TCSS 422 A — Spring 2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Memory Virtualization
with Segments,
Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2023]

May 16,2023 School of Engineering and Technology, University of Washingtor

5/18/2023

FINAL EXAM SURVEY *NOW AVAILABLE IN CANVAS *

CLOSES MONDAY MAY 22

= TCSS 422 Final is scheduled for:
Thursday June 8th 3:40-5:40pm
= This is one of the last time slots of the final exams week.

= Please indicate your preference for scheduling of the
TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm
B. Thursday June 8, 3:40 to 5:40 pm
C. No Preference

= Regardless of the selected date, the content and
coverage on the Final Exam will remain the same.

= (please disregard scoring as the quiz is worth O points.)

L2

TCS5422: Operating Systems [Spring 2023]

‘ (TS School of Engineering and Technology, University of Washington - Tacoma

MIDTERM REVIEW SESSION

= Wednesday May 17, 6:30 pm
= Via Zoom / Live Stream / Recording
= Will discuss and review midterm exam problems and grading

TCSS422: Operating Systems [Spring 2023]

‘ [May1672023) School of Engineering and Technology, University of Washington - Tacoma.

1143

OBJECTIVES - 5/16

| = Questions from 5/11 |

= Assignment 2 - June 2

= Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26
= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2023]

‘ [May 16,2023 School of Engineering and Technology, University of Washington - Tacoma

L4

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021

Home

Announcerents

Zoom + Upcoming Assignments

Slabus ¢ TCS5422- Online Daily Feedback Survey - 4/1
= " I “% Available until Apr 5 at 11:5%pm | DueAprS at 10pm | -/Lpts

Diccucciane Auian_ e -
TCS5422: Computer Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

L4

Slides by Wes J. Lloyd

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
Question 1 058

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o
Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2023]

Reyjiega02s School of Engineering and Technology, University of Washington - Tacoma L1456

L14.1

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

MATERIAL / PACE FEEDBACK FROM 5/11
= Please classify your perspective on material covered in today’s = Can you explaln the non-deadlock (bugs)?
class (46 respondents): In which situations will we use/unused-it the solutions?
= 1-mostly review, 5-equal new/review, 10-mostly new = Atomiclty violation
= Average - 7.22 (T - previous 6.80 o FEllT 6 50 [0S
= SOLUTION: Add locks to enforce atomicity in critical sections of
= Please rate the pace of today’s class: code
= 1-slow, 5-just right, 10-fast = CHALLENGE: Locating places in code where locks are needed
= Average - 5.72 (1 - previous 5.60) because variables are shared - not always obvious

= Order violation
= Use of a shared variable before it is ready / initialized
= SOLUTION: Use condition variable and signaling mechanism
= CHALLENGE: Locating when/where order violation occurs in code

TCS5422: Computer Operating Systems (Spring 2023] TCS5422: Operating Systems [Spring 2023]
‘ LAEREL RS School of Engineering and Technology, University of Washington - Tacoma L7 RERERs School of Engineering and Technology, University of Washington - Tacoma L

FEEDBACK - 2 FEEDBACK - 3

= Is there a condition(s) out of the four requirements for = How does the overhead (Including decreased parallelism)
deadlock that is n;lost commonly/easily targeted to compare for mechanisms targeting the different conditions
prevent deadlock? . required for deadlock?

" grt;molsa_“ to most popular (represents instructor’s = From high to low overhead (represents instructor’s opinion):

. 4 Totall ordering of lock acquisition throughout code = Here we consider overhead as lowering parallelism of code
coﬁsider how difficult it would be to implement across an = #1: Use of guard locks to protect acquisition of coupled locks
entire codebase = #2: No preemption - use of non-blocking lock APIs w/ adding

= #3: Use of guard locks to protect acquisition of coupled a random delay to avoid livelock problem
locks = #3: Total ordering of lock acquisition throughout code -

m #2: Lock free data structures - use atomic CPU consider how difficult it would be to implement across an
instructions entire codebase

= #1: No preemption - use of non-blocking lock APls w/ = #3: Lock free data structures - use atomic CPU instructions
adding a random delay to avoid livelock problem

\ May 16, 2023 St o egaamg s s Uty of Washngion - Trcomal \ May 16,2023 St o ognemr s Totsmorag Uy ofWashingion - Tacoma a0
9 10
FEEDBACK - 4 OBJECTIVES - 5/16

= Are multiple prevention mechanisms for deadlock typicall; = Questions from 5/11

used in case one fails, or are the Implemented protections | = Assignment 2 - June 2 |

y g y : i :
easy enough to valldate that thls Is not necessary? = Quiz 3 - Activity-Synchronized Array - Thursday

= A program may exhibit multiple issues leading to deadlock = Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26
SSUes = Chapter 13: Address Spaces

= |t is necessary to diagnose and correct each of them as they = Chapter 14: The Memory API

are separate conditions which can produce deadlock
= |t is possible that more than one solution will be required = Chapter 15: Address Translation

= Chapter 16: Segmentation
= For example, a program may use Java vector class, where a

guard lock solves deadlock inherent to locks embedded in the = Chapter 17: Free Space Management
data structure, while at the same time another set of shared = Chapter 18: Introduction to Paging
variables requires use of total ordering of locks or no
preemption to correct deadlock

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L (D) School of Engineering and Technology, University of Washington - Tacoma L2

