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TCSS 422: OPERATING SYSTEMS

FINAL EXAM SURVEY *NOW AVAILABLE IN CANVAS *

CLOSES MONDAY MAY 22

= TCSS 422 Final is scheduled for:
Thursday June 8th 3:40-5:40pm
= This is one of the last time slots of the final exams week.

= Please indicate your preference for scheduling of the
TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm
B. Thursday June 8, 3:40 to 5:40 pm
C. No Preference

= Regardless of the selected date, the content and
coverage on the Final Exam will remain the same.

= (please disregard scoring as the quiz is worth O points.)

TCS5422: Operating Systems [Spring 2023]
RERE R School of Engineering and Technology, University of Washington - Tacoma Ls2

MIDTERM REVIEW SESSION

= RECORDING NOW AVAILABLE:

= Best viewed while looking at midterm paper

= Wednesday May 17, 6:30 pm

= Zoom / Live Stream / Recording

= Discussion and review of midterm exam problems
= Discussion of grading approach

= Details on partial credit

= Checking the grading

TCSS422: Operating Systems [Spring 2023]

‘ [May18;2023) School of Engineering and Technology, University of Washington - Tacoma.

L1153

ZOOM RECORDING ANALYTICS

= Spring Fever? Stay tuned, many new concepts post-midterm

Cummulative Views of TCSS 422 Zoom Recordings

Deserpacn

TCS5422: Operating Systems [Spring 2023]
[May18,12023) School of Engineering and Technology, University of Washington - Tacoma Ls4

OBJECTIVES - 5/18

| = Questlons from 5/16 |
= Assignment 2 - June 2
® Quiz 3 - Synchronized Array - June 2

= Assignment 3 (as a Tutorial) to be posted...

= Chapter 16: Segmentation

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

. e M d

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021
Home

Announcements

Zoom ~ Upcoming Assignments

Syllabus | s TCSS422 - Online Daily Feedback Survey - 4/1

: i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Diccuctinne Aun.r i
TCS5422: Computer Operating Systems [Spring 2023] .
(D School of Engineering and Technology, Universty of Washington - Tacoma L
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TCSS 422 A — Spring 2023

School of

Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes
On.a scale of 1 to 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1

manly. et sty

i 10 e ol nevie o
Question 2 05pes

Piease rale the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2023]

May 18,2023 School of Engineering and Technology, University of Washington - Tacoma S

FEEDBACK FROM 5/16

= For base bound memory allocation when does the 0S

decide what the base and bounds should be?

= Base and bounds registers were used in early computer
systems to track location of memory segments for the
code, stack, heap, etc.

= Today they may not be used at all:

= 0On most modern operating systems (e.g. FreeBSD, Linux or
Windows) use a memory model that points nearly all
segment registers to the same place (and use paging

instead)
From:
https://en.wiki org/wiki/X86 mbly/X86_Architect
‘ Ty T TCS5422: Operating Systems [Spring 2023]

L1159

School of Engineering and Technology, University of Washington - Tacoma.

OBJECTIVES - 5/18

= Questions from 5/16

= Assignment 2 - June 2 |

® Quiz 3 - Synchronized Array - June 2
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
0 - Multi-level Page o

e ah
TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

5/18/2023

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (40 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.78 (4 - prevlous 7.22)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.98 (1 - previous 5.72)

TCS5422: Computer Operating Systems [Spring 2023]

‘ (b ETD School of Engineering and Technology, University of Washington - Tacoma

5.8

FEEDBACK - 2

= What If the amount of memory needed is really large or
really small?
= A modern system will manage memory using paging which
enables code, heap, and stack storage to exceed a single
segment through the use of memory paging
= Chapter 18

TCS5422: Operating Systems [Spring 2023]

‘ [May18,12023) School of Engineering and Technology, University of Washington - Tacoma

us.10

10

OBJECTIVES - 5/18

= Questions from 5/16
= Assighment 2 - June 2
|' Qulz 3 - Synchronlzed Array - June 2|
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: S

maller Tables

es M -leve
TC55422: Operating Systems [Spring 21

School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023
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https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#Segment_Registers

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

OBJECTIVES - 5/18 OBJECTIVES - 5/18

= Questions from 5/16 = Questions from 5/16

= Assignment 2 - June 2 = Assignment 2 - June 2

= Quiz 3 - Synchronized Array - June 2 = Quiz 3 - Synchronized Array - June 2
|I Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 2b = Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted... | = Assignment 3 (as a Tutorlal) to be posted... |
= Chapter 16: Segmentation = Chapter 16: Segmentation

= Chapter 17: Free Space Management = Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB) = Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios = TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

= Sma ah M -level Page Ta
TCSS422: Operating Systems [Spring 2023]
LAEREES RS School of Engineering and Technology, University of Washington - Tacoma

= Chapter 20: Paging: Smaller Tables

=Sm ah M -le

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

13 14

OBJECTIVES - 5/18

= Questions from 5/16

= Assignment 2 - June 2

= Quiz 3 - Synchronized Array - June 2

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

= Assignment 3 (as a Tut(?rial) to be posted... CHAPTER 16:
| = Chapter 16: Segmentation | SEGMENTATION

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
L] malie able M evel Page able

TCS5422: Operating Systems [Spring 20:
School of Engineering and Technology,

TCSS422: Operating Systems [Spring 2023]
evyle 2022 School of Engineering and Technology, University of Washington -

