= | arge address spaces
= Hard to fit in memory

® How can these issues be addressed?

OKB
1KB

2KB
3KB
4KB
5KB
6KB

14KB
15KB
16KB

BASE AND BOUNDS INEFFICIENCIES

Program Code

Heap

(free)

Stack

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.17

17

MULTIPLE SEGMENTS

®E Memory segmentation

= Each is a contiguous address space

® Each segment can placed separately

® Manage the address space as (3) separate segments

= Provides logically separate segments for: code, stack, heap

= Track base and bounds for each segment (registers)

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L1518

18

Slides by Wes J. Lloyd

5/18/2023

L15.9

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

SEGMENTS IN MEMORY

® Consider 3 segments:

Operating System
16KB — ‘
(not in use)
1 Segment Base Size
Stack Code 32K 2K
32KB {nmclr:juse) Heap 34K 2K
Hoan Stack 28K 2K
48KB (not in use)
64KB -
Physical Memory
TCSS422: Operating Systems [Spring 2023]
iayilsz02s School of Engineering and Technology, University of Washington - Tacoma H15.19

19

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base J

® Code segment - physically starts at 32KB (base)
m Starts at “0” in virtual address space

Base

Bounds check:
M s virtual address within 2KB e
i address space? address

%Mm

4KB

(not in use)

Virtual Address Space Physi

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.20

| May 18, 2023

20

Slides by Wes J. Lloyd L15.10

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

® Heap starts at virtual address 4096

= The data is at 4200

m Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
® Physical address = 104 + 34816 (offset + heap base)

SesEnt Base Size
Heap 34K 2K
(not in use)
32KB
Code ———
Wb] 24KB 104 + 34K or 34920
4200(data faeascsanne is the desired
Hea
ke Heap ? s6kg | Physical address
t |
(not in use)
Address Space

Physical Memory

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

May 18, 2023

21

SEGMENTATION FAULT

® Access beyond the address space

®m Heap starts at virtual address: 4096
® Data pointer is to 7KB (7168)

® |s data pointer valid?

® Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) B ——
6KB l
7KB (not in use)
8KB

Address Space

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

May 18, 2023

22

Slides by Wes J. Lloyd L15.11

TCSS 422 A — Spring 2023
School of Engineering and Technology

SEGMENT REGISTERS

m Used to dereference memory during translation

13 12 11 10 5 8 7 6 5 4 3 2 1 0

| I

I I
Segment Offset

First two bits identify segment type
B Remaining bits identify memory offset

I
Segment Offset

= Example: virtual heap address 4200 (01000001101000)

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Segment
| 01 0 0 0 O 0 1 1 0 1 0 0 O | Code
l I | Heap
T Stack

bits
00
01
10
11

| May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

23

SE

GMENTATION DEREFERENCE

R

// get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
// now get offset
offset = VirtualAddress & OFFSET MASK
if (offset >= Bounds[Segment])
RaiseException (PROTECTION FAULT)
else
PhysAddr = Base[Segment] + Offset
Register = AccessMemory (PhysAddr)

= VIRTUAL A

= OFFSET_M

= OFFSET <

= OFFSET = 000001101000 = 104

DDRESS = 01000001101000

= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap

ASK = OxFFF (00111111111111)

BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

24

Slides by Wes J. Lloyd

5/18/2023

L15.12

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

STACK SEGMENT

mStack grows backwards (FILO)
® Requires hardware support:
®Direction bit: tracks direction segment grows

(not in use)
26KB T Segment Register(with Negative-Growth Support)
Stack
28KB Segment Base Size Grows Positive?
(not in use) Code 32K 2K 1
Heap 34K 2K 1
Stack 28K 2K 0

Physical Memory

TCSS422: Operating Systems [Spring 2023]

L15.25
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

25

SHARED CODE SEGMENTS

®m Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® so (linux): shared object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Ceode 32K 2K 1 Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K 0 Read-Write

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.26

May 18, 2023

26

Slides by Wes J. Lloyd L15.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

Consider a program with 2KB of code, a 1 KB stack,
and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32 KB
56 KB
24 KB
4 KB
0 KB

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

27

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
"Heap segment
=Stack segment

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.28

May 18, 2023

28

Slides by Wes J. Lloyd

5/18/2023

L15.14

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/18/2023

® Fine-grained
= Manage memory as list of segments

® Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

SEGMENTATION GRANULARITY - 2

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.29

29

= Consider how much free space?
= We'll say about 24 KB

m Request arrives to allocate a 20 KB heap
segment

® Can we fulfil the request for 20 KB of
contiguous memory?

MEMORY FRAGMENTATION

0KB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

Not compacted

Operating System

(not in use)

Allocated

(not in use)

Allocated

(not in use)

Allocated

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.30

30

Slides by Wes J. Lloyd

L15.15

TCSS 422 A — Spring 2023
School of Engineering and Technology

COMPACTION

®m Supports rearranging memory

= Can we fulfil the request for 20 KB of
contiguous memory?

= Drawback: Compaction is slow
= Rearranging memory is time consuming
= 64KB is fast
= 4GB+ ... slow

= Algorithms:

= Best fit: keep list of free spaces, allocate the
most snug segment for the request

= Others: worst fit, first fit... (in future chapters)

0KB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Compacted

Operating System

Allocated

(not in use)

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.31

31

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
® Quiz 3 - Synchronized Array - June 2

= Assighment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation

|I Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023]

May 18, 2023

® Chapter 19: Translation Lookaside Buffer (TLB)

School of Engineering and Technology, University of Washington - Tacoma

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

L15.32

32

Slides by Wes J. Lloyd

5/18/2023

L15.16

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

CHAPTER 17: FREE
SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2023]

LY) A School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1534

May 18, 2023

34

Slides by Wes J. Lloyd L15.17

TCSS 422 A — Spring 2023
School of Engineering and Technology

FREE SPACE MANAGEMENT

® How should free space be managed, when satisfying

variable-sized requests?