11 12

Slides by Wes J. Lloyd L14.2

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

OBJECTIVES - 5/16 OBJECTIVES - 5/16
= Questions from 5/11 = Questions from 5/11
= Assignment 2 - June 2 = Assignment 2 - June 2
|I Quiz 3 - Activity-Synchronized Array - Thursday | = Quiz 3 - Activity-Synchronized Array - Thursday
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26 |- Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 2d
= Chapter 13: Address Spaces = Chapter 13: Address Spaces
= Chapter 14: The Memory API = Chapter 14: The Memory API
= Chapter 15: Address Translation = Chapter 15: Address Translation
= Chapter 16: Segmentation = Chapter 16: Segmentation
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
I e [e | e e [e |

13 14

OBJECTIVES - 5/16

= Questions from 5/11

= Assignment 2 - June 2

= Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26

|- Chapter 13: Address Spaces | CHAPTER 13

= Chapter 14: The Memory API
= Chapter 15: Address Translation ADDRESS SPACES
= Chapter 16: Segmentation

= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [(Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ [May1672023) School of Engineering and Technology, University of Washington - Tacoma L1415 evplc 2022 School of Engineering and Technology, University of Washington -

15 16

GOALS OF GOALS - 2
O0S MEMORY VIRTUALIZATION

= Transparency = Efficiency

= Memory shouldn’t appear virtualized to the program =Time

= 0S multiplexes memory among different jobs behind the Performance: virtualization must be fast

scenes
=Space

= Protection Virtualization must not waste space

Consider data structures for organizing memory

= Isolation among processes
ep Hardware support TLB: Translation Lookaside Buffer

= 0S itself must be isolated

= One program should not be able to affect another) ;
(or the 0S) = Goals considered when evaluating memory

virtualization schemes

TCS5422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L (D) School of Engineering and Technology, University of Washington - Tacoma s

17 18

Slides by Wes J. Lloyd L14.3

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 5/16

= Questions from 5/11
= Assignment 2 - June 2
= Quiz 3 - Activity-Synchronized Array - Thursday

= Chapter 13: Address Spaces

|l Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26

TCSS422: Operating Systems [Spring 2023]

‘ oavELa22 School of Engineering and Technology, University of Washington - Tacoma

1419

5/18/2023

e
g
g
i

CHAPTER 14: THE

MEMORY API

TCSS422: Operating Systems [Spring 2023]

avjielan2s School of Engineering and Technology, University of Washington -

19

OBJECTIVES - 5/18

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

TCSS422: Operating Systems [Spring 2023]

‘ Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma

L421

MALLOC

#include <stdlib.h>

* malloc(t size)

= Allocates memory on the heap

= size_t unsigned integer (must be +)

= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCS5422: Operating Systems [Spring 2023] 1422
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

21

SIZEOF()

= Not safe to assume | £ *x - malloc(10 - 1 |
data type sizes using printf ("idn7, G
different compilers, [} |
systems

= Dynamic array of 10 int5/4 int x(10]7
printf ("sd\n”, x)) 3

= Static array of 10 ints a0

TCS5422: Operating Systems [Spring 2023]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

11423

FREE()

#include <stdlib.h>

free(* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

7CS5422: Operating Systems [Spring 2023]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma a2

23

Slides by Wes J. Lloyd

L14.4

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/18/2023

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b(Q)

int b = 11111;

int main()

int * x = NULL;

X = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf(“The magic number is=%d\n“,*x);
return 0;

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a; Output:
$./pointer_error
. . The magic number i
void set_magic_number_b() The magic number is=11111

int b = 11111;

We have not changed *x but
the value has changed!!

int * X = NULL; Why?
X = set_magic_number_a()?}
printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf("The magic number is=%d\n“,*x);
return 0;

int main()

25

26

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (2/2)

mFortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

=This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCS5422: Operating Systems [Spring 2023] 11428
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

TCSS422: Operating Systems [Spring 2023]
‘ [May1672023) School of E:;:ele’:\gngy:ned";sechnzrfgv, University of Washington - Tacoma .27
#include <stdlib.h>
*calloc(© num, size)
= Allocate “C”"lear memory on the heap
= Calloc wipes memory in advance of use...
" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)
= Calloc() prevents...
char *dest = malloc(20);
printf("dest string=%s\n", dest);
dest string=@©F
TCSS422: Oy ating Syste [Spring 2023]

Slides by Wes J. Lloyd

28

REALLOC()

#include <stdlib.h>»

*realloc(void *ptr, size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

® void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
= size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TCS3422: Operating Systems [Spring 2023] 1430
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

30

L14.5

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

DOUBLE FREE SYSTEM CALLS

At *x = (int *)malloc((int)): loca
fres(x)z re ry
fres(x); r

= brk(), shrk()

= Used to change data segment size (the end of the heap)
= Can’t deallocate twice = Don’t use these

= Second call core dumps

XE oy “ X = Mmap(), munmap()
Heap | | ‘L Haap |
v i free(x) I rree(x)
(free) | — (free) P u":’ﬁ"“’ = Can be used to create an extra independent “heap” of memory
{ | rror
A ! H for a user program
Suack | | T stk |
1668 268 P 16k | 2KBlinvalid) <‘i "
Address Space Address Space = See man page
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
l oavELa22 School of Engineering and Technology, University of Washington - Tacoma L3 l RERERs School of Engineering and Technology, University of Washington - Tacoma 432

31 32

OBJECTIVES - 5/16

= Questions from 5/11
= Assignment 2 - June 2
= Quiz 3 - Activity-Synchronized Array - Thursday
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
| = Chapter 15: Address Translation |
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

WE WILL RETURN AT

5:07PM

TCSS422: Operating Systems [Spring 2023]