May 18, 2023

15 16

BASE AND BOUNDS INEFFICIENCIES MULTIPLE SEGMENTS

0KB .
= Address space 168 | Program Code = Memory segmentation
= Contains significant unused memory ;::
O . aK8
Is relatively large a | Heop = Manage the address space as (3) separate segments
= Preallocates space to handle stack/heap growth s l = Each is a contiguous address space

= Provides logically separate segments for: code, stack, heap
= Large address spaces

= Hard to fit in memory (free)
= = Each segment can placed separately
= How can these issues be addressed?
s T = Track base and bounds for each segment (registers)
1548 Stack

16K8

TC55422: Operating Systems [Spring 2023]

TCS5422: Operating Systems [Spring 2023]
‘ LRI School of Engineering and Technology, University of Washington - Tacoma sy (D School of Engineering and Technology, University of Washington - Tacoma L8

17 18
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SEGMENTS IN MEMORY

= Consider 3 segments:
OKB [

o
16K8 | ‘

(net in use)
| Segment Base Size
77— | Code 32K 2K
(not in use)

Heap 34K 2K
Stack 28K 2K

32KE e

(net in use)

g b
Physical Memory

TCSS422: Operating Systems [Spring 2023]

‘ oavEe i School of Engineering and Technology, University of Washington - Tacoma

1519

5/18/2023

ADDRESS TRANSLATION: CODE SEGMENT

| physical address = of fset + base ‘

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

nt __Base  Size ] 16K8

Bounds check:
Is virtual address within 2KB
address space? —

(not in use)

Virtual Address Space Physical Address Space

TCS5422: Operating Systems [Spring 2023]

‘ (b ETD School of Engineering and Technology, University of Washington - Tacoma

11520

19

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Sequent  mase  size
=3 ETar
inot in use)
| Cade
B ¢
-
Heso Heap
6K T
(notin use)
Address Space

Physical Memory

TCSS422: Operating Systems [Spring 2023]

‘ Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma.

Ls21

20

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) Jl —
BKE T
KB | mot in use)
8KB

Address Space

1522

TCS5422: Operating Systems [Spring 2023]

‘ May 18,2023 School of Engineering and Technology, University of Washington - Tacoma

21

SEGMENT REGISTERS

= Used to dereference memory during translation

13 12 11 10 8 8 7 & 5 4 3 2 1 0

! |
L . |
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset

13 12 11 10 9 B 7 6 5 4 3 2 1 0

= Example: virtual heap address 4200 (01000001101000)
Segment bits

[o01 0 0 00 01 10 1 o 0 o] Code

; ! y Heap
T T stack

Segment Offset -

00
01
10
11

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 18, 2023

1523

22

SEGMENTATION DEREFERENCE

1 1
> segment = (virtualnaddres S MASK) >> SEG_SHIFT
4 Offset = VirtualAdd:

5 Bound: e

& RaiseException (PROTECT

7

8 eqment] + Offset

B saMenory (PhysAddr)

= VIRTUAL ADDRESS = 01000001101000
= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap (mask gives us segment code)
= OFFSET_MASK = OxFFF (00111141111111)
= OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

us2e

(on heap)

TC55422: Operating Systems [Spring 2023]

‘ (D School of Engineering and Technology, University of Washington - Tacoma

23
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STACK SEGMENT SHARED CODE SEGMENTS

= Stack grows backwards (FILO) = Code sharing: enabled with HW support
= Supports storing shared libraries in memory only once

= Requires hardware support: = DLL: dynamic linked library

" Direction bit: tracks direction segment grows = .0 (linux): shared object in Linux (under /usr/lib)
= Many programs can access them
= Protection bits: track permissions to segment

(not in use)
26143 # Segment Register(with Negative-Growth Support)
Stack i " .
. Seqment Base Size Grows Positive? Segment Register Values(with Protection)
e Code 32K 2K 1 Segment Base Size Grows Positive? Protection
: i Heap 34K 2K 1 Code 32K 2K 1 Read-Execute
Stack 28K 2K a Heap 34K 2K 1 Read-Write
Stack 28K 2K [ Read-Write

Physical Memary

TCS5422: Operating Systems [Spring 2023] TCS5422: Operating Systems (Spring 2023]
LAEREES RS School of Engineering and Technology, University of Washington - Tacoma Lis.25 RERE R School of Engineering and Technology, University of Washington - Tacoma 15,26

25 26

[ | |
"Consider a program with 2KB of code, a1 KB stack,'

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments

SEGMENTATION GRANULARITY

= Coarse-grained

were allocated as: code, stack, heap, how large can
= Manage memory as large purpose
the heap grow to? based segments:

32KB =Code segment
56 KB =Heap segment
24 KB =Stack segment

4KB

0KB

-~ o g = LR \ May 18,2023 Lroe i e s oo dnterstyof Wasington Tocom usas
27 28

SEGMENTATION GRANULARITY - 2 MEMORY FRAGMENTATION

® Fine-grained = Consider how much free space? Mot compacted

) = We'll say about 24 KB ore
= Manage memory as list of segments oK@ | Operating System
= Code, heap, stack segments composed = Request arrives to allocate a 20 KB heap 16k8
of multiple smaller segments segment e \ickin el
Allocated
-
SegmEn ke = Can we fulfil the request for 20 KB of 3K R
= On early systems contiguous memory? axs | Alocsted
= Stored in memory
48x8
= Tracked large number of segments frick i ]
S6KE
Allocated
B4KEB
TCSS422: Oy ing Sy [Spring 2023] TCSS422: Oy ing Sy & 2023]
Ryl 2024 School of E:ge\'::e':\gn!::nsech:::fgv, University of Washington - Tacoma 11529 (AEEE, S School of E:gel’:e“e':\gngv::\emesech:::‘:gy, University of Washington - Tacoma 11530
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5/18/2023

