
TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.1Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

Memory Virtualization 
with Segments,

Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology

University of Washington  - Tacoma

TCSS 422: OPERATING SYSTEMS

 TCSS 422 Final is scheduled for: 

Thursday June 8th 3:40-5:40pm

 This is one of the last time slots of the final exams week.

 Please indicate your preference for scheduling of the 

TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm

B. Thursday June 8, 3:40 to 5:40 pm

C. No Preference

 Regardless of the selected date, the content and 

coverage on the Final Exam will remain the same.

 (please disregard scoring as the quiz is worth 0 points.)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.2

FINAL EXAM SURVEY *NOW AVAILABLE IN CANVAS*

CLOSES MONDAY MAY 22

1

2



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.2Slides by Wes J. Lloyd

 Wednesday May 17, 6:30 pm

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.3

MIDTERM REVIEW SESSION

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.4

OBJECTIVES – 5/16

3

4



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 16, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

ONLINE DAILY FEEDBACK SURVEY

May 16, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.6

5

6



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s 

class (46 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.22  ( - previous 6.80) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.72 ( - previous 5.60)

May 16, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

MATERIAL / PACE

 Can you explain the non-deadlock (bugs)?

In which situations will  we use/unused it the solutions?

 Atomicity violation

▪ Failure to use locks

▪ SOLUTION: Add locks to enforce atomicity in critical sections of 

code

▪ CHALLENGE: Locating places in code where locks are needed

because variables are shared – not always obvious

 Order violation

▪ Use of a shared variable before it is ready / initialized

▪ SOLUTION: Use condition variable and signaling mechanism

▪ CHALLENGE: Locating when/where order violation occurs in code

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.8

FEEDBACK FROM 5/11

7

8



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.5Slides by Wes J. Lloyd

 Is there a condition(s) out of the four requirements for 
deadlock that is most commonly/easily targeted to 
prevent deadlock?

 From least to most popular (represents instructor’s 
opinion):

 #4: Total ordering of lock acquisition throughout code –
consider how difficult it would be to implement across an 
entire codebase

 #3: Use of guard locks to protect acquisition of coupled 
locks

 #2: Lock free data structures – use atomic CPU
instructions

 #1: No preemption – use of non-blocking lock APIs w/
adding a random delay to avoid livelock problem

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.9

FEEDBACK - 2

 How does the overhead (including decreased parallelism) 

compare for mechanisms targeting the dif ferent conditions 

required for deadlock?

 From high to low overhead (represents instructor’s opinion):

 Here we consider overhead as lowering parallelism of code

 #1: Use of guard locks to protect acquisition of coupled locks

 #2: No preemption – use of non-blocking lock APIs w/ adding 

a random delay to avoid livelock problem

 #3: Total ordering of lock acquisition throughout code –

consider how difficult it would be to implement across an 

entire codebase

 #3: Lock free data structures – use atomic CPU instructions

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.10

FEEDBACK - 3

9

10



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.6Slides by Wes J. Lloyd

 Are multiple prevention mechanisms for deadlock typically 

used in case one fails, or are the implemented protections 

easy enough to validate that this is not necessary?

 A program may exhibit multiple issues leading to deadlock 

issues

 It is necessary to diagnose and correct each of them as they 

are separate conditions which can produce deadlock

 It is possible that more than one solution will be required

 For example, a program may use Java vector class, where a 

guard lock solves deadlock inherent to locks embedded in the 

data structure, while at the same time another set of shared 

variables requires use of total ordering of locks or no 

preemption to correct deadlock

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.11

FEEDBACK - 4

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.12

OBJECTIVES – 5/16

11

12



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.7Slides by Wes J. Lloyd

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.13

OBJECTIVES – 5/16

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.14

OBJECTIVES – 5/16

13

14



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.8Slides by Wes J. Lloyd

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.15

OBJECTIVES – 5/16

CHAPTER 13: 

ADDRESS SPACES

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.16

15

16



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.9Slides by Wes J. Lloyd

 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the 

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another 

(or the OS)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

GOALS OF 

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

GOALS - 2

17

18



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.10Slides by Wes J. Lloyd

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.19

OBJECTIVES – 5/16

CHAPTER 14: THE 

MEMORY API

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.20

19

20



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.11Slides by Wes J. Lloyd

 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.21

OBJECTIVES – 5/18

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given 

datatype or struct is

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

MALLOC

21

22



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.12Slides by Wes J. Lloyd

 Not safe to assume 

data type sizes using 

dif ferent compilers, 

systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

FREE()

23

24



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.13Slides by Wes J. Lloyd

25

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

26

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but 

the value has changed!!

