
TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.1Slides by Wes J. Lloyd

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

SPECIAL TIME FRIDAY MAY 12

*** THIS WEEK ONLY ***

▪Due to 2 faculty meetings in the afternoon

Friday Office Hours

▪*11:30am to 12:30 pm – Zoom Only

April 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L5.2

OFFICE HOURS – FRIDAY

 TCSS 422 Final is scheduled for:

Thursday June 8th 3:40-5:40pm

 This is one of the last time slots of the final exams week.

 Please indicate your preference for scheduling of the

TCSS 422 Final Exam for Spring 2023:

A. Thursday June 1, 3:40 to 5:40 pm

B. Thursday June 8, 3:40 to 5:40 pm

C. No Preference

 Regardless of the selected date, the content and

coverage on the Final Exam will remain the same.

 (please disregard scoring as the quiz is worth 0 points.)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

FINAL EXAM SURVEY

* - NOW AVAILABLE IN CANVAS -*

 Moving the Final to the last class (June 1 st) will result in one

less lecture as a regular class session will be used for the

exam.

 To make-up the missing class session, an additional class

session will be required prior to June 1st.

 This session will be recorded. The session will be live -

streamed and could be 100% online or hybrid depending on

availability of physical classroom space.

 The make-up session could occur over a weekend to space the

lecture out relative to others so as not to have lectures on

back-to-back days, or the session may fall on a Monday,

Wednesday, or Friday.

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

FINAL EXAM SURVEY - 2

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

OBJECTIVES – 5/11

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 11, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.2Slides by Wes J. Lloyd

May 11, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L13.7

 Please classify your perspective on material covered in today’s

class (45 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.80 ( - previous 6.52)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.60 ( - previous 5.48)

May 11, 2023
TCSS422: Computer Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

MATERIAL / PACE

 Does the number of producers depend on the number of
conditional variables?

 If there is more than 1 producer thread, then it can help to
have a separate producer condition variable.

 If 2 producers and 1 consumer share the same condition
variable, then when 1 producer fires the signal to indicate the
buffer is full, it may accidentally wake up the other producer
and not the consumer (p rogram has o nly 1 c ondit ion variable)

 The other producer, assuming a while statement is used, will
reevaluate the state variable in the while, and will go back to
sleep because there is no free space in the buffer to produce

 The problem is the second producer does not fire the signal to
wake up the consumer, the buffer is never emptied, the
consumer goes back to sleep, and the program DEADLOCKS

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

FEEDBACK

 And how does the consumer depend on the producer?

 With 2 producers, and 1 consumer, the consumer depends on

the producer(s) adding data to the buffer, and fir ing a signal

that only wakes up consumers

 If there is competition between the producers and consumers

to receive the same signal DEADLOCK is possible

 The solution for multiple producer or multiple consumer is to

have separate condition variables to enable signaling dif ferent

events

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

FEEDBACK - 2

 In the f inal example wi th two condition variables, there is s t i l l a
s ingle lock that a l l p roducers and a l l consumers must use. Is i t
possible fo r th is to be a bottleneck in a practical application wi th
many producers and many consumers? I f not, why? I f so , is there a
known so lution?

 The bounded buffer is st i l l a synchronized data structure

 I f two threads try to produce and add data to the buffer at the
same time with coordinat ion, data corrupt ion is possible

 Synchronizat ion also can address mult iple consumers removing
i tems at the same time

 Without sharing a lock , two consumers might try to consume the
same item at the same time

 I have not tested this, but I would assume if we do not synchronize
both producers and consumers sharing the buffer using the same
lock corrupt ion may occur when there is just 1 item in the buffer to
remove/add

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

FEEDBACK - 3

 When having a producer consumer setup with multiple

producers and multiple consumers why is this advantageous

over a s ingle consumer and a s ingle producer?

 Having multiple producers and/or multiple consumers enables

more threads to work on the data processing problem at the

same time

 Operations can be done in parallel, like creating a new data

item/node or matrix without holding the lock

▪ For example, generating a large 10000 x 10000 matrix is slow, we

can just push the matrix pointer onto the bounded buffer, and have

many producers can make matrices in parallel to improve throughput

of the program

 We only need the lock to modify the buffer for a very short

amount of time (changing the buffer must be synchronized)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

FEEDBACK - 4

7 8

9 10

11 12

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.3Slides by Wes J. Lloyd

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

OBJECTIVES – 5/11

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

OBJECTIVES – 5/11

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

OBJECTIVES – 5/11

CHAPTER 30 –

CONDITION VARIABLES

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.1
6

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

OBJECTIVES – 5/11

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

COVERING CONDITIONS

13 14

15 16

17 18

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.4Slides by Wes J. Lloyd

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory: (bytesLeft <

size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

COVER CONDITIONS - 3

 Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous

▪ For this reason, with limited time in a
10-week quarter, we do not cover

 Ch. 31.6 – Dining Philosophers Problem

▪ Classic computer science problem about
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher
that grabs forks in opposite order

May 11, 2023 L13.21

CHAPTER 31: SEMAPHORES

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

OBJECTIVES – 5/11

CHAPTER 32 –

CONCURRENCY

PROBLEMS

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L13.23

 “Learning from Mistakes – A Comprehensive Study on

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and

Operating Systems (ASPLOS 2008), Seattle WA

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

19 20

21 22

23 24

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.5Slides by Wes J. Lloyd

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

OBJECTIVES – 5/11

Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition

before use

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among

separate threads is not enforced (e.g. non-atomic)

