
TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.1Slides by Wes J. Lloyd

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Free Space Management,
Introduction to Paging,

Translation Lookaside Buffer

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 TCSS 422 Final is scheduled for:

Thursday June 8th 3:40-5:40pm

 This is one of the last time slots of the final exams week.

 Please indicate your preference for scheduling of the

TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm

B. Thursday June 8, 3:40 to 5:40 pm

C. No Preference

 Regardless of the selected date, the content and

coverage on the Final Exam will remain the same.

 (please disregard scoring as the quiz is worth 0 points.)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

FINAL EXAM SURVEY *NOW AVAILABLE IN CANVAS*

CLOSES MONDAY MAY 22

 RECORDING NOW AVAILABLE:

 Best viewed while looking at midterm paper

 Wednesday May 17, 6:30 pm

 Zoom / Live Stream / Recording

 Discussion and review of midterm exam problems

 Discussion of grading approach

 Details on partial credit

 Checking the grading

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

MIDTERM REVIEW SESSION

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

ZOOM RECORDING ANALYTICS

 Spring Fever? Stay tuned, many new concepts post -midterm

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

OBJECTIVES – 5/18

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 18, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.6

ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.2Slides by Wes J. Lloyd

May 18, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.7

 Please classify your perspective on material covered in today’s

class (40 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.78 ( - previous 7.22)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.98 ( - previous 5.72)

May 18, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

MATERIAL / PACE

 For base bound memory allocation when does the OS

decide what the base and bounds should be?

▪ Base and bounds registers were used in early computer

systems to track location of memory segments for the

code, stack, heap, etc.

▪ Today they may not be used at all:

▪ On most modern operating systems (e.g. FreeBSD, Linux or

Windows) use a memory model that points nearly all

segment registers to the same place (and use paging

instead)

From :

ht tps ://en.w ik ibooks.org /w iki/X86_Assembly/X86_Archi tecture#Segment_Registe rs

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

FEEDBACK FROM 5/16

 What if the amount of memory needed is really large or

really small?

▪ A modern system will manage memory using paging which

enables code, heap, and stack storage to exceed a single

segment through the use of memory paging

▪ Chapter 18

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

FEEDBACK - 2

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

OBJECTIVES – 5/18

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

OBJECTIVES – 5/18

7 8

9 10

11 12

https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture#Segment_Registers

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.3Slides by Wes J. Lloyd

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.13

OBJECTIVES – 5/18

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

OBJECTIVES – 5/18

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

OBJECTIVES – 5/18

CHAPTER 16:

SEGMENTATION

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.16

 Address space

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

BASE AND BOUNDS INEFFICIENCIES

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

MULTIPLE SEGMENTS

13 14

15 16

17 18

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.4Slides by Wes J. Lloyd

 Consider 3 segments:

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap star ts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – vir t heap star t)

 Physical address = 104 + 34816 (of fset + heap base)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.  Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104 (isolates segment offset)

 OFFSET < BOUNDS : 104 < 2048

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

SEGMENTATION DEREFERENCE

19 20

21 22

23 24

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.5Slides by Wes J. Lloyd

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.25

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

SHARED CODE SEGMENTS

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.2
7

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

MEMORY FRAGMENTATION

25 26

27 28

29 30

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.6Slides by Wes J. Lloyd

 Supports rearranging memory

 Can we fulfil the request for 20 KB of

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms:

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

COMPACTION

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

OBJECTIVES – 5/18

CHAPTER 17: FREE

SPACE MANAGEMENT

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.33

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

OBJECTIVES – 5/18

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

FREE SPACE MANAGEMENT

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

FREE SPACE MANAGEMENT

31 32

33 34

35 36

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.7Slides by Wes J. Lloyd

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

FRAGMENTATION

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.38

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

MEMORY HEADERS

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

MEMORY HEADERS - 2

37 38

39 40

41 42

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.8Slides by Wes J. Lloyd

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

MEMORY HEADERS - 3

WE WILL RETURN AT

4:50PM

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.44

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

THE FREE LIST

 Create and initialize free- l ist “heap”