Why?

25

26



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.14Slides by Wes J. Lloyd

 Dangling pointers arise when a variable referred (a) goes 

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 

of the deallocated memory (a), 

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

27

28



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.15Slides by Wes J. Lloyd

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num :  number of blocks to allocate

 size_t size :  size of each block(in bytes)

 Calloc() prevents…

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 

calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

REALLOC()

29

30



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.16Slides by Wes J. Lloyd

 Can’t deallocate twice

 Second call core dumps

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 

for a user program

 See man page

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

SYSTEM CALLS

31

32



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.17Slides by Wes J. Lloyd

WE WILL RETURN AT 

5:07PM

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma L14.33

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.34

OBJECTIVES – 5/16

33

34



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.18Slides by Wes J. Lloyd

CHAPTER 15: ADDRESS

TRANSLATION

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.35

 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.36

OBJECTIVES – 5/18

35

36



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.19Slides by Wes J. Lloyd

 64KB 

Address space

example

 Translation:

mapping 

virtual to

physical

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

37

38



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.20Slides by Wes J. Lloyd

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (virt addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers 

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

39

40



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.21Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 

bounds

Translation circuitry, check limits

Privileged instruction(s) to

update base / bounds regs

Instructions for modifying base/bound 

registers

Privileged instruction(s) 

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

OS SUPPORT FOR MEMORY 

VIRTUALIZATION

41

42



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.22Slides by Wes J. Lloyd

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

OS: WHEN PROCESS IS TERMINATED

43

44



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.23Slides by Wes J. Lloyd

 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

DYNAMIC RELOCATION

45

46



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.24Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.4
7

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.48

OBJECTIVES – 5/16

47

48



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.25Slides by Wes J. Lloyd

CHAPTER 16: 

SEGMENTATION

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.49

 Address space 

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

BASE AND BOUNDS INEFFICIENCIES

49

50



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.26Slides by Wes J. Lloyd

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space 

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

MULTIPLE SEGMENTS

 Consider 3 segments:

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

SEGMENTS IN MEMORY

Much smaller

51

52



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.27Slides by Wes J. Lloyd

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in virtual address space

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – vir t heap start)

 Physical address = 104 + 34816  (of fset + heap base)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

53

54



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.28Slides by Wes J. Lloyd

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: virtual heap address 4200 (01000001101000)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

SEGMENT REGISTERS

55

56



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.29Slides by Wes J. Lloyd

 VIRTUAL ADDRESS = 01000001101000                     (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap            (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104        (isolates segment offset)

 OFFSET < BOUNDS :  104 < 2048

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

STACK SEGMENT

57

58



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.30Slides by Wes J. Lloyd

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

SHARED CODE SEGMENTS

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.6
0

59

60



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.31Slides by Wes J. Lloyd

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

SEGMENTATION GRANULARITY - 2

61

62



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.32Slides by Wes J. Lloyd

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms: 

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.64

COMPACTION

63

64



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.33Slides by Wes J. Lloyd

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.65

OBJECTIVES – 5/16

CHAPTER 17: FREE 

SPACE MANAGEMENT

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.66

65

66



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.34Slides by Wes J. Lloyd

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.67

OBJECTIVES – 5/18

 How should free space be managed, when satisfying 

variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 

approaches?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.68

FREE SPACE MANAGEMENT

67

68



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.35Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.70

FRAGMENTATION

69

70



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.36Slides by Wes J. Lloyd

 External: OS can compact

▪ Example: Client asks for 100 bytes:  malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example:  Client asks for 100 bytes:  malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

ALLOCATION STRATEGY: SPLITTING

71

72



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.37Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist of 3-free 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

MEMORY HEADERS

73

74



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.38Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.75

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.76

MEMORY HEADERS - 3

75

76



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.39Slides by Wes J. Lloyd

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.77

THE FREE LIST

 Create and initialize free- list “heap”

 Heap layout:

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.78

FREE LIST - 2

77

78



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.40Slides by Wes J. Lloyd

 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

FREE LIST: FREE() CALL

Free this
block

79

80



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.41Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

FREE LIST: 

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual 
start of chunk

 External fragmentation

 Free chunk pointers 
out of order

 Coalescing of next 
pointers is needed

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

FREE LIST- FREE ALL CHUNKS

81

82



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.42Slides by Wes J. Lloyd

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

GROWING THE HEAP

Segmented heapSegmented heap

 Best fit

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small 

(and potentially less useful  -- fragmented)

 Worst fit

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

MEMORY ALLOCATION STRATEGIES

83

84



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.43Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

EXAMPLES

 First f it

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next fit

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list 

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

MEMORY ALLOCATION STRATEGIES - 2

85

86



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.44Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.8
7

 For popular sized requests 

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized 

requests (object caches)?

 If a given cache is low in memory, can request “ slabs” of 

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

SEGREGATED LISTS

87

88



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.45Slides by Wes J. Lloyd

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

BUDDY ALLOCATION - 2

89

90



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.46Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.9
1

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.9
2

91

92



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.47Slides by Wes J. Lloyd

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.93

OBJECTIVES – 5/16

CHAPTER 18:

INTRODUCTION TO

PAGING

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.94

93

94



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.48Slides by Wes J. Lloyd

 Split up address space of process into f ixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which 

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots 

called page frames.

 Each process has a page table which translates virtual 

addresses to physical addresses

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.95

PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space 

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.96

ADVANTAGES OF PAGING

95

96



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.49Slides by Wes J. Lloyd

 Consider a 128 byte (27) address space 

with 16-byte (24) pages  

 Consider a 64-byte (26) 

program address space

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.97

PAGING: EXAMPLE
Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5
VP3 → PF2

 PAGE: Has two address components

▪ VPN: Virtual Page Number   (serves as the page ID)

▪ Offset: Offset within a Page  ( indexes any byte in the page)

 Example: 

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.98

PAGING: ADDRESS TRANSLATION

Here program can have

just four pages…

97

98



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.50Slides by Wes J. Lloyd

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to 

a Physical Frame Number (PFN)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.99

EXAMPLE:

PAGING ADDRESS TRANSLATION 

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5

VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.100

PAGING DESIGN QUESTIONS

99

100



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.51Slides by Wes J. Lloyd

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations 

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.101

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is 
unrealistically small)

 How much memory is required to store the page table 
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

101

102



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.52Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits), 

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this efficient?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.103

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page 

numbers (VPN) to the physical address (Physical Frame 

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.104

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

103

104



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.53Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.105

PAGE TABLE ENTRY

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read 

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical 

memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since 

it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been 

accessed

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.106

PAGE TABLE ENTRY - 2

105

106



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.54Slides by Wes J. Lloyd

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.107

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is 
needed

▪HW Support: Page-table base register

▪ stores active process 

▪Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.108

(4) DOES PAGING MAKE 

THE SYSTEM TOO SLOW?

Page Table:

VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

107

108



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.55Slides by Wes J. Lloyd

1. // Extract the VPN from the virtual address 

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.

4. // Form the address of the page-table entry (PTE) 

5. PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.

7. // Fetch the PTE 

8. PTE = AccessMemory(PTEAddr) 

9.

10. // Check if process can access the page 

11. if (PTE.Valid == False) 

12. RaiseException(SEGMENTATION_FAULT) 

13. else if (CanAccess(PTE.ProtectBits) == False) 

14. RaiseException(PROTECTION_FAULT) 

15. else

16. // Access is OK: form physical address and fetch it 

17. offset = VirtualAddress & OFFSET_MASK 

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19. Register = AccessMemory(PhysAddr)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.109

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.110

COUNTING MEMORY ACCESSES

109

110



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.56Slides by Wes J. Lloyd

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.111

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.1
12

111

112



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.57Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.1
13

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.1
14

113

114



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.58Slides by Wes J. Lloyd

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.1
15

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.1
16

115

116



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.59Slides by Wes J. Lloyd

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 

VPN?

 If we assume the use of 4-byte (32 bit) page table entries, 

how many bits are available for status bits?

 How much space does this page table require?  