TCS5422: Operating Systems [Spring 2023]
[G 2 School of Engineering and Technology, University of Washington - l (A, ED School of Engineering and Technology, University of Washington - Tacoma e

33 34

OBJECTIVES - 5/18

= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
May 16, 2023 School of Engineering and Technology, University of Washington - ERETD School of Engineering and Technology, University of Washington - Tacoma Lo

35 36

Slides by Wes J. Lloyd L14.6

TCSS 422 A — Spring 2023

5/18/2023
School of Engineering and Technology

ADDRESS TRANSLATION

BASE AND BOUNDS

. .
= 64KB KB . oKE = Dynamic relocation
Address space Program Code Operating 5,
i parating Spetem = Two registers base & bounds: on the CPU
example 15
Heap - = 0S places program in memory
= Translation: o
q 32¢8 @ i
mapping E{:? = Sets base register
. o g g .
T :
V|rtu.aI to heap g < physical address = virtual address + base J
physical free) but not in use) z
3 .
- 58 Stack = = Bounds register
I - = Stores size of program address space (16KB)
= (not in use) = OS verifies that every address:
Stack
= - [Tl [0 < virtual address < bounds }
16K i
‘Address Space Physical Memory
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ LAEREL RS School of Engineering and Technology, Universiy of Washington - Tacoma L1437 ‘ RERERs School of Engineering and Technology, University of Washington - Tacoma Lia.38

37 38

INSTRUCTION EXAMPLE MEMORY MANAGEMENT UNIT

128 : movl 0x0(%ebx), %eax | = MMU
= Base = 32768 s Program Code = Portion of the CPU dedicated to address translation
= Bounds =16384 ;xs heso = Contains base & bounds registers
= Fetch instruction at 128 (virt addr) 1t 4KB = Base & Bounds Example:

2 iy add_r U3 ELITF & LSO B haa]p = Consider address translation

SPARELD = Aok o SRl (s = 4 KB (4096 bytes) address space, loaded at 16 KB physical location

= Execute instruction

= Load from address (var x is @ 15kb=15360) Virtual Address Physical Address

= 48128 = 15360 + 32768 (base) - found x... stack 0 16384
= Bounds register: terminate process if 1024 17408

= ACCESS VIOLATION: Virtual address > bounds reg a8 3000 19384
(1 158 [amo INtX
| physical address = virtual address + base . Stack FAULT 4400 20784 (out of bounds)

[wsoams S ofEvgani and eletogy: sy of Washingon Tcoma o [o S fEnane and eketogy oty of Washngin Tocoma usso

39 40

DYNAMIC RELOCATION OF PROGRAMS 0S SUPPORT FOR MEMORY

VIRTUALIZATION

= Hardware requirements:

Requlrements | Hwsupot __|

= For base and bounds OS support required

= When process starts running

Privileged mode CPU modes: kernel, user Allocate address space in physical memory
Base / bounds registers Registers to support address translation
Translate virtual addr; check if in Translation circuitry, check limits *When a process is terminated
bounds Reclaiming memory for use
Privileged instruction(s) to Instructions for modifying base/bound i
update base / bounds regs registers = When context switch occurs
Privileged instruction(s) Set code pointers to 0S code to handle faults Savhefandistoringithelbasekbolnd=ipaty
to register exception handlers
Ability to raise exceptions For out-of-bounds memory access, or " Exceptllon ha':‘dlers .
attempts to access privileged instr. Function pointers set at OS boot time
TCSS422: Oy ing Sy [Spring 2023] TCSS422: Oy ing Sy & 2023]
[wovisans |10 oo s e 00 wssgion s usa [wovisans |10 oot s b 08 gt s e

41 42

Slides by Wes J. Lloyd L14.7

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

= 0S searches for free space for new process = 0S places memory back on the free list
= Free list: data structure that tracks available memory slots
0KB o8 Free list o
l Operating System l Operating System
Operating System
The OF leskup the free list 16¢8 1648
16xe | 16%8 16KB ;
Free list {not in use) (not in use)
(net in use) l — ‘ 326
1648 328 — — e Process A 328 (not in use)
488 4BKE tack (not in use) (not in use)
64K8 43KB BB porio i i)
(not in use) Physical Memary Physical Memory
B4KB
Physical Memory
TC55422: Operating Systems [Spring 2023] TC55422: Operating Systems [Spring 2023]
‘ oavELa22 School of Engineering and Technology, University of Washington - Tacoma L1443 ‘ RERERs School of Engineering and Technology, University of Washington - Tacoma Lia.ae

43 44

0S: WHEN CONTEXT SWITCH OCCURS DYNAMIC RELOCATION

= 0S must save base and bounds registers = 0S can move process data when not running
= Saved to the Process Control Block PCB (task_struct in Linux)

oa Context Switching T8
Operating System — Operating System

16K8 16K8

. 0S un-schedules process from scheduler

0S copies address space from current to new location
. 0S updates PCB (base and bounds registers)

. O0S reschedules process

Process A PCH

A ON PR

{net in use) (ot in use) base

= When process runs new base register is restored to CPU

3B 32K8

Pracass A bounds
64k8 q

e [= Process doesn’t know it was even moved!
Pracess B - Runsing
7} I eaxs I
Physical Memory Physical Memory

TCS5422: Operating Systems [Spring 2023] TCS5422: Operating Systems (Spring 2023]
‘ [May1672023) School of Engineering and Technology, University of Washington - Tacoma Liads [May16;12023) School of Engineering and Technology, University of Washington - Tacoma Liase