® What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate

approaches?

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.35

35

FREE SPACE MANAGEMENT

® Management of memory using

® Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.36

36

Slides by Wes J. Lloyd

5/18/2023

L15.18

TCSS 422 A — Spring 2023
School of Engineering and Technology

FRAGMENTATION

= Consider a 30-byte heap

30-byte heap: [free | used | free |
0 10 20 30

Request for 15-bytes

. addr:0 addr:20
free list. head —® 1...10 — 1en:10 > NULL

= Free space: 20 bytes

No available contiguous chunk - return NULL

TCSS422: Operating Systems [Spring 2023]

L1537
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

37

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= |[nternal: Jlost space - OS can’t compact
= OS returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.38

May 18, 2023

38

Slides by Wes J. Lloyd

5/18/2023

L15.19

TCSS 422 A — Spring 2023
School of Engineering and Technology

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free | used | free |
0 10 20 30

. addr:0 addr:20
free list _head — 1...10 ™ 1en:10 > NULL

= OS locates a free chunk to satisfy request
® Splits chunk into two, returns first chunk

30-byte heap: | free | used | | free |
0 10 20 21 30

- addr:0 addr:21
free list. head —» 1...10 —® 1en:s —> NULL

TCSS422: Operating Systems [Spring 2023]

L15.39
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

39

ALLOCATION STRATEGY: COALESCING

® Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head len:10 Len:10 len:10

—> NULL

® Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
® Coalescing regroups chunks into contiguous chunk

addr: 0

head len:30

—» NULL

= Allocation can now proceed
® Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.40

May 18, 2023

40

Slides by Wes J. Lloyd

5/18/2023

L15.20

TCSS 422 A — Spring 2023
School of Engineering and Technology

® Header block

An Allocated Region Plus Header

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

® How does the OS know how much memory to free?

= Small descriptive block of memory at start of chunk

:|~ The header used by malloc library

The 20 bytes returned to caller

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.41

41

—>
hptr size: 20

MEMORY HEADERS - 2

magic: 1234567

The 20 bytes

type struct _ header t {
int size;
int magic;

} header t;

returned to caller

Specific Contents Of The Header

= Contains size
® Pointers: for faster memory access
® Magic number: integrity checking

A Simple Header

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.42

42

Slides by Wes J. Lloyd

5/18/2023

L15.21

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

MEMORY HEADERS - 3

m Sjze of memory chunk is:
m Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free (void *ptr) {

header t *hptr = (void *)ptr - sizeof (header t);

}

TCSS422: Operating Systems [Spring 2023]

L15.4:
School of Engineering and Technology, University of Washington - Tacoma 543

May 18, 2023

43

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington -

May 18, 2023

44

Slides by Wes J. Lloyd L15.22

TCSS 422 A — Spring 2023 5/18/2023

School of Engineering and Technology

THE FREE LIST

® Simple free list struct

type struct _ node_t {

int size;

struct _ node t *next;
} nodet t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

// mmap() returns a pointer to a chunk of free space
node_t *head = mmap (NULL, 409&, PROT_READ|PROT_WRITE,
MAP ANON|MAP_ PRIVATE, -1, 0);

head->size = 4096 - sizeof (node_t);

head-»next NULL;
TCSS422: Operating Systems [Spring 2023]
L15.45
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

45

FREE LIST - 2

® Create and initialize free-list “heap”
// mmap () returns a pointer to a chunk of free space
node t *head = mmap (NULL, 4096, PROT_READ|PROT_WRITE,

MAP ANON|MAP_ PRIVATE, -1, 0);

head->»size = 4096 - sizeof(node t);
head-»next = NULL;
= Heap layout:
[virtual address: 16KB]
. header: size field
size: 4088

head —>»| next 0 | header: next field(NULL is 0)

e the rest of the 4KB chunk

.

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

May 18, 2023

46

Slides by Wes J. Lloyd L15.23

TCSS 422 A — Spring 2023

School of Engineering and Technology

FREE LIST:

MALLOC() CALL

® Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes
= 4 bytes for size, 4 bytes for magic number

= Split the heap - header goes with each block U

head ——>

the rest of
the 4KB chunk

A 4KB Heap With One Free Chunk

size: 4088

A Heap : After One Allocation
size: 100

magic: 1234567
ptr —> 1

First block

. the 100 bytes now allocated
is used

head —>

size: 3980 |
next: 0

the free 3980 byte chunk

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

47

FREE LIST: FREE() CALL

School of Engineering and Technology, University of Washington - Tacoma

m Addresses of chunks 8 bytes header { S;ZEE 100 [virtual address: 16KB]
magic: 1234567
100 bytes still allocated
= Start=16384 4
+ 108 (end of 15t chunk) size: 100
magic: 1234567
7 UG O] 2" C) P Fg thi 100 bytes still allocated
ree this ytes still allocate
d
+ 108 (end of 3" Chunk) block } (but about to be freed)
= 16708 size: 100
magic: 1234567
100 bytes still allocated
head size: 3764
next: 0
The free 3764-byte chunk
Free Space With Three Chunks Allocated
May 18, 2023 TCSS422: Operating Systems [Spring 2023] L15.48