= Supports rearranging memory Compacted
0KB
= Can we fulfil the request for 20 KB of 83 | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow .
= Rearranging memory is time consuming Allocated
= 64KB is fast K8
= 4GB+ ... slow 40KB
= Algorithms: aake
n 9 (not in use}
= Best fit: keep list of free spaces, allocate the S6KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) Bace
TCSS422: Oy ing Sy [Spring 2023]
LAEREES RS School of z:;:;e’fngy:‘nnm:n:fw University of Washington - Tacoma Lis.31

OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
= Quiz 3 - Synchronized Array - June 2

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...

= Chapter 16: Segmentation
| = Chapter 17: Free Space Management |

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

=Sm ah M -le

TCS5422: Operating Systems [Spring 2023]

(b ETD School of Engineering and Technology, University of Washington - Tacoma

31

CHAPTER 17: FREE

SPACE MANAGEMENT

TCS5422: Operaling Systems [Spring 2023]
eypls 2022 School of Engineering and Technology, University of Washington -

33

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCS5422: Operating Systems [Spring 2023]
‘ LRI School of Engineering and Technology, University of Washington - Tacoma L3

35

Slides by Wes J. Lloyd

32

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Spring 2023]
‘ May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma s34

34

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

7CS5422: Operating Systems [Spring 2023]
‘ (D School of Engineering and Technology, University of Washington - Tacoma L3

36

L15.6



TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

FRAGMENTATION FRAGMENTATION - 2

= Consider a 30-byte heap = External: OS can compact
30-byte heap: [ free [Tused ] free = Example: Client asks for 100 bytes: malloc(100)
0 10 20

® = 0S: No 100 byte contiguous chunk is available:
returns NULL

= Request for 15-bytes = Memory is externally fragmented - - Compaction can fix!

free list head — i:gx:r;: |, iif.rfun UL = Internal: /ost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= Free space: 20 bytes = 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCS5422: Operating Systems [Spring 2023] TCS5422: Operating Systems (Spring 2023]
‘ LAEREES RS School of Engineering and Technology, University of Washington - Tacoma Ls.37 RERE R Ls.38

= No available contiguous chunk - return NULL

School of Engineering and Technology, University of Washington - Tacoma

37 38

ALLOCATION STRATEGY: SPLITTING ALLOCATION STRATEGY: COALESCING

= Request for 1 byte of memory: malloc(1) = Consider 30-byte heap
30-byte heap: | Free [IUEEANN Free = Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)
0 10 20 30
head » f:f:‘-!;g addr:0 addr:20 NULL

0 addr:!

addr: 120 Lenz10 len:10
len:10 * len:io > NULL

free list | head —»
= Request arrives: malloc(30)

= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: D_frea 1am.201 free J
ddr i)

head —» o0l —» UL

addr: 0 addr:21

free list head —» jo0.99 —> jen:o

— NULL = Allocation can now proceed

= Coalescing is defragmentation of the free space list

TCS5422: Operating Systems [(Spring 2023] TCS5422: Operating Systems (Spring 2023]
‘ [May18;2023) School of Engineering and Technology, University of Washington - Tacoma L1s.39 [May18,12023) School of Engineering and Technology, University of Washington - Tacoma .40

39 40

MEMORY HEADERS

MEMORY HEADERS - 2

= free(void *ptr): Does not require a size parameter hptr = [
magic: 1234567 header_t {
ptr = [ sizer
= How does the OS know how much memory to free? magles
The 20 bytes } header_t;
returned to caller
= Header block i A Simple Header

Specific Contents Of The Header
= Small descriptive block of memory at start of chunk
= Contains size

]‘ The header used by malloo farary = Pointers: for faster memory access

= Magic number: integrity checking

pr —>

The 20 bytes returned to caller
An Allocated Region Plus Header

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
‘ LRI School of Engineering and Technology, University of Washington - Tacoma s (D School of Engineering and Technology, University of Washington - Tacoma L2

41 42
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MEMORY HEADERS - 3

= Size of memory chunk is:
" Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header WE WILL RETURN AT

i free (void *ptr) {

header_t *hptr = ( “ptr - (header_t): 4 50PM

TCS5422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ LAEREES RS School of Engineering and Technology, University of Washington - Tacoma L1543 evplE 2022 School of Engineering and Technology, University of Washington -

43 44

THE FREE LIST FREE LIST - 2

= Simple free list struct = Create and initialize free-list “heap”
. ot node_t *head = mmap (NULL, _BEAD|PROT_WRITE
__node_t *next; _ANOW|MAP_PRIVATE, -1, 0);
} nodet_t; (node _£):
= Use mmap to create free list = Heap layout:
= 4kb heap, 4 byte header, one contiguous free chunk (virtual address: 16K8]
header: size field
ma, ! I “hunk size: 4088
node_t *head = mmap(NULL, 1 PROT_READ|PROT_WRIT
MAP_ANON|MAP_FRIVATE, -1, 0): 5| next: 0 | header: next field(NULL is 0
head->size = 40 (nods_£): head ‘ )
head->next =
. the rest of the 4KB chunk
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma Lis4s ‘ May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma .46