45 46

[| |
"Consider a 64KB computer the loads a program. The'
BASE register is set to 32768, and the BOUNDS

register is set to 4096. What is the physical memory = Questions from 5/41

address translation for a virtual address of 6000 ? = Assignment 2 - June 2
® Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26

OBJECTIVES - 5/16

34768
= Chapter 13: Address Spaces

38768 = Chapter 14: The Memory API
= Chapter 15: Address Translation

32769 | = Chapter 16: Segmentation |
= Chapter 17: Free Space Management

36864 = Chapter 18: Introduction to Paging

Out of bounds
-~ S : . . [wermsan [om e i s o uess

47 48

Slides by Wes J. Lloyd L14.8

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/18/2023

CHAPTER 16:
SEGMENTATION

TCSS422: Operating Systems [Spring 2023]
Lty i 1) School of Engineering and Technology, University of Washington -

BASE AND BOUNDS INEFFICIENCIES

oKB

= Address space 1KB | Program Code
= Contains significant unused memory ;::
N 48
= Is relatively large e Heap
= Preallocates space to handle stack/heap growth & l

= Large address spaces

= Hard to fit in memory (free)
= How can these issues be addressed? T
14K8
158 Stack
16K8
TCSS422: Oy ting Syst [Spring 2023]
l RERERs School of Enpgeir:ee’:?ngy:ned":ech:olrfgy, University of Washington - Tacoma Liaso

MULTIPLE SEGMENTS

= Memory segmentation

= Each is a contiguous address space

= Each segment can placed separately

= Manage the address space as (3) separate segments

= Provides logically separate segments for: code, stack, heap

=Track base and bounds for each segment (registers)

TCSS422: Operating Systems [Spring 2023]

l [May1672023) School of Engineering and Technology, University of Washington - Tacoma

L4s1

51

physical address = of fset + base ‘

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Is virtual address within 2KB
address space?

| | (notinuse) |

|
Virtual Address Space Physical Address Space

ADDRESS TRANSLATION: CODE SEGMENT

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

l May 16, 2023

11453

53

Slides by Wes J. Lloyd

50

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System

16KB ‘

(net in use)

i Segment Base Size

Stack Code 32K 2K
3268 il et Heap 34K 2K

Heap Stack 2BK 2K
B notin use)
64kB -

Physical Memory
TCS5422: Operating Systems [Spring 2023]
l May 16,2023 School of Engineering and Technology, University of Washington - Tacoma sz

52

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
= Physical address = 104 + 34816 (offset + heap base)

Sequent mase ssra
Beap T
(not in use)

Cade

Hase
e
e e
‘ T
ot use)
Address Space
Physical Mamory
7CS5422: Operating Systems [Spring 2023] ase

l (D) School of Engineering and Technology, University of Washington - Tacoma W

54

L14.9

TCSS 422 A — Spring 2023
School of Engineering and Technology

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144
= Offset= 7168 > 4096 + 2048 (6144)

BKE
KB
8KB

Heap

1

{not in use)

Address Space

TCSS422: Operating Systems [Spring 2023]

‘ oavELa22 School of Engineering and Technology, University of Washington - Tacoma

L1455

55

SEGMENTATION DEREFERENCE

1 4
: seqment = (virtualaddress & MASK) >> SEG SHIFT
4 OFFSET_MASK

7

i quent] + Offsst

5 ssMemory (FhysAddr)

= VIRTUAL ADDRESS = 01000001101000

= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
= OFFSET_MASK = OxFFF (001111111114111)
= OFFSET = 000001101000 = 104
= OFFSET < BOUNDS : 104 < 2048

(on heap)
(mask gives us segment code)

(isolates segment offset)

TCSS422: Operating Systems [Spring 2023]

‘ [May1672023) School of Engineering and Technology, University of Washington - Tacoma

1457

57

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= DLL: dynamic linked library

= so (linux): shared object in Linux (under /usr/lib)
= Many programs can access them

Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

= Supports storing shared libraries in memory only once

School of Engineering and Technology, University of Washington - Tacoma

Code 32K 2K Read-Exscute
Heap 34K 2K 1 Read-Write
Stack 28K 2K] Read-Write
‘ Ty P TCS5422: Operating Systems [Spring 2023] a5

59

Slides by Wes J. Lloyd

5/18/2023

SEGMENT REGISTERS

= Used to dereference memory during translation

13 12 11 10 8 8 7 & 5 4 3 2 1 0

|
| |

T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

13 12 11 10 9 8 7 & 5 4 3 2 1 0 Segment bits
01 00 00011010 0 0 | Code 00
. I] Heap 01
T T stack 10
Segment Offset - 11
[wavism e e e eso

56

STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:
= Direction bit: tracks direction segment grows

{not in use)
2653 # Segment Register(with Negative-Growth Support)
Stack
2868 Segment Base Size Grows Positive?
e Coda 32K 2K 1
inot in use)
Heap 34K 2K 1
Stack 28K 2K 0
Physical Memary
TCS5422: Operating Systems [Spring 2023]
‘ [May16;12023) School of Engineering and Technology, University of Washington - Tacoma L1458
[| |

"Consider a program with 2KB of code, a1 KB stack,'
and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4 KB
0KB

™ o comten, . 1

60

L14.10

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/18/2023

SEGMENTATION GRANULARITY

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TCSS422: Operating Systems [Spring 2023]
l LAEREL RS School of Engineering and Technology, University of Washington - Tacoma L1461

SEGMENTATION GRANULARITY - 2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
=Tracked large number of segments