48

Slides by Wes J. Lloyd

5/18/2023

L15.24

TCSS 422 A — Spring 2023
School of Engineering and Technology

= Free(sptr)
® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

FREE LIST:

FREE() CHUNK #2

size: 100
magic: 1234567

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of
memory)

= addr - sizeof(node_t)

® Actual start of chunk #2

head size: 100
: 16708
= Free chunk #2 - sptr sptr —> et
Block
= Sptr = 16500 Now Free
size: 100

magic: 1234567

100 bytes still allocated

School of Engineering and Technology, University of Washington - Tacoma

size: 3764
= 16492 next: 0
The free 3764-byte chunk
May 18, 2023 TCSS422: Operating Systems [Spring 2023] 115.49

49

= Now free remaining chunks:

o size: 100
" Free(16392) T
= Free(16608)
size: 100
= Walk back 8 bytes for actual next. 16708
start of chunk
head = e 1m0
= External fragmentation e T
= Free chunk pointers
out of order
size: 3764
= Coalescing of next i L
pointers is needed
L

FREE LIST- FREE ALL CHUNKS

[virtual address: 16KB]

—

(now free)

-— |

(now free)

(now free)

—

The free 3764-byte chunk

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.50

50

Slides by Wes J. Lloyd

5/18/2023

L15.25

TCSS 422 A — Spring 2023
School of Engineering and Technology

GROWING THE HEAP

m Start with small sized heap
® Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
- l break sbrk() s
break— 7 . _‘ (not in use)
(not in use) AN
S
Address Space Address Space Heap

Physical Memory

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.51

51

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.52

52

Slides by Wes J. Lloyd

5/18/2023

L15.26

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

EXAMPLES

m Allocation request for 15 bytes

head —» 10 ——> 30 ——> 20 ——> NULL

® Result of Best Fit

head —> 10 —» 30 —> 3 —> NULL

® Result of Worst Fit

head —> 10 ——> 15 ——> 20 ——> NULL

TCSS422: Operating Systems [Spring 2023]
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.53 |

53

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit

= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.54

54

Slides by Wes J. Lloyd L15.27

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

Which memory allocation strategy is more likely to
distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit
Worst Fit
First Fit

None of the above

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

55

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

= Manage as segregated free lists
Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.56

May 18, 2023

56

Slides by Wes J. Lloyd L15.28

TCSS 422 A — Spring 2023

School of Engineering and Technology

BUDDY ALLOCATION

= Binary buddy allocation
= Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small...

® Consider a 7KB request

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

64KB free space for 7KB request

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.57

57

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

= Allocated fragments, typically too large

® Coalescing is simple
= Two adjacent blocks are promoted up

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.58

58

Slides by Wes J. Lloyd

5/18/2023

L15.29

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

.ﬁ computer system manages program memory using'.
three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation

Internal fragmentation

Coalescing
Splitting
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
59
A request is made to store 1 byte. For this scenario,
which memory allocation strategy will always locate
memory the fastest?
Best fit
Worst fit
Next fit
None of the above
All of the above
.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
60

Slides by Wes J. Lloyd L15.30

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
B Quiz 3 - Synchronized Array - June 2
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
m Assignment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
| = Chapter 18: Introduction to Paging |
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables. Multi-level Page Tahles. N-level Page Tables
TCSS422: Operating Systems [Spring 2023]
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.61

61

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Spring 2023]

daviieqanas School of Engineering and Technology, University of Washington -

62

Slides by Wes J. Lloyd L15.31

TCSS 422 A — Spring 2023
School of Engineering and Technology

= Split up address space of process into fixed sized pieces

called pages

suffers from significant fragmentation

called page frames.

addresses to physical addresses

= Alternative to variable sized pieces (Segmentation) which

= Physical memory is split up into an array of fixed-size slots

= Each process has a page table which translates virtual

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.63

63

ADVANTAGES OF PAGING

= Flexibility

Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.64

64

Slides by Wes J. Lloyd

5/18/2023

L15.32

TCSS 422 A — Spring 2023
School of Engineering and Technology

P Table:
PAGING: EXAMPLE [NEEY

VP1 > PF7
VP2 > PF5
= Consider a 128 byte (27) address space VP3 - PF2

with 16-byte (24) pages 0
page frame 0 of
" reserved for OS physical memory
® Consider a 64-byte (26) (unused) page frame 1

program address space oage 3 of AS | page frame 2

page 0 of AS page frame 3

0 64
(page 0 of (unused) page frame 4
16 the address space) 80
(page 1) page 2 of AS | page frame 5
32 96
(page 2) (unused) page frame 6
48 112
(page 3) page 1 of AS | page frame7
64 128
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
TCSS422: Operating Systems [Spring 2023]
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma L1565 |

65

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)

VPN offset

i 1T 1

Va5 | Vad | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes (24),
Program Address Space: 64-bytes (2°)

VPN offset
)] Here program can have

Jjust four pages...

0 1 0 1 0 1

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.66

66

Slides by Wes J. Lloyd

5/18/2023

L15.33

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (26) program address space (4 pages—>2?)
= Stored in 128-byte (27) physical memory (8 frames—> 23)

VPN ff
m Offset is preserved —_— ° fEt 1
= 4 bits indexes any byte Virtual
PR 4 Address‘ ‘1‘0‘1‘0‘1
= Page size is 16 bytes (24)
= Page table translates a Vo
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: Jr L L
VPO - PF3 Phyeical
VP1 > PF7 Addres ‘1‘1‘1‘0‘1‘0‘1
VP2 > PF5 L ‘ 1 :]
VP3 > PF2 PFN offset

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.67

67

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?