45 46

FREE LIST: MALLOC() CALL FREE LIST: FREE() CALL

= Consider a request for a 100 bytes: malloc(100) = Addresses of chunks & bytes hesder { [virtual address: 16K8]
= Header block requires 8 bytes [Fmi= E2a8557|

= 4 bytes for size, 4 bytes for magic number = Start=16384 ] 100 bytes still sllocated
= Split the heap - header goes with each block + 108 (end of 1%t chunk) size: 100

1234567

+ 108 (end of 2"4 chunk) sptr
+ 108 (end of 3" chunk)

hoad —>
size: 4088 = 16708
— {r 1254567

pir
the rest of
the 4KB chunk | o

A 4KB Heap With One Free Chunk A Heap : After One Allocation 100 bytes still allocated

(but about to be freed)
[size 100 |
gic: 1234567

the 100 bytes now allocated see 100 bytes still allocated

head —»|—
| head —» size; 3764
size: 3880 = [

. the free 3980 byte chunk

The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCS$422: Operating Systems [Spring 2023] usay May 18, 2023 TCS$422: Operating Systems [Spring 2023] L1528
School of Engineering and Technology, University of Washington - Tacoma = School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

47 48
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= Free(sptr)
® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

" Free chunk #2 - sptr
= Sptr = 16500

= addr - sizeof(node_t)

= Actual start of chunk #2

FREE LIST:

FREE() CHUNK #2

tual address: 16KE]
[virtual address: 16K8]
magic. 1234567

100 bytes still allocated

(now a free chunk of
memory)

Now Free

100 bytes still allocated

School of Engineering and Technology, University of Washington - Tacoma

size: 3764 |+
= 16492 naxt: [1]
. The free 3764-byte chunk
[EE—
‘ May 18, 2023 TCSS422: Operating Systems [Spring 2023] L1549

49

= Start with small sized heap

= sbrk(), brk()

= Request more memory when full

GROWING THE HEAP

Segmented heap

{not in use) (not in use)

Heap Heap Heap

l break
(not in use)
{not in use) .
Address Space Address Space . Heap
Physical Memory
TCSS422: Operating Systems [Spring 2023]
‘ [May18;2023) School of Engineering and Technology, University of Washington - Tacoma Liss1

51

= Allocation request for 15 bytes

head —> 10 —> 30

= Result of Best Fit

head —| 108 —— 30

= Result of Worst Fit

head —> 10 —> 15

EXAMPLES

—> 20 —> NULL

— NULL

—> 20 —> NULL

‘ May 18, 2023

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L1553

53
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5/18/2023

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: virtual address: 16K8]

[size 100 |«
next 16432

(now free)
size: 100

Walk back 8 bytes for actual next. 16708
start of chunk

_— 5

Free(16392)
Free(16608)

(now free)

= External fragmentation ::;t 15;‘3
= Free chunk pointers
out of order (now free)
size: 3764
. next: 0

Coalescing of next

pointers is needed The free 3764-byte chunk

TCS5422: Operating Systems [Spring 2023]

(b ETD School of Engineering and Technology, University of Washington - Tacoma

L1550

50

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= Identify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCS5422: Operating Systems [Spring 2023]

[May18,12023) School of Engineering and Technology, University of Washington - Tacoma

1552

52

MEMORY ALLOCATION STRATEGIES - 2

= Flrst fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next flt
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TC55422: Operating Systems [Spring 2023]

(D School of Engineering and Technology, University of Washington - Tacoma

554

54
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[ | |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

Best Fit = Manage as segregated free lists
= Provide object caches: stores pre-initialized objects
Worst Fit = How much memory should be dedicated for specialized
requests (object caches)?
First Fit

= If a given cache is low in memory, can request “slabs” of
None of the above memory from the general allocator for caches.
= General allocator will reclaim slabs when not used

All of the above

TCS5422: Operating Systems [Spring 2023]
o p— s el -. ‘ RERE R School of Engineering and Technology, University of Washington - Tacoma 11556
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BUDDY ALLOCATION - 2

BUDDY ALLOCATION

= Binary buddy allocation = Buddy allocation: suffers from internal fragmentation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request = Allocated fragments, typically too large

‘ = Coalescing is simple
= Two adjacent blocks are promoted up

64KE free space for 7KB request

\ May 18,2023 oo of Evgneane an Ttomelag, oferty o Washingon “Tacoma uss? \ May 18,2023 e e usss
57 58
B . I. .I - - - -.
A computer system manages program memory using Arequest is made to store 1 byte. For this scenario,
three separate segments for code, stack, and the which memory allocation strategy will always locate
heap. The codesize of a program is 1KB but the memory the fastest?
minimal segment available is 16KB. This is an
example of: Best fit
External fragmentation Worst fit
Binary buddy allocation Next fit
Internal fragmentation
& None of the above
Coalescing
splitting All of the above
.. fove comtent. hels .. .. fove comtent. X hels ..
59 60
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OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
= Quiz 3 - Synchronized Array - June 2
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
|l Chapter 18: Introductlion to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
L] malie able v -le P e

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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PAGING

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Spring 2023]
May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma L1563
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Page Table:
VPO - PF3
VP1 > PF7
VP2 - PF5
VP3 - PF2