61

= Consider how much free space? Mot compacted
= We'll say about 24 KB ke
8KB | Opsrating System
= Request arrives to allocate a 20 KB heap 16K8
segment {not in use)
2468
Allocated
= Can we fulfil the request for 20 KB of 3K R
contiguous memory? 40KB Allocated
BB ot inuse)
S6KE
Allocated
648
TCSS422: Operating Systems [Spring 2023]
l [May1672023) School of Engineering and Technology, Universiy of Washington - Tacoma L1463

63

OBJECTIVES - 5/16

= Questions from 5/11

= Assignment 2 - June 2

® Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26
= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation
|- Chapter 17: Free Space Management |

= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2023]
l LR School of Engineering and Technology, University of Washington - Tacoma Laes

65

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Spring 2023]
l RERERs School of Engineering and Technology, University of Washington - Tacoma a6z
= Supports rearranging memory Compacted
0KB
= Can we fulfil the request for 20 KB of 83 | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow s
= Rearranging memory is time consuming Aliocated
= 64KB is fast a8
= 4GB+ ... slow 40KB
= Algorithms: aake
) . (not in use}
= Best fit: keep list of free spaces, allocate the S6KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) Bace
TCS5422: Operating Systems [Spring 2023]
l May 16,2023 School of Engineening and Techaology, Uiniversiy of Washington - Tacoma Lia.ea

64

CHAPTER 17: FREE
SPACE MANAGEMENT

May 16, 2023 TCSS422: Operating Systems [Spring 2023]
T School of Engineering and Technology, University of Washington -

66

L14.11

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Spring 2023]

‘ oavELa22 School of Engineering and Technology, University of Washington - Tacoma

L1467

5/18/2023

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCS5422: Operating Systems [Spring 2023]
RERERs School of Engineering and Technology, University of Washington - Tacoma Lia.es

67

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request > return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Spring 2023]

‘ [May1672023) School of Engineering and Technology, University of Washington - Tacoma

L1469

68

FRAGMENTATION

= Consider a 30-byte heap

30-byte heap: | Tree [IUSEAN ree
0 10 20 30

= Request for 15-bytes
free list head —» i:gflg i‘:lrlzun UL
= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Spring 2023]
[May16;12023) School of Engineering and Technology, University of Washington - Tacoma .70

69

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Internal: lost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk

= Memory is lost, and unaccounted for - can’t compact

= Memory is externally fragmented - - Compaction can fix!

TCS5422: Operating Systems [Spring 2023]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

[E7R2Y

70

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)
30-byte heap: [free [Tlsed | free
0 10 20 30

i addri0 addr:20
free list "head —* ,_..1p * len:io

— NULL
= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk
30-byte heap: free | used [[free
0

10 20 21 30

addr:0 addr:21

free list head —» jo0.99 —> jen:o

— NULL

7CS5422: Operating Systems [Spring 2023]
(D) School of Engineering and Technology, University of Washington - Tacoma Lz

71

Slides by Wes J. Lloyd

72

L14.12

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

ALLOCATION STRATEGY: COALESCING MEMORY HEADERS

= Consider 30-byte heap = free(void *ptr): Does not require a size parameter
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)
= How does the OS know how much memory to free?

110 addr:0 addr:20

adir
head — jani1g * len:10 * lem:l0 * NULL

= Request arrives: malloc(30) = Header block
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists! =Small descriptive block of memory at start of chunk

= Coalescing regroups chunks into contiguous chunk]_ The header used by ma1oc fibrary
mallo

addr :0 pr —»

nead —% I — % NULL

The 20 bytes returned to caller

= Allocation can now proceed

= Coalescing is defragmentation of the free space list An Allocated Region Plus Header
TCS5422: Operating Systems [Spring 2023] TCS5422: Operating Systems (Spring 2023]
‘ LAEREL RS School of Engineering and Technology, University of Washington - Tacoma L7 ‘ RERERs School of Engineering and Technology, University of Washington - Tacoma La7e

73 74

MEMORY HEADERS - 2 MEMORY HEADERS - 3

hptr —> = Size of memory chunk is:

size: 20

[magic: 1234567 | header_t (= Header size + user malloc size
_y mis men

= N bytes + sizeof(header)

ptr

magl
The 20 bytes } header_t;
returned to caller
S A Simple Header = Easy to determine address of header
Specific Contents Of The Header
i fres(void *ptr) {
= Contains size header_t *hptr = (*)ptr - (header_t):
. 1
= Pointers: for faster memory access
= Magic number: integrity checking
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]

‘ [May1672023) School of Engineering and Technology, Universiy of Washington - Tacoma La7s ‘ [May16;12023) School of Engineening and Techaology, Uiniversiy of Washington - Tacoma a7e

75 76

THE FREE LIST FREE LIST - 2

= Simple free list struct = Create and initialize free-list “heap”

node_t *head b (HULL, 4096, PROT_READ|PROT_WRITE,
TE, -1, 0)i

} nedet_t; heag - =
— head->next =
= Use mmap to create free list = Heap layout:
= 4kb heap, 4 byte header, one contiguous free chunk (virtual address: 16K8]
header: size field
size: 4088
;0 head —»| next 0 | header: next fieldNULL is 0)
the rest of the 4B chunk
TCS5422: Operating Systems [Spring 2023] TCS$422: Operating Systems [Spring 2023]
‘ (e School of Engineering and Technology, University of Washington - Tacoma wen ‘ ERETD School of Engineering and Technology, University of Washington - Tacoma Lz