 Heap layout:

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

FREE LIST: FREE() CALL

Free this
block

43 44

45 46

47 48

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.9Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

FREE LIST:

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
star t of chunk

 External fragmentat ion

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

MEMORY ALLOCATION STRATEGIES - 2

49 50

51 52

53 54

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.10Slides by Wes J. Lloyd

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.5
5

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “ slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

BUDDY ALLOCATION - 2

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.5
9

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.6
0

55 56

57 58

59 60

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.11Slides by Wes J. Lloyd

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

OBJECTIVES – 5/18

CHAPTER 18:

INTRODUCTION TO

PAGING

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.62

 Split up address space of process into fixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page f rames.

 Each process has a page table which translates vir tual

addresses to physical addresses

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2  PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.66

PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

61 62

63 64

65 66

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.12Slides by Wes J. Lloyd

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.69

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.70

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef f icient?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.71

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

67 68

69 70

71 72

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.13Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.73

PAGE TABLE ENTRY

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dir ty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit) : Indicating that a page has been

accessed

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.74

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.75

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.76

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.77

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.78

COUNTING MEMORY ACCESSES

73 74

75 76

77 78

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.14Slides by Wes J. Lloyd

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.79

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8
0

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8
1

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8
2

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8
3

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.8
4

79 80

81 82

83 84

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.15Slides by Wes J. Lloyd

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.85

PAGING SYSTEM EXAMPLE

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.86

OBJECTIVES – 5/18

CHAPTER 19:

TRANSLATION

LOOKASIDE BUFFER

(TLB)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.87

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.88

TRANSLATION LOOKASIDE BUFFER

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for - loop

i terations

 Move lookups

from RAM to TLB

by caching page

table entries

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.89

TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.90

TRANSLATION LOOKASIDE BUFFER (TLB)

85 86

87 88

89 90

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.16Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.91

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.92

OBJECTIVES – 5/18

 For: array based page table

 Hardware managed TLB

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.93

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.94

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to

populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.95

TLB – ADDRESS TRANSLATION CACHE

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.96

OBJECTIVES – 5/18

91 92

93 94

95 96

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.17Slides by Wes J. Lloyd

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.97

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not

in the TLB?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.98

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.99

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache
(how much history can you store?)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.100

TLB EXAMPLE - 4

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.101

OBJECTIVES – 5/18

CHAPTER 20:

PAGING:

SMALLER TABLES

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L15.102

97 98

99 100

101 102

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.18Slides by Wes J. Lloyd

Consider array -based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.103

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.104

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.105

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.106

OBJECTIVES – 5/18

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a

few variables

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.107

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.108

PAGE TABLES: WASTED SPACE

Page Table

103 104

105 106

107 108

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.19Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.109

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.110

OBJECTIVES – 5/18

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page

table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.111

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.112

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.113

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

▪ Only allocates page table space in proportion to the

address space actually used

▪ Can easily grab next free page to expand page table

 Disadvantages

▪Multi-level page tables are an example of a time-space

tradeoff

▪ Sacrifice address translation time (now 2-level) for space

▪ Complexity: multi-level schemes are more complex

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.114

MULTI-LEVEL PAGE TABLES - 3

109 110

111 112

113 114

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.20Slides by Wes J. Lloyd

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.115

EXAMPLE

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64 -byte pages

= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table

entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)

= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.116

EXAMPLE - 2

 Now, let’s split the page table into two:

▪ 8 bit VPN to map 256 pages

▪ 4 bits for page directory index (PDI – 1st level page table)

▪ 6 bits offset into 64-byte page

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.117

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

▪ We need one page directory entry (PDE)

▪ One page table Index (PTI) – can address 16 pages

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.118

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 4 entries x 4 bytes (1 x 64 byte page)

 128 bytes required (2 x 64 byte pages)

▪ Savings = using just 12.5% the space !!!