PAGING: EXAMPLE

= Consider a 128 byte (27) address space

with 16-byte (24) pages N e of
 [merestoros Fhysical memory
= Consider a 64-byte (2°) (unused) | page frame 1
2

program address space poge 3 of A5 | page frame 2

page D of AS | page frame 3

(page 0 of {unused) page frame 4
16| the address space) 0 -

(page 1) page 2 of AS | page frame 5
22 =

(page 2) (unused) | page frame &
ar N 2 -
o (page 3) page 1of AS | page frame7

128
64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Spring 2023] L1565
School of Engineering and Technology, University of Washington - Tacoma

A Simple 64-byte Address Space

‘ May 18, 2023

5/18/2023

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Spring 2023]

avjiElan2s School of Engineering and Technology, University of Washington -
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ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCS5422: Operating Systems [Spring 2023]
‘ May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma .64

64

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)
VBN offset
\ ; .

VaS | Vad Va3 | Va2 | Vsl | Va0
= Example:

Page Size: 16-bytes (2%),
Program Address Space: 64-bytes (2°)

VPN offset

65

Slides by Wes J. Lloyd

Here program can have
Just four pages...
o1 o101
7CS5422: Operating Systems [Spring 2023]
‘ (D ‘ School of Engineering and Technology, University of Washington - Tacoma Ls6e
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EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>22)
= Stored in 128-byte (27) physical memory (8 frames—>23)

. BN :
= Offset is preserved v offset
1
= 4 bits indexes any byte Virtual
T 4 address | 0 |10t et
= Page size is 16 bytes (24) . _ - - -
= Page table translates a Vo
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: [ l
VPO > PF3 Physical [T N
VP1-> PF7 Adess | 1|11 fo 1o
VP2 > PF5 [— . )
VP3 > PF2 o offsct
‘ oavEe i S ‘E):;r::e’:\gnZy:‘rled"“lseg\:::zgg:ulzli!versiw of Washington - Tacoma L1567
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(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Spring 2023]
[May18;2023) School of Engineering and Technology, University of Washington - Tacoma L1569
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NOW FOR AN ENTIRE 0S

= |f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficlent?

TCS5422: Operating Systems [Spring 2023]
LRI School of Engineering and Technology, University of Washington - Tacoma s
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Slides by Wes J. Lloyd

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?
= (2) What are the typical contents of the page table?
= (3) How big are page tables?

= (4) Does paging make the system too slow?

‘ May 18, 2023

TCS5422: Operating Systems [Spring 2023] 568
School of Engineering and Technology, University of Washington - Tacoma
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PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN

VPN,
= Each entry provides a physical frame number VPN,
. . VPN,

= Each entry requires 4 bytes (32 bits) 2

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPNio48576

= How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Spring 2023] 15.70
School of Engineering and Technology, University of Washington - Tacoma

‘ May 18, 2023
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NND BT BZNBRADPBU B VBRI 8 76543210
PFN o|2[ol<|3| 5|53
An %86 Page Table Entry(PTE)
TCS5422: Operating Systems [Spring 2023]
‘ (D School of Engineering and Technology, University of Washington - Tacoma L2
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PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

o
| PFN 1 n‘q

[ PCD |
FwT

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2023]

‘ oavEe i School of Engineering and Technology, University of Washington - Tacoma
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(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

address space

= Reduced memory requirement
Compared to base and bounds, and segments

= Paging supports efficiently storing a sparsely populated

TCSS422: Operating Systems [Spring 2023]

‘ Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma.
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PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address

2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3

4. // Form the address of the page-table entry (PTE)
Se PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7a // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // check 1f process can access the page

11. if (PTE.valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCS5422: Operating Systems [Spring 2023]

‘ LRI School of Engineering and Technology, University of Washington - Tacoma

us.77

5/18/2023

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Spring 2023]
‘ RERE R School of Engineering and Technology, University of Washington - Tacoma s.74
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(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

= Translation

= |ssue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:

stores active process VPO > PF3

- , VP1 > PF7
Facilitates translation

Stored in RAM > VP2 > PF5

VP3 > PF2

= Issue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Spring 2023] 1576
School of Engineering and Technology, University of Washington - Tacoma

‘ May 18, 2023
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COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

array [1000]#

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

0x1024 movl $0x0, (4edi, beax, 41

0 1 dmax
ox1 $0x03e8, beax
ox1 0x1024
7CS5422: Operating Systems [Spring 2023] N
‘ (D School of Engineering and Technology, University of Washington - Tacoma s
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
= Locations: - “\':w 1224
= Page table o o o o a
= Array Page Tablls)
= Code - 2
‘D oooo opoo npoo oooo ooolo g
= 50 accesses g o o
for 5 loop e s0s0 | *
iterations * oo s » U
2 N "
SRR ET LI LMY LIS LI T L B,
o 10 0 30 40 50
Memory Access.
‘ LAEREES RS S ‘E):;r:eﬁe’:\gnZy:‘rled"}seg\::::i\:ulzli!versiw of Washington - Tacoma Ls.79
79
- -
For the 4GB computer example, how many bits are

required for the VPN?