® (2) What are the typical contents of the page table?

= (3) How big are page tables?

® (4) Does paging make the system too slow?

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.68

68

Slides by Wes J. Lloyd L15.34

TCSS 422 A — Spring 2023
School of Engineering and Technology

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Spring 2023]

L15.69
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

69

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
. . VPN,

= Each entry requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPN 048576

= How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.70

May 18, 2023

70

Slides by Wes J. Lloyd

5/18/2023

L15.35

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

m |s this efficient?

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.71

71

(2) WHAT’'S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table 2> simple array

= Page-table entry
= 32 bits for capturing state

BB RBHTHX5ABR2210191817161514B31211109 876543210
[[} v
PFN o|g|o|<|8(5|4E|~

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.72

May 18, 2023

72

Slides by Wes J. Lloyd L15.36

TCSS 422 A — Spring 2023
School of Engineering and Technology

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

BB RBHTHX5ABR2210191817161514B31211109 876543210
[[} v
PFN o|g|o|<|8(5|4E|~

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.73

73

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been
accessed

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.74

74

Slides by Wes J. Lloyd

5/18/2023

L15.37

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

® Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.75

75

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

®E Translation

m |ssue #1: Starting location of the page table is

needed
= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP1-> PF7
, VP2 > PF5
Stored in RAM > VP3 > PF2

= |ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

L15.76

76

Slides by Wes J. Lloyd L15.38

TCSS 422 A — Spring 2023

School of Engineering and Technology

PAGING MEMORY ACCESS

1. // Extract the VPN from the virtual address
2 VPN = (virtualAddress & VPN_MASK) >> SHIFT
3.
4. // Form the address of the page-table entry (PTE)
5o PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // Check if process can access the page
11. if (PTE.valid == False)
12 RaiseException(SEGMENTATION_FAULT)
13. else if (CanAccess(PTE.ProtectBits) == False)
14. RaiseException(PROTECTION_FAULT)
15. else
16. // Access is OK: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

May 18, 2023 Zgizgfgf g:::;:er:'ignsgy:?dn]l;Eiiz?fgi?lﬁ]iversity of Washington - Tacoma L15.77

77

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];

- (1= 07 1 < 1000; i++)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
01030 jne 0xl024

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.78

78

Slides by Wes J. Lloyd

5/18/2023

L15.39

TCSS 422 A — Spring 2023
School of Engineering and Technology

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

; Page Table[39]
® | ocations:

= Page table o o o o o 1 ¥
= Array Page Table[1] 1124 3
= Code \ Foe 2

= 50 accesses 2 40100 . IR
ES : g

for 5 loop & 40050 : . - o2s 3
iterations * s0000 1—m B B u o <
E k

Memory Access

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.79

79

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2732 /2720 =2/12 pages

2732 /2712 = 2720 pages

2A32 /2716 =216 pages

21732 [278 = 2124 pages

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

80

Slides by Wes J. Lloyd

5/18/2023

L15.40

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

For the 4GB computer example, how many bits are
required for the VPN?

24 VPN bits (indexes
2724 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

~ TCSS422: Operating Systems [Spring 2023] L15)
.. May 18, 2033t the presentationg FRseive FERInERSAFGERE BTSN SSIEG Sropp=Sat iRt pollTyEeiapp 1 ..

81

For the 4GB computer example, how many bits are
available for page status bits?

32-12 VPN bits
=20 status bits

32 -24 VPN bits
= 8 status bits

32- 16 VPN bits
= 16 status bits

32-20VPN bits
= 12 status bits

None of the
above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

82

Slides by Wes J. Lloyd L15.41

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

For the 4GB computer, how much space does this
page table require? (number of page table entries x
size of page table entry)

2720 entries x 4b =4 MB
2712 entries x4b =16 KB
2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

~ TCSS8422: Operating Systems [Spring 2023] L15]
.. May 18, 2033t the presentationg FRseive FERInERSAFGERE BTSN SSIEG Sropp=Sat iRt pollTyEeiapp 3 ..

83

For the 4GB computer, how many page tables (for
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB =65,536
4GB /64 MB =256
4GB /256 KB = 16,384
4GB /4MB=1,024

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

84

Slides by Wes J. Lloyd L15.42

TCSS 422 A — Spring 2023
School of Engineering and Technology

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.85

85

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
® Quiz 3 - Synchronized Array - June 2
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assighment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
|' Chapter 19: Translation Lookaside Buffer (TLB)|
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] 115.86
School of Engineering and Technology, University of Washington - Tacoma :

May 18, 2023

86

Slides by Wes J. Lloyd

5/18/2023

L15.43

TCSS 422 A — Spring 2023 5/18/2023

il

School of Engineering and Technology

CHAPTER 19:
TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2023]

LY) A School of Engineering and Technology, University of Washington -

TRANSLATION LOOKASIDE BUFFER

|l egacy name...

m Better name, “Address Translation Cache”

BETLB is an on CPU cache of address translations
=virtual 2> physical memory

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.88

May 18, 2023

88

Slides by Wes J. Lloyd L15.44

TCSS 422 A — Spring 2023
School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

= Goal: _ oo
Reduce access o o o o o L =
to the page Page Table[1] - 1124 é:
tables \ F 1074 3

S e e o S 1 o S o o R 7 .