77 78

Slides by Wes J. Lloyd L14.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

5/18/2023

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Heap With One Free Chunk

hosd —> [0]
= = n
= 5 e > o8 1234567

the rest of
the 4KB chunk o
I [bead >

A Heap : After One Allocation

the 100 bytes

}twﬂ" 3980 byte chunk

now allocated

TCSS422: Operating Systems [Spring 2023]

‘ oavELa22 School of Engineering and Technology, University of Washington - Tacoma

1479

FREE LIST: FREE() CALL

L] | - 16K
Addresses of chunks & bytes header { - [virtual address: 16KB]

100 bytes still allocated

= Start=16384
+ 108 (end of 15t chunk) size: 100
+ 108 (end of 2" chunk) sptr ""F"‘ 1::5” ||
ree this 100 bytes still allocated
+ 108 (end of 3" chunk) biock {but about o be freed)
= 16708
[magic: 1234567
100 bytes stil allocated
Pesd —me e
next:
The free 3764-byte chunk
Free Space With Three Chunks Allccated
TCS5422: Operating Systems [Spring 2023]
‘ RERERs School of Engineering and Technology, University of Washington - Tacoma L1a.80

79

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
= Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

magic: 1234567

[virtual address: 16K8]

100 bytes still allocated

head
0 (/e GIms 723 = e T Blogk (now a free chunk of
- Sptr = 16500
= addr - sizeof(node_t)
100 bytes still allocated
= Actual start of chunk #2 Sze 3764 |-
* 16492 net O
The free 376d-byte chunk
[E—
TCSS422: Oy ating Syste [Spring 2023]
‘ [May1672023) school ofi::\r:ele':\gngy:nemesezh:zroggv, University of Washington - Tacoma L8

81

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Hesp Heap
[break sbrk(),
(not in use)
(not in use) | .
Address Space Address Space . Heap
Physical Memory
TCS5422: Operating Systems [Spring 2023]
(e School of Engineering and Technology, University of Washington - Tacoma Laes

83

Slides by Wes J. Lloyd

80

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks:

_— 5

[virtual address: 16KB]

=
{now free)
size: 100

Free(16392)
Free(16608)

Walk back 8 bytes for actual next. 16708
start of chunk

(now free)

External fragmentation
= Free chunk pointers
out of order

{now free)

Coalescing of next
pointers is needed

The free 3764-byte chunk

TCS5422: Operating Systems [Spring 2023]
‘ [May16;12023) School of Engineering and Technology, University of Washington - Tacoma .82

82

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCS3422: Operating Systems [Spring 2023] Lasa
School of Engineering and Technology, University of Washington - Tacoma

May 16, 2023

84

L14.14

TCSS 422 A — Spring 2023

5/18/2023
School of Engineering and Technology

EXAMPLES

= Allocation request for 15 bytes
head —> 10 —» 30 —> 20 —> NULL
" Result of Best Fit

head —» 10 — 30 — 5 —> NULL

= Result of Worst Fit

head —> 10 —> 15 — 20 —> NULL

TCSS422: Operating Systems [Spring 2023]

LAEREL RS School of Engineering and Technology, University of Washington - Tacoma

L1485

85

“Which memory allocation strategy is more likely to"
distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit

Worst Fit

First Fit

None of the above

All of the above

") ove comtent. X hely L

87

BUDDY ALLOCATION

= Binary buddy allocation
= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...
= Consider a 7KB request

64KE free space for 7KB request

TCS5422: Operating Systems [Spring 2023]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

L1489

89

Slides by Wes J. Lloyd

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit

= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TCS5422: Operating Systems [Spring 2023]

‘ (TS School of Engineering and Technology, University of Washington - Tacoma

L1486

86

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

TCS5422: Operating Systems [Spring 2023]

‘ [May16;12023) School of Engineering and Technology, University of Washington - Tacoma

L1488

88

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation
= Allocated fragments, typically too large

= Coalescing is simple
= Two adjacent blocks are promoted up

TC55422: Operating Systems [Spring 2023]

‘ (D) School of Engineering and Technology, University of Washington - Tacoma

11490

90

L14.15

TCSS 422 A — Spring 2023 5/18/2023
School of Engineering and Technology

.1 computer system manages program memory using'. .'A request is made to store 1 byte. For this scenario,'.
three separate segments for code, stack, and the which memory allocation strategy will always locate
heap. The codesize of a program is 1KB but the memory the fastest?
minimal segment available is 16KB. This is an
example of: Best fit
External fragmentation Worst fit
Binary buddy allocation Next fit

Internal fragmentation
& None of the above

Coalescing
Splitting All of the above

" "a " "a

91 92

OBJECTIVES - 5/16

= Questions from 5/11
= Assignment 2 - June 2

= Quiz 3 - Activity-Synchronized Array - Thursday CHAPTER 18:
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 26
INTRODUCTION TO

= Chapter 13: Address Spaces
= Chapter 14: The Memory API PAG I NG
= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management

| = Chapter 18: Introductlon to Paging |
TCSS422: Operating Systems [Spring 2023] TCS8422: Operating Systems [Spring 2023]
l May 16, 2023 School of Engineering and Technology, University of Washington - Tacoma 11493 evplc 2022 School of Engineering and Technology, University of Washington -

PAGING ADVANTAGES OF PAGING
= Split up address space of process into fixed sized pieces = Flexibility
called pages = Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
= Alternative to variable sized pieces (Segmentation) which » Just add more pages
suffers from significant fragmentation P
= No need to store unused space
= Physical memory is split up into an array of fixed-size slots " As with segments...
called page frames.
= Simplicity
= Each process has a page table which translates virtual = Pages and page frames are the same size
gdducs=esjtolphivelcalfadunessee = Easy to allocate and keep a free list of pages
[mmmam | o ey vt ons o [meam | o e v e s
95 96