24 VPN bits (indexes
2°24 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

u May 18, 2023 TCSS422: Operating Systems [Spring 2023] L5
L g i C e |
[ | |

" Forthe 4GB computer, how much space does this "
page table require? (number of page table entries x
size of page table entry)

2A20 entries x4b=4 MB
2712 entries x 4b = 16 KB
2716 entries x 4b =256 KB
2/24 entries x 4b =64 MB

None of the above

- My 182083 TCS$422: Operating Systems [Spring 2023) » Lsm
u ! Y R |

83
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5/18/2023
I- -I
Consider a 4GB Computer with 4KB (4096 byte)
pages. How many pages would fit into physical
memory?
2432 /2A20 = 2712 pages
2/32 [ 2A12 = 2720 pages
2/32 /2716 = 2716 pages
2A32 /278 =224 pages
None of the above
- o 5 el =
80
[ | |

"For the 4GB computer example, how many bits are”
available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

None of the
above
.. fove comtent. ..
82
n

|
* For the 4GB computer, how many page tables (for "
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB=65,536
4GB/64MB=256
4GB/ 256 KB = 16,384
4GB/ 4MB=1,024

None of the above

84
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PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
# of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Spring 2023]

LAEREES RS School of Engineering and Technology, University of Washington - Tacoma

L1585
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CHAPTER 19:
TRANSLATION
LOOKASIDE BUFFER
un:)

TCSS422: Operating Systems [Spring 2023]

pRypE 202 School of Engineering and Technology, University of Washington -
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TRANSLATION LOOKASIDE BUFFER - 2

Page Tabk(38)
= Goal: N 1224
Reduce access o a o o a Jien
to the page Page Tablel] 1

Page TableiPA)

tables \ 1074

00000 0000-DoL0— 00000001 102
= Example:

50 RAM accesses g oo <‘ N

for first 5 for-loop 4050
iterations * oo

= Move lookups
from RAM to TLB
by caching page
table entries

Code(va)
CodelPry

Memary Access.

TCS5422: Operating Systems [Spring 2023]

LRI School of Engineering and Technology, University of Washington - Tacoma

5/18/2023

OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
= Quiz 3 - Synchronized Array - June 2
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
|- Chapter 19: Translatlon Lookaslde Buffer (TLB)|
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

=Sm ah M -le

TCS5422: Operating Systems [Spring 2023]

(b ETD School of Engineering and Technology, University of Washington - Tacoma
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TRANSLATION LOOKASIDE BUFFER

ElLegacy name...

= Better name, “Address Translation Cache”

=TLB is an on CPU cache of address translations
=virtual = physical memory

TCS5422: Operating Systems [Spring 2023]

‘ May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma

L1588
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TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

T8 Hit Physical
Address

= Address translation cache

Logical
Address

Page Table
all v o p entries

Address Translation with MMU Physical Memory

TC55422: Operating Systems [Spring 2023]

‘ (D School of Engineering and Technology, University of Washington - Tacoma
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TRANSLATION LOOKASIDE BUFFER (TLB) OBJECTIVES - 5/18

= Questions from 5/16

= Assignment 2 - June 2

= Address translation cache = Quiz 3 - Synchronized Array - June 2

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...

= Chapter 16: Segmentation

= Part of the CPU’s Memory Management Unit (MMU)

[ 1 e T | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

= Chapter 17: Free Space Management
Page Table ‘ Fage 0
il mm o Page 1 = Chapter 18: Introduction to Paging
| Page 2 | = Chapter 19: Translation Lookaside Buffer (TLB)
Page n = TLB Algorithm] Hit-to-Miss Ratios
Address Translation with MMU - .
Physical Memory = Chapter 20: Paging: Smaller Tables
= Smaller Tahles M i-level Page Ta
TCSS422: Oy ing Sy [Spring 2023] TCSS422: Oy ing Sy [Spring 2023]
‘ LAEREES RS school afE:;r::e’:\gngy:‘nZ"“lsech:Lrugw University of Washington - Tacoma Lis.o1 RERE R School of z:;’:e(e’:\’gngvz‘r%":ecn:alrfgy, University of Washington - Tacoma

91 92

TLB BASIC ALGORITHM TLB BASIC ALGORITHM - 2

= For: array based page table

= Hardware managed TLB e !
12: PTEAddr = PTER + (VPN * sizeof(PTE))

. 13:
: VPN = (virtualaddress & 51 > 5

-b

mory (PTEAdAY}

ck for, and raise exceptions.

16: : TLB Insert( VPN , FTE.PFN , PTE.Protectdits)

RetryTnstruction ()

:»mbswr:y,?rx << SHIFT) | Offset

7 ( PhysAddr ) 19:)
8} ption (FROTECTION ERRGR)
| Generate the physical address to access memory | | Retry the instruction... (requery the TLB) |
TC55422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
‘ [May18;2023) School of Engineering and Technology, University of Washington - Tacoma L1s.93 ‘ [May18,12023) School of Engineering and Technology, University of Washington - Tacoma .04

TLB - ADDRESS TRANSLATION CACHE OBJECTIVES - 5/18

= Questions from 5/16
= Assighment 2 - June 2
® Quiz 3 - Synchronized Array - June 2

= Key detail:

= For a TLB miss, we first access the page table in RAM to

populate the TLB... we then requery the TLB = Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= All address translations go through the TLB = Chapter 16: Segmentation

= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm} Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

=Sm h M H

o o hle
‘ May 18, 2023 TCS5422: Operating Systems [Spring 2023] L1595 May 18, 2023 TC55422: Operating Systems [Spring 21

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma
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TLB EXAMPLE