= Example:
50 RAM accesses g 40100 o, C7
for first 5 for-loop £ aos0 4 ° - SR
iterations = a0000 L m—m] m 73 T

= Move lookups 4196

from RAM to TLB 1074
by caching page 1024
table entries

1124
4146

Codetvid)

Code(PA)

4096

Memory Access

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.89

89

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

® Address translation cache

15 TLB Hit
. i .
Logical Physical
Address TLB Address
popular v to p
TLB Miss \L
Page 0
Page Table E
. Page 1
all v to p entries

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.90

90

Slides by Wes J. Lloyd

5/18/2023

L15.45

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

®m Address translation cache

I g (T . 1
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

el

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.91

91

OBJECTIVES - 5/18

® Questions from 5/16

® Assignment 2 - June 2

® Quiz 3 - Synchronized Array - June 2

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

= Assighment 3 (as a Tutorial) to be posted...

® Chapter 16: Segmentation

® Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
| TLB Algorithm | Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] 115.92
School of Engineering and Technology, University of Washington - Tacoma :

May 18, 2023

92

Slides by Wes J. Lloyd L15.46

TCSS 422 A — Spring 2023
School of Engineering and Technology

TLB BASIC ALGORITHM

® For: array based page table
= Hardware managed TLB

»
-

: VBN = (VirtualAddress & VPN_MASK) >> SHIFT
(Success , TlbEntry) = TLB_Lookup (VPN)
if(Success == True){ // TLB Hit

1f(CanAccess (TlbEntry.ProtectBits) == True){

»PhysAddr»(leEntry.PFN << SHIFT) | Offset

1
2
3
4
5: Offset = VirtualAddress & OFFSET_MASK
o
7 AccessMemory(PhysAddr)

8

}else RaiseException(PROTECTION ERROR)

| Generate the physical address to access memory

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.93

93

TLB BASIC ALGORITHM - 2

11: else{ //TLB Miss
12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: » PTE = AccessMemory (PTEARddr)

14: (.) // Check for, and raise exceptions..
15:
16: TLB_Insert(VPN , PTE.PFN , PTE.ProtectBits)
17: RetryInstruction()
18: }
191}
| Retry the instruction... (requery the TLB)
May 18, 2023 TCSS422: Operating Systems [Spring 2023] 115.94

School of Engineering and Technology, University of Washington - Tacoma

94

Slides by Wes J. Lloyd

5/18/2023

L15.47

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translations go through the TLB

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.95

95

OBJECTIVES - 5/18

® Questions from 5/16

® Assignment 2 - June 2

® Quiz 3 - Synchronized Array - June 2

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

= Assighment 3 (as a Tutorial) to be posted...

® Chapter 16: Segmentation

® Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm | Hit-to-Miss Ratios |

= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023] 115.96
School of Engineering and Technology, University of Washington - Tacoma :

May 18, 2023

96

Slides by Wes J. Lloyd L15.48

TCSS 422 A — Spring 2023
School of Engineering and Technology

TLB EXAMPLE

School of Engineering and Technology, University of Washington - Tacoma

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN - 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
VPN = 04
= Example: I
VPN = 06 al0] | a[l | a[2
= Program address space: 256-byte ven - o7 Tomn o 1 om Tar
= Addressable using 8 total bits (28) VEN = 08 | o) | apE) | am9)
= 4 bits for the VPN (16 total pages) VPN =08
VPN = 10
= Page size: 16 bytes e
VPN = 12
= Offset is addressable using 4-bits VPN < 13
VPN = 14
m Store an array: of (10) 4-byte integers VPN - 15
May 18, 2023 TCSS422: Operating Systems [Spring 2023] 115.97

97

TLB EXAMPLE - 2

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN - 00
2: sum+=ali]; VPN = 01
3: } VPN - 03
. VPN = 04
® Consider the code above: VPN = 05
. . VPN = 06 a[o] | am | a2
® |nitially the TLB does not know where a[] is ven - 07 [am | et | a1 | el
= Consider the accesses: VPN =08 | aml | ate | alol
VPN = 09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], ven - 10
a[8], a[9] VPN = 11
= How many pages are accessed? v
VPN =13
= What happens when accessing a page not VPN - 14
in the TLB? VPN - 15
TCSS422: Operating Systems [Spring 2023]
avpLlERl2s School of Engineleringyand Techn;Iogy, University of Washington - Tacoma L15.98

98

Slides by Wes J. Lloyd

5/18/2023

L15.49

TCSS 422 A — Spring 2023
School of Engineering and Technology

TLB EXAMPLE - 3

School of Engineering and Technology, University of Washington - Tacoma

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; 1i<10; i++){ VPN - 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
VPN = 04
= For the accesses: a[0], a[1], a[2], a[3], a[4], "~ °
VPN = 06 al0] | af] | a[21
U a[5]7 a[6], a[7]v 3[8]7 a[9] VEN =07 | ap3] | af4] | a[s] | a6l
VPN =08 | a7 | afg] | a9
i VPN = 09
= How many are hits? VPN = 10
= How many are misses? VPN =1
VPN = 12
= What is the hit rate? (%) VPN - 13
= 70% (3 misses one for each VP, 7 hits) VPN = 14
VPN = 15
May 18, 2023 TCSS422: Operating Systems [Spring 2023] 115.99

