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Introduction to Paging
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TCSS 422: OPERATING SYSTEMS

 TCSS 422 Final is scheduled for: 

Thursday June 8th 3:40-5:40pm

 This is one of the last time slots of the final exams week.

 Please indicate your preference for scheduling of the 

TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm

B. Thursday June 8, 3:40 to 5:40 pm

C. No Preference

 Regardless of the selected date, the content and 

coverage on the Final Exam will remain the same.

 (please disregard scoring as the quiz is worth 0 points.)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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FINAL EXAM SURVEY *NOW AVAILABLE IN CANVAS*

CLOSES MONDAY MAY 22
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 Wednesday May 17, 6:30 pm

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.3

MIDTERM REVIEW SESSION

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 16, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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ONLINE DAILY FEEDBACK SURVEY

May 16, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.6
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 Please classify your perspective on material covered in today’s 

class (46 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.22  ( - previous 6.80) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.72 ( - previous 5.60)

May 16, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

MATERIAL / PACE

 Can you explain the non-deadlock (bugs)?

In which situations will  we use/unused it the solutions?

 Atomicity violation

▪ Failure to use locks

▪ SOLUTION: Add locks to enforce atomicity in critical sections of 

code

▪ CHALLENGE: Locating places in code where locks are needed

because variables are shared – not always obvious

 Order violation

▪ Use of a shared variable before it is ready / initialized

▪ SOLUTION: Use condition variable and signaling mechanism

▪ CHALLENGE: Locating when/where order violation occurs in code

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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FEEDBACK FROM 5/11
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 Is there a condition(s) out of the four requirements for 
deadlock that is most commonly/easily targeted to 
prevent deadlock?

 From least to most popular (represents instructor’s 
opinion):

 #4: Total ordering of lock acquisition throughout code –
consider how difficult it would be to implement across an 
entire codebase

 #3: Use of guard locks to protect acquisition of coupled 
locks

 #2: Lock free data structures – use atomic CPU
instructions

 #1: No preemption – use of non-blocking lock APIs w/
adding a random delay to avoid livelock problem

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.9

FEEDBACK - 2

 How does the overhead (including decreased parallelism) 

compare for mechanisms targeting the dif ferent conditions 

required for deadlock?

 From high to low overhead (represents instructor’s opinion):

 Here we consider overhead as lowering parallelism of code

 #1: Use of guard locks to protect acquisition of coupled locks

 #2: No preemption – use of non-blocking lock APIs w/ adding 

a random delay to avoid livelock problem

 #3: Total ordering of lock acquisition throughout code –

consider how difficult it would be to implement across an 

entire codebase

 #3: Lock free data structures – use atomic CPU instructions

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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FEEDBACK - 3
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 Are multiple prevention mechanisms for deadlock typically 

used in case one fails, or are the implemented protections 

easy enough to validate that this is not necessary?

 A program may exhibit multiple issues leading to deadlock 

issues

 It is necessary to diagnose and correct each of them as they 

are separate conditions which can produce deadlock

 It is possible that more than one solution will be required

 For example, a program may use Java vector class, where a 

guard lock solves deadlock inherent to locks embedded in the 

data structure, while at the same time another set of shared 

variables requires use of total ordering of locks or no 

preemption to correct deadlock

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.11

FEEDBACK - 4

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16
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 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16
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 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16

CHAPTER 13: 

ADDRESS SPACES

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.16
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 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the 

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another 

(or the OS)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

GOALS OF 

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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GOALS - 2
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 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16

CHAPTER 14: THE 

MEMORY API

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.20
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 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/18

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given 

datatype or struct is

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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MALLOC
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 Not safe to assume 

data type sizes using 

dif ferent compilers, 

systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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FREE()
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25

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

26

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but 

the value has changed!!

Why?

25
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 Dangling pointers arise when a variable referred (a) goes 

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 

of the deallocated memory (a), 

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.28
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 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num :  number of blocks to allocate

 size_t size :  size of each block(in bytes)

 Calloc() prevents…

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 

calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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REALLOC()
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 Can’t deallocate twice

 Second call core dumps

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 

for a user program

 See man page

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

SYSTEM CALLS
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WE WILL RETURN AT 

5:07PM

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma L14.33

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16
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CHAPTER 15: ADDRESS

TRANSLATION

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.35

 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/18
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 64KB 

Address space

example

 Translation:

mapping 

virtual to

physical

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.37

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠
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 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (virt addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers 

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

39
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May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 

bounds

Translation circuitry, check limits

Privileged instruction(s) to

update base / bounds regs

Instructions for modifying base/bound 

registers

Privileged instruction(s) 

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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OS SUPPORT FOR MEMORY 

VIRTUALIZATION
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 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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OS: WHEN PROCESS IS TERMINATED
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 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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DYNAMIC RELOCATION
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May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma

L14.4
7

 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington  - Tacoma
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OBJECTIVES – 5/16
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CHAPTER 16: 