0: sum = O ; OFFSET
w e
1: (=05 1<107 i++) [ [
2: sum+=a[i]z VPN - 01
EH VPN =02
= Example: .
VPN - 08 8101 sn
= Program address space: 256-byte ven-o7 [ [am [ [
= Addressable using 8 total bits (2%) A
= 4 bits for the VPN (16 total pages) v
v -0
= Page size: 16 bytes x‘:
= Offset is addressable using 4-bits Ve 13
e
= Store an array: of (10) 4-byte integers ven -5

TCSS422: Operating Systems [Spring 2023]

L1597

TLB EXAMPLE - 2

0 sum = O ; OFFSET
1 ( i=0; 1<10; i++){ m_m-w =
2: sum+=a[i]z VPN - 01
3 } ven-m |
e
= Consider the code above: I
VPN - 16 alo) L
= |nitially the TLB does not know where a[] is ven -1 [ [ a | | o
= Consider the accesses: v o [l
wnem
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], N -0
a[8], a[9] f—
= How many pages are accessed? x]",
= What happ when Ing a page not P
In the TLB? Vw1

TCS5422: Operating Systems [Spring 2023]

11598

‘ LAEREES RS School of Engineering and Technology, University of Washington - Tacoma
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TLB EXAMPLE - 3
0: sum = O ; OFFSET
1: (i=0; 1<107 i++)( P =
2: sum+=a[i]z VPN - 01
3 v em |
e
= For the accesses: a[0], a[1], a[2], a[3], a[4], ™"
VPN - 16 al0] s
= a[5], a[6], a[7], a[8], a[9] v a1 o e | |
e o [
wnem
= How many are hits? VN - 10
= How many are misses? e e
= What is the hit rate? (%) -
= 70% (3 misses one for each VP, 7 hits) Ve - 14
e

TCSS422: Operating Systems [Spring 2023]

May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma

L15.99

‘ RERE R School of Engineering and Technology, University of Washington - Tacoma
0: sum = O ; OFFSET
o
1: ( i=05 1<107 i++)( I
2: sum+=a[i]z PN - 01
3 w0 |
-0
= What factors affect the hit/miss rate? :: - o
= Page size veni =07 [ | e | am | a
) e~ o0 [ [ o0
= Data/Access locality (howis data accessed?) [P—
Sequential array access vs. random array access ‘vm-1
Rk e~
= Temporal locality -

= Size of the TLB cache w13
(how much history can you store?) -

N - 15

TCS5422: Operating Systems [Spring 2023]

‘ May 18, 2023 School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
® Quiz 3 - Synchronized Array - June 2

= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
| = Chapter 20: Paging: Smaller Tables |

] M

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26

100

CHAPTER 20:

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2023]

]
eaylie 202 School of Engineering and Technology, University of Washington -

101
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LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Spring 2023]

‘ oavEe i School of Engineering and Technology, University of Washington - Tacoma
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LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2023]

‘ Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma.
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PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
;—H* 4 = 1MB per page table

= Memory requirement cut to ¥
= However pages are huge
= Internal fragmentation results

few variables

= 16KB page(s) allocated for small programs with only a

TCS5422: Operating Systems [Spring 2023]

‘ LRI School of Engineering and Technology, University of Washington -Tacoma

L15.107

5/18/2023

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page table size = * 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Spring 2023]

‘ (b ETD School of Engineering and Technology, University of Washington - Tacoma

115,104
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OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
= Quiz 3 - Synchronized Array - June 2
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

ma ah M -|

©33422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

115,106
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PAGE TABLES: WASTED SPACE

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory

o e
- .
% PFN  valid prot present dirty
0 | 1| e 1 o

s

- 0 - - -
- 0 - - -
B 0 - - -
15 1 w- 1 1

" 3

"

1” 3 1 w- 1 1

code
heap

stack

1" 3 1 . 1 1
"

—
A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

TC55422: Operating Systems [Spring 2023]

‘ (D School of Engineering and Technology, University of Washington - Tacoma
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PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Vi

PFN  valid prot present dirty

Most of the page table is unused
and full of wasted space. (73%)

3 1 ™ 1 1
stack " ) 1 W 1 1
"
— A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCSS422: Operating Systems [Spring 2023]
‘ LAEREES RS School of Engineering and Technology, University of Washington - Tacoma Lis.109
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OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
= Quiz 3 - Synchronized Array - June 2
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging:

(b ETD School of Engineering and Technology, University of Washington - Tacoma
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MULTI-LEVEL PAGE TABLES

= Consider a page table:

= 32-bit addressing, 4KB pages

= 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCSS422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma s
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MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”

Linear Page Table Mult-level Page Table
PaTR 201 PETR. =3
3 z 35
S & P ) T2 e
] 2 1 T | > =1 =
v | g 2 tof - :
2 g Io| | =
1 - g [o o
JELEE.. D il
0 -
[ g The Pege Diraciory [Page 1 of PT:Nat Allocated
[ £ —
) -
0 ] LoTs
o ]
| = |% o - 15
ol s [ = &
U w| =
Linear (Left) And Multi-Level (Right) Page Tables
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MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

220 pages addressed with

two level-indexing
(page directory index, page table index)

Linear (Left) And Multi-Level (Right) Page Tables

TCS5422: Operating Systems [Spring 2023] Ls113
School of Engineering and Technology, University of Washington - Tacoma

‘ May 18, 2023
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MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

7CS5422: Operating Systems [Spring 2023]
‘ (D School of Engineering and Technology, University of Washington - Tacoma L1
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EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 000 .