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.119

EXAMPLE - 3

 Consider: 32-bit address space, 4KB pages, 2 20 pages

 Only 4 mapped pages

 Single level : 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.120

32-BIT EXAMPLE

115 116

117 118

119 120

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.21Slides by Wes J. Lloyd

 Questions from 5/16

 Assignment 2 - June 2

 Quiz 3 – Synchronized Array - June 2

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 26

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 18, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.121

OBJECTIVES – 5/18

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.122

MORE THAN TWO LEVELS

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.123

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (2 30=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.124

MORE THAN TWO LEVELS - 3

 To map 1 GB address space (2 30=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.125

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (2 30=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.126

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

121 122

123 124

125 126

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.22Slides by Wes J. Lloyd

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4

entries on a 512-byte page? (let’s say 4 32 -bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- leve l) / 8,388,608 (1- leve l) = .0183% !!!

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.127

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct – process’s memory map struct

// vpage – virtual page address

// Define page struct pointers

pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.128

ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);

if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;

p4d = p4d_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))

return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;

if (!(pte = pte_offset_map(pmd, vpage)))

return 0;

if (!(page = pte_page(*pte)))

return 0;

physical_page_addr = page_to_phys(page);

pte_unmap(pte);

return physical_page_addr; // param to send back

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.129

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct

for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

▪ Which process uses each page

▪ Which process virtual page (from process virtual address

space) maps to the physical page

 All processes share the same page table for memory mapping,

kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 2 20 pages

 Hash table: can index memory and speed lookups

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.130

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.131

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.

 HelloWorld.c requires vir tual address translation for 4 pages:

▪ 1 – code page 1 – stack page

▪ 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.132

MULTI LEVEL PAGE TABLE EXAMPLE - 2

127 128

129 130

131 132

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L15.23Slides by Wes J. Lloyd

 Assume each page directory entry (PDE) and page table entry

(PTE) requires 4 bytes:

▪ 6 bits for the Page Directory Index (PDI)

▪ 6 bits for the Page Table Index (PTI)

▪ 12 offset bits

▪ 8 status bits

 (#8) How much total memory is required to index the

HelloWorld.c program using a two-level page table when we

only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page

Table…

 HINT: how many entries are in the PD and PT

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.133

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a

single page table (PT), if all of the slots of the page table (PT)