# of page table entries x size of page table entry  

 How many page tables (for user processes) 

would fill the entire 4GB of memory?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.117

PAGING SYSTEM EXAMPLE

QUESTIONS

117

118


	Slide 1: TCSS 422: Operating Systems
	Slide 2: Final exam survey *NOW available in Canvas* CLOSES Monday may 22
	Slide 3: Midterm review session
	Slide 4: OBJECTIVES – 5/16
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 5/11
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: OBJECTIVES – 5/16
	Slide 13: OBJECTIVES – 5/16
	Slide 14: OBJECTIVES – 5/16
	Slide 15: OBJECTIVES – 5/16
	Slide 16: Chapter 13:  ADDRESS SPACES
	Slide 17: Goals of  OS memory virtualization
	Slide 18: Goals - 2
	Slide 19: OBJECTIVES – 5/16
	Slide 20: Chapter 14: The  memory API
	Slide 21: OBJECTIVES – 5/18
	Slide 22: malloc
	Slide 23: Sizeof()
	Slide 24: Free()
	Slide 25
	Slide 26
	Slide 27: Dangling Pointer (1/2)
	Slide 28: Dangling Pointer (2/2)
	Slide 29: Calloc()
	Slide 30: Realloc()
	Slide 31: Double free
	Slide 32: System calls
	Slide 33: We will return at 5:07pm
	Slide 34: OBJECTIVES – 5/16
	Slide 35: Chapter 15: Address translation
	Slide 36: OBJECTIVES – 5/18
	Slide 37: Address translation
	Slide 38: Base and bounds
	Slide 39: Instruction example
	Slide 40: Memory management unit
	Slide 41: Dynamic relocation of programs
	Slide 42: OS support for memory virtualization
	Slide 43: OS: When process starts running
	Slide 44: OS: when process is terminated
	Slide 45: Os: when context switch occurs
	Slide 46: Dynamic relocation
	Slide 47
	Slide 48: OBJECTIVES – 5/16
	Slide 49: Chapter 16: segmentation
	Slide 50: Base and bounds inefficiencies
	Slide 51: MULTIPLE SEGMENTS
	Slide 52: Segments in memory
	Slide 53: Address translation: code segment
	Slide 54: Address translation: heap
	Slide 55: Segmentation fault
	Slide 56: Segment registers
	Slide 57: Segmentation dereference
	Slide 58: Stack segment
	Slide 59: Shared CODE segments
	Slide 60
	Slide 61: Segmentation granularity
	Slide 62: Segmentation granularity - 2
	Slide 63: Memory fragmentation
	Slide 64: Compaction
	Slide 65: OBJECTIVES – 5/16
	Slide 66: Chapter 17: free space management
	Slide 67: OBJECTIVES – 5/18
	Slide 68: Free space management
	Slide 69: Free space management
	Slide 70: fragmentation
	Slide 71: Fragmentation - 2
	Slide 72: Allocation strategy: Splitting
	Slide 73: Allocation strategy: coalescing
	Slide 74: Memory headers
	Slide 75: Memory headers - 2
	Slide 76: Memory headers - 3
	Slide 77: The free list
	Slide 78: Free list - 2
	Slide 79: Free list:  malloc() call
	Slide 80: Free list: free() call
	Slide 81: Free list:  free() chunk #2
	Slide 82: Free list- free all chunks
	Slide 83: Growing the heap
	Slide 84: Memory allocation strategies
	Slide 85: examples
	Slide 86: Memory allocation strategies - 2
	Slide 87
	Slide 88: Segregated lists
	Slide 89: Buddy allocation
	Slide 90: Buddy allocation - 2
	Slide 91
	Slide 92
	Slide 93: OBJECTIVES – 5/16
	Slide 94: Chapter 18: Introduction to paging
	Slide 95: paging
	Slide 96: Advantages of paging
	Slide 97: Paging: example
	Slide 98: Paging: Address translation
	Slide 99: Example: paging address translation 
	Slide 100: Paging design questions
	Slide 101: (1) Where are page tables stored?
	Slide 102: Page table example
	Slide 103: Now for an entire OS
	Slide 104: (2) What’s actually in the page table
	Slide 105: Page table entry
	Slide 106: Page table entry - 2
	Slide 107: (3) How big are page tables?
	Slide 108: (4) Does paging make  the system too slow?
	Slide 109: Paging memory access
	Slide 110: Counting memory accesses
	Slide 111: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Paging system example
	Slide 118: Questions