Slides by Wes J. Lloyd L14.16

TCSS 422 A — Spring 2023
School of Engineering and Technology

Page Table:
VPO - PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

PAGING: EXAMPLE

= Consider a 128 byte (27) address space
with 16-byte (24) pages

page fame 0 of
physical memery

= Consider a 64-byte (2°) (unused) | page frame 1
program address space 8

|reserved for OS|

page 3 of AS | page frame 2

page D of AS | page frame 3

(page O of (unused) page frame 4
16 | the address space) Z

(page 1) page2of AS | page frame s
E

{page 2) (unused) | page frame &
48 -
o (page 3) page 1of AS | page frame7

A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

TCSS422: Operating Systems [Spring 2023]
‘ LAEREL RS School of Engineering and Technology, University of Washington - Tacoma Li.97

97

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>2?)
= Stored in 128-byte (27) physical memory (8 frames—>23)

VPN offset
| N —

= Offset is preserved
= 4 bits indexes any byte

Virtual 1
of1]o|1]|e|1
= Page size is 16 bytes (2%) Address | |
= Page table translates a U
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: [l
VPO > PF3 — e -
VP1 -> PF7 Address 11 |1fof1]0]1
VP2 > PF5 1 - 1
VP3 - PF2 PEN offset
[wsoams S ofEvgani and eletogy: sy of Washingon Tcoma "

99

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

‘ May 16, 2023

TCS5422: Operating Systems [Spring 2023] Lat01
School of Engineering and Technology, University of Washington - Tacoma

5/18/2023

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)
v:lr\ offset

VaS | Vad Va3 | Va2 | Vsl | Va0
= Example:

Page Size: 16-bytes (24),
Program Address Space: 64-bytes (2°)
VPN offset

Here program can have
P
d Just four pages...

a 1 o 1 0 1

TCS5422: Operating Systems [Spring 2023] L14.98
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

98

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?
® (2) What are the typical contents of the page table?
= (3) How big are page tables?

= (4) Does paging make the system too slow?

TCS5422: Operating Systems [Spring 2023]
‘ Rrayie2as) School of Engineering and Technology, University of Washington - Tacoma L14.100

100

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN,
= Each entry requires 4 bytes (32 bits) VPN,
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved
= (note we have no status bits, so this is
unrealistically small) VPNyo48576

= How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCS3422: Operating Systems [Spring 2023] L4102
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

101

Slides by Wes J. Lloyd

102

L14.17

TCSS 422 A — Spring 2023
School of Engineering and Technology

NOW FOR AN ENTIRE OS

= If 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficient?

TCSS422: Operating Systems [Spring 2023]
‘ oavELa22 School of Engineering and Technology, University of Washington - Tacoma L1103

5/18/2023

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NVNBYBXMNBRADPBU BB UBLUI09 87 654321
PFN |50 <|2|F|5[E]
An %86 Page Table Entry(PTE)
TCS5422: Operating Systems [Spring 2023]
‘ RERERs School of Engineering and Technology, University of Washington - Tacoma L1104

103

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

[l
| PFN vz n‘q]

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2023]
‘ Rlavie202s) School of Engineering and Technology, University of Washington - Tacoma L4105

104

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been

accessed

TCS5422: Operating Systems [Spring 2023]
‘ Rrayie2as) School of Engineering and Technology, University of Washington - Tacoma L14.106

105

106

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCS5422: Operating Systems [Spring 2023]
‘ LR School of Engineering and Technology, University of Washington - Tacoma La07

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

= Translation

= |ssue #1.: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:

stores active process VPO > PF3

- , VP1 -> PF7
Facilitates translation

Stored in RAM > VP2 > PF5

VP3 > PF2

= lssue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS3422: Operating Systems [Spring 2023] 108
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2023

107

Slides by Wes J. Lloyd

108

L14.18

TCSS 422 A — Spring 2023
School of Engineering and Technology

1 // Extract the VPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
3
4. // Form the address of the page-table entry (PTE)
5a PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
o
10. // check if process can access the page
11. if (PTE.valid == False)
12. RaiseException(SEGMENTATION_FAULT)
13. else if (CanAccess(PTE.ProtectBits) == False)
14. RaiseException(PROTECTION_FAULT)
15. else
16. // Access is ok: form physical address and fetch it
17. offset = virtualaddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(Physaddr)
TCSS422: Operating Systems [Spring 2023]
‘ LAEREL RS School of Engineering and Technology, University of Washington - Tacoma L1109

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Tabla(29]
= Locations: N 1224
= Page table o o o o =} wa %
= Array Page Tabel] 12 2
= Code ™ 014

= 50 accesses

5/18/2023

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

nt array (100017

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

1 50x0, (4edi, teax, 4)

TCS5422: Operating Systems [Spring 2023]
‘ WL AT School of Engineering and Technology, University of Washington - Tacoma L0

110

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2732 /2720 =2712 pages

2/32 [2A12 = 2720 pages

2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

e comtent hel |
™ o comten, . 1

for 5 loop 4 . }» .;g_,
iterations = n L T2
g My g s
LR s 3
Rt w un®y gu®, gud I"}> P
10 0 30 40 50
Memory Access
[weean [oo i vesin o
111
"u . "
For the 4GB computer example, how many bits are
required for the VPN?
24 VPN bits (indexes
2°24 locations)
16 VPN bits (indexes
2716 locations)
20 VPN bits (indexes
2720 locations)
12 VPN bits (indexes
2712 locations)
None of the above
.. May 16, 2033 TCSS422: Operating Systems [Spring 2023] . > “1 43..