0000 0001 code Flag. Detail
tree) | [ Address spsce 16 KB
(hree) Page 64 byte
heap
bheap

Page table entry B2se)

A 16-KB Address Space With 64-byte Pages

[13[12[nfw0[e[s[7[s[s[a[3][2]1]0
=

e

Offsat

‘ May 18, 2023

TCSS422: Operating Systems [Spring 2023] 115115
School of Engineering and Technology, University of Washington - Tacoma

115

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
=8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 1%t level page table)
= 6 bits offset into 64-byte page

Page Directory Index
\ .

13[z[1]w] o8

VPN Offset
14-bits Virtual address

TCSS422: Operating Systems [Spring 2023]
‘ Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma sy
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EXAMPLE - 3

= For this example, how much space Is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entrles (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCS5422: Operating Systems [Spring 2023] Ls110
School of Engineering and Technology, University of Washington - Tacoma

‘ May 18, 2023
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EXAMPLE - 2

= 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
=(1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

TCS5422: Operating Systems [Spring 2023] 115116
School of Engineering and Technology, University of Washington - Tacoma
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PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1st level)
= 4 bits page table index (PTI - 2" level)

. Page Directory Index |
[13]12]11]10] o sla[3]2]1]0]

VPN Offset
14-bits Virtual address

Page Table Index

a[7]s

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

‘ May 18, 2023
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32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

‘ May 18, 2023
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OBJECTIVES - 5/18

= Questions from 5/16
= Assignment 2 - June 2
= Quiz 3 - Synchronized Array - June 2
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 26
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Sn er Tahles M -le P e

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 876 54 3 21 0

Page Dircctary Index

VPN offset

Virtual address 30 bit
1512 byte
[21bit
[abit

| 128 pTEs

Page size

Page entry per page

TCSS422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma Ls123
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MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

= Pagas

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only dereference 128 addresses
(512 bytes / 32 bytes)

21 bit
9 kit

Page entry per page | 128 PTEs log; 128 = 7
TCS3422: Operating Systems [Spring 2023]
‘ LRI School of Engineering and Technology, University of Washington - Tacoma te12s
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MORE THAN TWO LEVELS

= Consider: page size is 22 = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

302928272625242322 212019181716 151413 1211

3 09876543210

VPN offset

Flag Detail

Virtual address 30 bit

Page size 512 byte
VPN 21 bit

Offset 9 bit

TCS5422: Operating Systems [Spring 2023]
‘ RERE R School of Engineering and Technology, University of Washington - Tacoma L5122
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MORE THAN TWO LEVELS - 3

= To map 1 GB address space (239=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

30292827262524232221 2019181716 1514131211 10

[T TTTTTTT

D T e —— — 1
Page Girectory Index :

876543210

VPN offset

Virtual address
Page size
VPN
Offset
Page entry per page

30 bit
| 512 byte
IET
[ebit
|12 PTEe

log, 128 =7

‘ May 18, 2023
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MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Paggms :

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

0 bit

125
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Page size | 512 byte
VeN 21t
Offset o bit
Page entry per page | 128 PTEs log, 128 =7
7CS5422: Operating Systems [Spring 2023]
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MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

02928272625 2423 22 212019 1817 16 15 14 13 12 11109 6 7 6 5 4
» sge bl dex . )
VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

TCSS422: Operating Systems [Spring 2023] 115127
School of Engineering and Technology, University of Washington - Tacoma

‘ May 18, 2023

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;

pte_t *pte;
struct page *page;
TCS5422: Operating Systems [Spring 2023]
‘ Wb AT School of Engineering and Technology, University of Washington - Tacoma L1s.128
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ADDRESS TRANSLATION - 2

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad(*pgd))| forthe process, returnsthe PGD entry that
return 0; covers the requested address...

p4d = p4d_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))
return 0;

pud = pud_offset(p4d, vpage);

4d/pud/pm
Takes a vpage address and the
pgd/p4d/pud entry and returns the

if (pud_none (*pud) || pud_bad (*pud)) relevant p4d/pud/pmd.
return 0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad (*pmd))
return 0;

if (!(pte = pte_offset_map(pmd, vpage)))
return 0;

_ F B p0

if (!(page = pte_page (*pte))) te_unma

release temporary kernel mapping

return 0; for the page table entry

physical_page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_page_addr; // param to send back

TCSS422: Operating Systems [Spring 2023]
Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma Ls.129

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page
= Which process virtual page (from process virtual address

space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages

= Hash table: can index memory and speed lookups

TCS5422: Operating Systems [Spring 2023]
Ryl 2nss) School of Engineering and Technology, University of Washington - Tacoma L1s.130
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MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCS5422: Operating Systems [Spring 2023] 5
‘ LRI School of Engineering and Technology, University of Washington - Tacoma L3l
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

7CS5422: Operating Systems [Spring 2023]
‘ (D School of Engineering and Technology, University of Washington - Tacoma L3
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MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page

Table...
= HINT: how many entries are in the PD and PT
TCSS422: Operating Systems [Spring 2023]
l LAEREES RS School of Engineering and Technology, University of Washington - Tacoma L5133

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCS5422: Operating Systems [Spring 2023]
l Wb AT School of Engineering and Technology, University of Washington - Tacoma L5134
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ANSWERS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2023] 115.135
School of Engineering and Technology, University of Washington - Tacoma

May 18, 2023

QUESTIONS
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