99

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VEN < 00
2: sum+=ali]; VPN = 01
3: 1 VPN =03
VPN = 04
. . VPN =05
= What factors affect the hit/miss rate? - o e e
= Page size VPN =07 | o] | ap4] | &[5 | ale)
q VPN =08 | a7] | afg] | af9]
= Data/Access locality (how is data accessed?) I
Sequential array access vs. random array access ven-1o
- T | | | VPN = 11
emporal locality N
= Size of the TLB cache ven - 13
(how much history can you store?) VRN
VPN =15
TCSS422: Operating Systems [Spring 2023]
avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma L15.100

100

Slides by Wes J. Lloyd

5/18/2023

L15.50

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
B Quiz 3 - Synchronized Array - June 2
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
m Assignment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
=TLB Alf_gorithm, Hit-to-Miss Ratios
| = Chapter 20: Paging: Smaller Tables |

= Smaller Tables. Multi-level Page Tahles. N-level Page Tables
TCSS422: Operating Systems [Spring 2023]
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.101

101

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - L15.102

May 18, 2023

102

Slides by Wes J. Lloyd L15.51

TCSS 422 A — Spring 2023
School of Engineering and Technology

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.103

103

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 229 translations
= 1,048,576 pages per process @ 4 bytes/page
m Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.104

104

Slides by Wes J. Lloyd

5/18/2023

L15.52

TCSS 422 A — Spring 2023
School of Engineering and Technology

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.105

105

L] E:!Multi-lpvpl Pasgse Tahles N-level Page Tabhles
22: Operating Systems [Spring 2023]
avpLERU2s School of Engineering and Technology, University of Washington - Tacoma L15.106

OBJECTIVES - 5/18

® Questions from 5/16

® Assignment 2 - June 2

® Quiz 3 - Synchronized Array - June 2

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

= Assighment 3 (as a Tutorial) to be posted...

® Chapter 16: Segmentation

® Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

® Chapter 20: Paging: Smaller Tables

106

Slides by Wes J. Lloyd

5/18/2023

L15.53

TCSS 422 A — Spring 2023

5/18/2023
School of Engineering and Technology

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

32
;T; x4 =1MB per page table

® Memory requirement cut to ¥
= However pages are huge
® Internal fragmentation results

= 16KB page(s) allocated for small programs with only a
few variables

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

L15.107
School of Engineering and Technology, University of Washington - Tacoma

107

PAGE TABLES: WASTED SPACE

® Process: 16KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address
Space
code 0.
1 \Allucate_‘ . .
. N/ PFN valid prot present dirty
3 N 10 1 r-x 1 0
AN
h /
eap ;\ / 0
/ 0
3 \ . -
7)
[/ \ 15 1 rw 1 1
9 .
o/
n o/ _ 0 - -
12 3 1 rw- 1 1
stack 13 23 1 rw- 1 1
-
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

May 18, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.108

108

Slides by Wes J. Lloyd L15.54

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address

Space

code N)
1 Allocate |

s PFN valid prot present dirty

heap Most of the page table is unused
and full of wasted space. (73%)

9 f
w /
n o/
12/ 3 1 rw- 1 1
stack 13/ 23 1 rw- 1 1
e

A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.109

109

OBJECTIVES - 5/18

® Questions from 5/16

® Assignment 2 - June 2

® Quiz 3 - Synchronized Array - June 2

® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

= Assighment 3 (as a Tutorial) to be posted...

® Chapter 16: Segmentation

® Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

® Chapter 20: Paging: Smaller Tables

Ll _MuludemLEage_Ia.hlesI_N;lﬂLe.LEa.zp_Ia.bla
TCSLA22 : [Spring2022] 115.110

May 18, 2023

~ 5y 3
School of Engineering and Technology, University of Washington - Tacoma

110

Slides by Wes J. Lloyd L15.55

TCSS 422 A — Spring 2023

School of Engineering and Technology

MULTI-LEVEL PAGE TABLES

32
Page table size = % + 4Byte = 4MByte

® Consider a page table:
m 32-bit addressing, 4KB pages
m 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

= MUST SAVE MEMORY!

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.111

111

MULTI-LEVEL PAGE TABLES - 2

Linear Page Table

pare W L N —

= 3%

=2 - o

S & PFN Y H g. PEN

i x i - 1| 20 |[——>Ti] « 12
=) °

= x S S [o - 1 ™ 3|8

- - g 20 S
1 100 - & 9 - . s
il 1| 203 1w 100

0

0 % The Page Directory [Page 1 of PT:Not Allocated]
z

0 £ -
&

0

® on

0 - : g o
£ 0 - S

1] w 86 T S

T rw I 1] w 86 £

1

= Add level of indirection, the “page directory”
Multi-level Page Table

w

15

Linear (Left) And Multi-Level (Right) Page Tables

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

115.112

112

Slides by Wes J. Lloyd

5/18/2023

L15.56

TCSS 422 A — Spring 2023
School of Engineering and Technology

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

pera

]

Two level page table:
220 pages addressed with

two level-indexing

3 0
]
z 0
&
1
1

PFN204

w 86
w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2023]

L15.11:
School of Engineering and Technology, University of Washington - Tacoma 5113

May 18, 2023

113

MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.114

114

Slides by Wes J. Lloyd

5/18/2023

L15.57

TCSS 422 A — Spring 2023
School of Engineering and Technology

EXAMPLE

= 16KB address space, 64byte pages

= How large would a one-level page table need to be?
m 214 (address space) / 2° (page size) = 28 = 256 (pages)

Flag Detail

0000 000 ceik

0000 0001 code

(free)

Address space

16 KB

(free)

heap

heap

(free)

(free)

stack

1111 1117 stack

Page size 64 byte
Virtual address 14 bit
VPN 8 bit
Offset 6 bit
Page table entry 28(256)

A 16-KB Address Space With 64-byte Pages

13[12]11]10] 9876

s]al3]2]1]0

Offset

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.115

115

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages

= (1024/64) = 16 page directory entries (PDEs)

®m Each page directory entry (PDE) can hold 16 page table

entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table is stored using pages too!