SEGMENTATION

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L14.49

 Address space 

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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BASE AND BOUNDS INEFFICIENCIES
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 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space 

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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MULTIPLE SEGMENTS

 Consider 3 segments:

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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SEGMENTS IN MEMORY

Much smaller

51

52



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.27Slides by Wes J. Lloyd

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in virtual address space

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – vir t heap start)

 Physical address = 104 + 34816  (of fset + heap base)

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.
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 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: virtual heap address 4200 (01000001101000)
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SEGMENT REGISTERS
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 VIRTUAL ADDRESS = 01000001101000                     (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap            (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104        (isolates segment offset)

 OFFSET < BOUNDS :  104 < 2048
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

STACK SEGMENT
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 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment
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SHARED CODE SEGMENTS
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Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment
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SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments
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SEGMENTATION GRANULARITY - 2
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 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?
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MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms: 

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)
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COMPACTION
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 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/16

CHAPTER 17: FREE 

SPACE MANAGEMENT
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 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies
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OBJECTIVES – 5/18

 How should free space be managed, when satisfying 

variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 

approaches?
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FREE SPACE MANAGEMENT
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 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL
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FRAGMENTATION
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 External: OS can compact

▪ Example: Client asks for 100 bytes:  malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example:  Client asks for 100 bytes:  malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact
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FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk
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ALLOCATION STRATEGY: SPLITTING
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 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist of 3-free 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk
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MEMORY HEADERS

73

74



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.38Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header
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MEMORY HEADERS - 3
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 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk
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THE FREE LIST

 Create and initialize free- list “heap”

 Heap layout:
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FREE LIST - 2
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 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block
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FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708
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FREE LIST: FREE() CALL

Free this
block

79

80



TCSS 422 A – Spring 2023
School of Engineering and Technology

5/18/2023

L14.41Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492
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FREE LIST: 

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual 
start of chunk

 External fragmentation

 Free chunk pointers 
out of order

 Coalescing of next 
pointers is needed
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FREE LIST- FREE ALL CHUNKS
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 Start with small sized heap

 Request more memory when full

 sbrk(), brk()
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GROWING THE HEAP

Segmented heapSegmented heap

 Best fit

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small 

(and potentially less useful  -- fragmented)

 Worst fit

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk
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MEMORY ALLOCATION STRATEGIES
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 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 16, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

EXAMPLES

 First f it

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next fit

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list 

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2
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7

 For popular sized requests 

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized 

requests (object caches)?

 If a given cache is low in memory, can request “ slabs” of 

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used
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SEGREGATED LISTS
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 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2
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 Questions from 5/11

 Assignment 2 - June 2

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 26

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/16

CHAPTER 18:

INTRODUCTION TO

PAGING
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 Split up address space of process into f ixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which 

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots 

called page frames.

 Each process has a page table which translates virtual 

addresses to physical addresses
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PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space 

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages
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ADVANTAGES OF PAGING
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 Consider a 128 byte (27) address space 

with 16-byte (24) pages  

 Consider a 64-byte (26) 

program address space
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PAGING: EXAMPLE
Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5
VP3 → PF2

 PAGE: Has two address components

▪ VPN: Virtual Page Number   (serves as the page ID)

▪ Offset: Offset within a Page  ( indexes any byte in the page)

 Example: 

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)
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PAGING: ADDRESS TRANSLATION

Here program can have

just four pages…
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 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to 

a Physical Frame Number (PFN)
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EXAMPLE:

PAGING ADDRESS TRANSLATION 

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5

VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS
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 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations 

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is 
unrealistically small)

 How much memory is required to store the page table 
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576
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 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits), 

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this efficient?
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NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page 

numbers (VPN) to the physical address (Physical Frame 

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE
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 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read 

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical 

memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since 

it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been 

accessed
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PAGE TABLE ENTRY - 2
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 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is 
needed

▪HW Support: Page-table base register

▪ stores active process 

▪Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 

THE SYSTEM TOO SLOW?

Page Table:

VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →
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1. // Extract the VPN from the virtual address 

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.

4. // Form the address of the page-table entry (PTE) 

5. PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.

7. // Fetch the PTE 

8. PTE = AccessMemory(PTEAddr) 

9.

10. // Check if process can access the page 

11. if (PTE.Valid == False) 

12. RaiseException(SEGMENTATION_FAULT) 

13. else if (CanAccess(PTE.ProtectBits) == False) 

14. RaiseException(PROTECTION_FAULT) 

15. else

16. // Access is OK: form physical address and fetch it 

17. offset = VirtualAddress & OFFSET_MASK 

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19. Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES
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 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
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 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 

VPN?

 If we assume the use of 4-byte (32 bit) page table entries, 

how many bits are available for status bits?

 How much space does this page table require?  

# of page table entries x size of page table entry  

 How many page tables (for user processes) 

would fill the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE

QUESTIONS
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