are in use, what is the total amount of memory a two -level

page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),

how much memory does the 2-level page table scheme

consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.134

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page

With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 → 3.125%

May 18, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L15.135

ANSWERS QUESTIONS

133 134

135 136

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Final exam survey *NOW available in Canvas* CLOSES Monday may 22
	Slide 3: Midterm review session
	Slide 4: Zoom recording analytics
	Slide 5: OBJECTIVES – 5/18
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 5/16
	Slide 10: Feedback - 2
	Slide 11: OBJECTIVES – 5/18
	Slide 12: OBJECTIVES – 5/18
	Slide 13: OBJECTIVES – 5/18
	Slide 14: OBJECTIVES – 5/18
	Slide 15: OBJECTIVES – 5/18
	Slide 16: Chapter 16: segmentation
	Slide 17: Base and bounds inefficiencies
	Slide 18: MULTIPLE SEGMENTS
	Slide 19: Segments in memory
	Slide 20: Address translation: code segment
	Slide 21: Address translation: heap
	Slide 22: Segmentation fault
	Slide 23: Segment registers
	Slide 24: Segmentation dereference
	Slide 25: Stack segment
	Slide 26: Shared CODE segments
	Slide 27
	Slide 28: Segmentation granularity
	Slide 29: Segmentation granularity - 2
	Slide 30: Memory fragmentation
	Slide 31: Compaction
	Slide 32: OBJECTIVES – 5/18
	Slide 33: Chapter 17: free space management
	Slide 34: OBJECTIVES – 5/18
	Slide 35: Free space management
	Slide 36: Free space management
	Slide 37: fragmentation
	Slide 38: Fragmentation - 2
	Slide 39: Allocation strategy: Splitting
	Slide 40: Allocation strategy: coalescing
	Slide 41: Memory headers
	Slide 42: Memory headers - 2
	Slide 43: Memory headers - 3
	Slide 44: We will return at 4:50pm
	Slide 45: The free list
	Slide 46: Free list - 2
	Slide 47: Free list: malloc() call
	Slide 48: Free list: free() call
	Slide 49: Free list: free() chunk #2
	Slide 50: Free list- free all chunks
	Slide 51: Growing the heap
	Slide 52: Memory allocation strategies
	Slide 53: examples
	Slide 54: Memory allocation strategies - 2
	Slide 55
	Slide 56: Segregated lists
	Slide 57: Buddy allocation
	Slide 58: Buddy allocation - 2
	Slide 59
	Slide 60
	Slide 61: OBJECTIVES – 5/18
	Slide 62: Chapter 18: Introduction to paging
	Slide 63: paging
	Slide 64: Advantages of paging
	Slide 65: Paging: example
	Slide 66: Paging: Address translation
	Slide 67: Example: paging address translation
	Slide 68: Paging design questions
	Slide 69: (1) Where are page tables stored?
	Slide 70: Page table example
	Slide 71: Now for an entire OS
	Slide 72: (2) What’s actually in the page table
	Slide 73: Page table entry
	Slide 74: Page table entry - 2
	Slide 75: (3) How big are page tables?
	Slide 76: (4) Does paging make the system too slow?
	Slide 77: Paging memory access
	Slide 78: Counting memory accesses
	Slide 79: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Paging system example
	Slide 86: OBJECTIVES – 5/18
	Slide 87: Chapter 19: Translation lookaside buffer (TLB)
	Slide 88: Translation lookaside buffer
	Slide 89: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 90: Translation lookaside buffer (TLB)
	Slide 91: Translation lookaside buffer (TLB)
	Slide 92: OBJECTIVES – 5/18
	Slide 93: Tlb basic algorithm
	Slide 94: Tlb basic algorithm - 2
	Slide 95: TLb – address translation cache
	Slide 96: OBJECTIVES – 5/18
	Slide 97: Tlb example
	Slide 98: Tlb Example - 2
	Slide 99: Tlb Example - 3
	Slide 100: Tlb example - 4
	Slide 101: OBJECTIVES – 5/18
	Slide 102: Chapter 20: Paging: smaller tables
	Slide 103: Linear page tables
	Slide 104: Linear page tables - 2
	Slide 105: Linear page tables - 2
	Slide 106: OBJECTIVES – 5/18
	Slide 107: Paging: use larger pages
	Slide 108: Page tables: wasted space
	Slide 109: Page tables: wasted space
	Slide 110: OBJECTIVES – 5/18
	Slide 111: Multi-level page tables
	Slide 112: Multi-level page tables - 2
	Slide 113: Multi-level page tables - 2
	Slide 114: Multi-level page tables - 3
	Slide 115: example
	Slide 116: Example - 2
	Slide 117: Page directory index
	Slide 118: Page table index
	Slide 119: Example - 3
	Slide 120: 32-bit example
	Slide 121: OBJECTIVES – 5/18
	Slide 122: More than two levels
	Slide 123: More than two levels - 2
	Slide 124: More than two levels - 3
	Slide 125: More than two levels - 3
	Slide 126: More than two levels - 3
	Slide 127: More than two levels - 4
	Slide 128: Address translation code
	Slide 129: Address translation - 2
	Slide 130: Inverted page tables
	Slide 131: Multi-level page table example
	Slide 132: Multi level page table example - 2
	Slide 133: Multi level page table example - 3
	Slide 134: Multi level page table example - 4
	Slide 135: Answers
	Slide 136: Questions