May 18, 2023

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L15.116

116

Slides by Wes J. Lloyd

5/18/2023

L15.58

TCSS 422 A — Spring 2023
School of Engineering and Technology

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 1st level page table)
= 6 bits offset into 64-byte page

Page Directory Index |

13[12[12]0] 9|87 |6]5]a]3]2]1]0]
VPN ‘ Offset k
14-bits Virtual address
TCSS422: Operating Systems [Spring 2023]
May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma L15.117

117

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 15t level)
= 4 bits page table index (PTI - 29 |evel)

. Page Directory Index , Page Table Index

13 10’\' 9

12

11

gl7]6[s[al3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.118

May 18, 2023

118

Slides by Wes J. Lloyd

5/18/2023

L15.59

TCSS 422 A — Spring 2023
School of Engineering and Technology

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.119

119

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.120

120

Slides by Wes J. Lloyd

5/18/2023

L15.60

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

OBJECTIVES - 5/18

® Questions from 5/16
® Assignment 2 - June 2
B Quiz 3 - Synchronized Array - June 2
® Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
®m Assighment 3 (as a Tutorial) to be posted...
® Chapter 16: Segmentation
® Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

TCSS422: Operating Systems [Spring 2023]
L15.121
MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma |

121

MORE THAN TWO LEVELS

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

30292827262524232221201918171615141312111098 7654 3 21 0

ANNNNRNNNRRNNNNRNNRRNNRENREREE

i >l !
< > >

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L15.122

May 18, 2023

122

Slides by Wes J. Lloyd L15.61

TCSS 422 A — Spring 2023 5/18/2023

School of Engineering and Technology

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
m 7 pytes - for page table index (PTI)

30292827262524232221201918171615141312111098 7 654 3 21 0

ARRNRRNARNANN NN AR ARARANAAE

Page Directory Index ;

AN

i 35!
> >

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log, 128 =7

TCSS422: Operating Systems [Spring 2023]

May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma L15.123

123

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

30202827262524232221201918171615141312111098 7654 3 21 0

NENNNNRRNANRRENNNNRAR NN

Page Directory Index

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs —— 1> log,128 =7

TCSS422: Operating Systems [Spring 2023]
avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.124

124

Slides by Wes J. Lloyd L15.62

TCSS 422 A — Spring 2023
School of Engineering and Technology

" Pageoaad

= When using 27 (1

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Virtual address b

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——> log,128 =7

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
28 entry) page tables...

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.125

125

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

" Paggeaineemniiduiaaniiauiasnnainas

Need three level page table:
Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)

Page Table Index

Virtual address

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —— 1> log,128 =7

May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.126

126

Slides by Wes J. Lloyd

5/18/2023

L15.63

TCSS 422 A — Spring 2023
School of Engineering and Technology

MORE THAN TWO LEVELS - 4

= Using multiple levels of indirection

30292827262524232221201918171615141312111098 7654 3 21 0

HERENRNNNRRRRERNNNRRRRRRENEY

€

| Page Table Index

Y. Y

!
>

< <
< €

VPN

= Consider the implications for address translation!

entries on a 512-byte page? (let’s say 4 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= We can now address 1GB with“fine grained” 512 byte pages

= How much space is required for a virtual address space with 4

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

L15.127

127

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

L15.128

128

Slides by Wes J. Lloyd

5/18/2023

L15.64

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

ADDRESS TRANSLATION - 2

d_offset():
pgd = pgd_offset (mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad (*pgd))| forthe process, returns the PGD entry that
return O; covers the requested address...

p4d = p4d_offset(pgd, vpage); -
if (p4d none(*p4d) || p4d bad(*p4d)) 4d/pud/pmd_offset():
- - Takes a vpage address and the

pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O;

pud = pud_offset (p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))
return O;

pmd = pmd_offset (pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))
return O0;

if (! (pte = pte_offset_map (pmd, vpage)))

return O0; te_unmap()
$E (Vpage = pie_page (WpEa)) release temporary kernel mapping

’_:eturn s for the page table entry
physical_ page_addr = page_to_phys (page)

pte_unmap (pte) ;
return physical_ page_addr; // param to send back

TCSS422: Operating Systems [Spring 2023]

L15.129
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

129

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 220 pages

= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023 L15.130

130

Slides by Wes J. Lloyd L15.65

TCSS 422 A — Spring 2023
School of Engineering and Technology

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

u (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Spring 2023]

115.131
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

131

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’'s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
=1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTIH)?