112

[| |
"For the 4GB computer example, how many bits are”

available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

None of the
above

e comtent hel |
™ o comten, . 1

113

Slides by Wes J. Lloyd

114

L14.19

TCSS 422 A — Spring 2023
School of Engineering and Technology

For the 4GB computer, how much space does this -
page table require? (number of page table entries x
size of page table entry)
2420 entries x 4b=4 MB
2A12 entries x4b = 16 KB
2716 entries x 4b =256 KB
2724 entries x 4b =64 MB

None of the above

.I May 16, 2033

TCSS422: Operating Systems [Spring 2023]

"]

5/18/2023

user processes) would fill the entire 4GB of memory?

4GB/ 16 KB=65,536
4GB/64MB=256
4GB/ 256 KB = 16,384
4GB/ 4MB=1,024

None of the above

" For the 4GB computer, how many page tables (for -

115

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Spring 2023] 114117
School of Engineering and Technology, University of Washington - Tacoma

l May 16, 2023

116

QUESTIONS

117

Slides by Wes J. Lloyd

118

L14.20

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Final exam survey *NOW available in Canvas* CLOSES Monday may 22
	Slide 3: Midterm review session
	Slide 4: OBJECTIVES – 5/16
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 5/11
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: OBJECTIVES – 5/16
	Slide 13: OBJECTIVES – 5/16
	Slide 14: OBJECTIVES – 5/16
	Slide 15: OBJECTIVES – 5/16
	Slide 16: Chapter 13: ADDRESS SPACES
	Slide 17: Goals of OS memory virtualization
	Slide 18: Goals - 2
	Slide 19: OBJECTIVES – 5/16
	Slide 20: Chapter 14: The memory API
	Slide 21: OBJECTIVES – 5/18
	Slide 22: malloc
	Slide 23: Sizeof()
	Slide 24: Free()
	Slide 25
	Slide 26
	Slide 27: Dangling Pointer (1/2)
	Slide 28: Dangling Pointer (2/2)
	Slide 29: Calloc()
	Slide 30: Realloc()
	Slide 31: Double free
	Slide 32: System calls
	Slide 33: We will return at 5:07pm
	Slide 34: OBJECTIVES – 5/16
	Slide 35: Chapter 15: Address translation
	Slide 36: OBJECTIVES – 5/18
	Slide 37: Address translation
	Slide 38: Base and bounds
	Slide 39: Instruction example
	Slide 40: Memory management unit
	Slide 41: Dynamic relocation of programs
	Slide 42: OS support for memory virtualization
	Slide 43: OS: When process starts running
	Slide 44: OS: when process is terminated
	Slide 45: Os: when context switch occurs
	Slide 46: Dynamic relocation
	Slide 47
	Slide 48: OBJECTIVES – 5/16
	Slide 49: Chapter 16: segmentation
	Slide 50: Base and bounds inefficiencies
	Slide 51: MULTIPLE SEGMENTS
	Slide 52: Segments in memory
	Slide 53: Address translation: code segment
	Slide 54: Address translation: heap
	Slide 55: Segmentation fault
	Slide 56: Segment registers
	Slide 57: Segmentation dereference
	Slide 58: Stack segment
	Slide 59: Shared CODE segments
	Slide 60
	Slide 61: Segmentation granularity
	Slide 62: Segmentation granularity - 2
	Slide 63: Memory fragmentation
	Slide 64: Compaction
	Slide 65: OBJECTIVES – 5/16
	Slide 66: Chapter 17: free space management
	Slide 67: OBJECTIVES – 5/18
	Slide 68: Free space management
	Slide 69: Free space management
	Slide 70: fragmentation
	Slide 71: Fragmentation - 2
	Slide 72: Allocation strategy: Splitting
	Slide 73: Allocation strategy: coalescing
	Slide 74: Memory headers
	Slide 75: Memory headers - 2
	Slide 76: Memory headers - 3
	Slide 77: The free list
	Slide 78: Free list - 2
	Slide 79: Free list: malloc() call
	Slide 80: Free list: free() call
	Slide 81: Free list: free() chunk #2
	Slide 82: Free list- free all chunks
	Slide 83: Growing the heap
	Slide 84: Memory allocation strategies
	Slide 85: examples
	Slide 86: Memory allocation strategies - 2
	Slide 87
	Slide 88: Segregated lists
	Slide 89: Buddy allocation
	Slide 90: Buddy allocation - 2
	Slide 91
	Slide 92
	Slide 93: OBJECTIVES – 5/16
	Slide 94: Chapter 18: Introduction to paging
	Slide 95: paging
	Slide 96: Advantages of paging
	Slide 97: Paging: example
	Slide 98: Paging: Address translation
	Slide 99: Example: paging address translation
	Slide 100: Paging design questions
	Slide 101: (1) Where are page tables stored?
	Slide 102: Page table example
	Slide 103: Now for an entire OS
	Slide 104: (2) What’s actually in the page table
	Slide 105: Page table entry
	Slide 106: Page table entry - 2
	Slide 107: (3) How big are page tables?
	Slide 108: (4) Does paging make the system too slow?
	Slide 109: Paging memory access
	Slide 110: Counting memory accesses
	Slide 111: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117: Paging system example
	Slide 118: Questions