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023 115.132

132

Slides by Wes J. Lloyd

5/18/2023

L15.66

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 3

m Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2023]

MMaviei2023) School of Engineering and Technology, University of Washington - Tacoma

115.133

133

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2023]

avpLlERl2s School of Engineering and Technology, University of Washington - Tacoma

115.134

134

Slides by Wes J. Lloyd L15.67

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

ANSWERS
= #1 - 4096 pages
m#2 - 12 bits
m #3 - 12 bits
= #4 - 4 bytes
= #5 - 4096 x 4 = 16,384 bytes (16KB)
= #6 - 6 bits
= #7 - 6 bits
= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2023]

L15.1.
School of Engineering and Technology, University of Washington - Tacoma 5135

May 18, 2023

135

QUESTIONS

136

Slides by Wes J. Lloyd L15.68

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Final exam survey *NOW available in Canvas* CLOSES Monday may 22
	Slide 3: Midterm review session
	Slide 4: Zoom recording analytics
	Slide 5: OBJECTIVES – 5/18
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 5/16
	Slide 10: Feedback - 2
	Slide 11: OBJECTIVES – 5/18
	Slide 12: OBJECTIVES – 5/18
	Slide 13: OBJECTIVES – 5/18
	Slide 14: OBJECTIVES – 5/18
	Slide 15: OBJECTIVES – 5/18
	Slide 16: Chapter 16: segmentation
	Slide 17: Base and bounds inefficiencies
	Slide 18: MULTIPLE SEGMENTS
	Slide 19: Segments in memory
	Slide 20: Address translation: code segment
	Slide 21: Address translation: heap
	Slide 22: Segmentation fault
	Slide 23: Segment registers
	Slide 24: Segmentation dereference
	Slide 25: Stack segment
	Slide 26: Shared CODE segments
	Slide 27
	Slide 28: Segmentation granularity
	Slide 29: Segmentation granularity - 2
	Slide 30: Memory fragmentation
	Slide 31: Compaction
	Slide 32: OBJECTIVES – 5/18
	Slide 33: Chapter 17: free space management
	Slide 34: OBJECTIVES – 5/18
	Slide 35: Free space management
	Slide 36: Free space management
	Slide 37: fragmentation
	Slide 38: Fragmentation - 2
	Slide 39: Allocation strategy: Splitting
	Slide 40: Allocation strategy: coalescing
	Slide 41: Memory headers
	Slide 42: Memory headers - 2
	Slide 43: Memory headers - 3
	Slide 44: We will return at 4:50pm
	Slide 45: The free list
	Slide 46: Free list - 2
	Slide 47: Free list: malloc() call
	Slide 48: Free list: free() call
	Slide 49: Free list: free() chunk #2
	Slide 50: Free list- free all chunks
	Slide 51: Growing the heap
	Slide 52: Memory allocation strategies
	Slide 53: examples
	Slide 54: Memory allocation strategies - 2
	Slide 55
	Slide 56: Segregated lists
	Slide 57: Buddy allocation
	Slide 58: Buddy allocation - 2
	Slide 59
	Slide 60
	Slide 61: OBJECTIVES – 5/18
	Slide 62: Chapter 18: Introduction to paging
	Slide 63: paging
	Slide 64: Advantages of paging
	Slide 65: Paging: example
	Slide 66: Paging: Address translation
	Slide 67: Example: paging address translation
	Slide 68: Paging design questions
	Slide 69: (1) Where are page tables stored?
	Slide 70: Page table example
	Slide 71: Now for an entire OS
	Slide 72: (2) What’s actually in the page table
	Slide 73: Page table entry
	Slide 74: Page table entry - 2
	Slide 75: (3) How big are page tables?
	Slide 76: (4) Does paging make the system too slow?
	Slide 77: Paging memory access
	Slide 78: Counting memory accesses
	Slide 79: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Paging system example
	Slide 86: OBJECTIVES – 5/18
	Slide 87: Chapter 19: Translation lookaside buffer (TLB)
	Slide 88: Translation lookaside buffer
	Slide 89: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 90: Translation lookaside buffer (TLB)
	Slide 91: Translation lookaside buffer (TLB)
	Slide 92: OBJECTIVES – 5/18
	Slide 93: Tlb basic algorithm
	Slide 94: Tlb basic algorithm - 2
	Slide 95: TLb – address translation cache
	Slide 96: OBJECTIVES – 5/18
	Slide 97: Tlb example
	Slide 98: Tlb Example - 2
	Slide 99: Tlb Example - 3
	Slide 100: Tlb example - 4
	Slide 101: OBJECTIVES – 5/18
	Slide 102: Chapter 20: Paging: smaller tables
	Slide 103: Linear page tables
	Slide 104: Linear page tables - 2
	Slide 105: Linear page tables - 2
	Slide 106: OBJECTIVES – 5/18
	Slide 107: Paging: use larger pages
	Slide 108: Page tables: wasted space
	Slide 109: Page tables: wasted space
	Slide 110: OBJECTIVES – 5/18
	Slide 111: Multi-level page tables
	Slide 112: Multi-level page tables - 2
	Slide 113: Multi-level page tables - 2
	Slide 114: Multi-level page tables - 3
	Slide 115: example
	Slide 116: Example - 2
	Slide 117: Page directory index
	Slide 118: Page table index
	Slide 119: Example - 3
	Slide 120: 32-bit example
	Slide 121: OBJECTIVES – 5/18
	Slide 122: More than two levels
	Slide 123: More than two levels - 2
	Slide 124: More than two levels - 3
	Slide 125: More than two levels - 3
	Slide 126: More than two levels - 3
	Slide 127: More than two levels - 4
	Slide 128: Address translation code
	Slide 129: Address translation - 2
	Slide 130: Inverted page tables
	Slide 131: Multi-level page table example
	Slide 132: Multi level page table example - 2
	Slide 133: Multi level page table example - 3
	Slide 134: Multi level page table example - 4
	Slide 135: Answers
	Slide 136: Questions