 Simple example: proc_info deleted

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

ATOMICITY VIOLATION - SOLUTION

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

ORDER VIOLATION BUGS

 Use condition & signal to enforce order

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

ORDER VIOLATION - SOLUTION

25 26

27 28

29 30

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.6Slides by Wes J. Lloyd

 Use condit ion & signal to enforce order

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

ORDER VIOLATION – SOLUTION - 2

97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

NON-DEADLOCK BUGS - 1

Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

NON-DEADLOCK BUGS - 2

WE WILL RETURN AT

4:50PM

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.3
4

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless

one manages to acquire both locks

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

DEADLOCK BUGS

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

OBJECTIVES – 5/11

31 32

33 34

35 36

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.7Slides by Wes J. Lloyd

 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time

deadlock could result

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

CONDITIONS FOR DEADLOCK

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

OBJECTIVES – 5/11

 Build wait-free data structures

▪ Eliminate locks altogether

▪ Build structures using CompareAndSwap atomic CPU (HW)

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

MUTUAL EXCLUSION: LIST INSERTION

37 38

39 40

41 42

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.8Slides by Wes J. Lloyd

 Lock based implementation

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

 Four conditions are required for dead lock to occur

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while

acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

PREVENTION – NO PREEMPTION

43 44

45 46

47 48

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.9Slides by Wes J. Lloyd

Can lead to livelock

 Two threads execute code in parallel →

always fail to obtain both locks

 Fix: add random delay

▪Allows one thread to win the

livelock race!

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.49

NO PREEMPTION – LIVELOCKS PROBLEM

 Four conditions are required for dead lock to occur

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire

program

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT

EXSIST, describe why deadlock can not occur?

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

CONDITIONS FOR DEADLOCK

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.5
3

Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario:

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

 Lock requirements of threads:

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

49 50

51 52

53 54

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.10Slides by Wes J. Lloyd

Scheduler produces schedule:

No deadlock can occur

Consider:

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the

difficulty having intimate lock knowledge about every

thread

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and

recovery techniques.

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

DETECT AND RECOVER

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

OBJECTIVES – 5/11

CHAPTER 13:

ADDRESS SPACES

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L13.59

 Chapter 13: Introduction to memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

OBJECTIVES – 5/11

55 56

57 58

59 60

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.11Slides by Wes J. Lloyd

 What is memory virtualization?

 This is not “virtual” memory,

▪ Classic use of disk space as additional RAM

▪When available RAM was low

▪ Less common recently

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire

machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program

▪ Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation

▪ From other processes: easier to code

 Protection

▪ From other processes

▪ From programmer error (segmentation fault)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

MOTIVATION FOR

MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple

processes

 Swap out processes during I/O waits to

increase system utilization and efficiency

 Swap entire memory of a process to disk

for context switch

 Too slow, especially for large processes

 Solution→

▪ Leave processes in memory

 Need to protect from errant memory

accesses in a multiprocessing environment

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

MULTIPROGRAMMING

WITH SHARED MEMORY

Easy-to-use abstraction of physical

memory for a process

Main elements:

▪Program code

▪Stack

▪Heap

Example: 16KB address space

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

ADDRESS SPACE

61 62

63 64

65 66

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.12Slides by Wes J. Lloyd

 Code

▪ Program code

 Stack

▪ Program counter (PC)

▪ Local variables

▪ Parameter variables

▪ Return values (for functions)

 Heap

▪ Dynamic storage

▪ Malloc() new()

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

ADDRESS SPACE - 2

 Program code

▪ Static size

 Heap and stack

▪ Dynamic size

▪ Grow and shrink during program execution

▪ Placed at opposite ends

 Addresses are vir tual

▪ They must be physically mapped by the OS

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

ADDRESS SPACE - 3

Every address is virtual

▪OS translates virtual to physical addresses

▪EXAMPLE: virtual.c

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another

(or the OS)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.71

GOALS OF

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

GOALS - 2

67 68

69 70

71 72

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.13Slides by Wes J. Lloyd

 Questions from 5/9

 Pthread Tutorial-May 26 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.73

OBJECTIVES – 5/11

CHAPTER 14: THE

MEMORY API

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma L13.74

 Chapter 13: Introduction to memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.75

OBJECTIVES – 5/11

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() of ten used to ask the system how large a given

datatype or struct is

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.76

MALLOC

 Not safe to assume

data type sizes using

dif ferent compilers,

systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.78

FREE()

73 74

75 76

77 78

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.14Slides by Wes J. Lloyd

79

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

80

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location

of the deallocated memory (a),

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.81

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.82

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.83

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.84

REALLOC()

79 80

81 82

83 84

TCSS 422 A – Spring 2023
School of Engineering and Technology

5/11/2023

L13.15Slides by Wes J. Lloyd

 Can’t deallocate twice

 Second call core dumps

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.85

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory

for a user program

 See man page

May 11, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L13.86

SYSTEM CALLS

QUESTIONS

85 86

87

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Office hours – friday
	Slide 3: Final exam survey * - Now available in Canvas -*
	Slide 4: Final exam survey - 2
	Slide 5: OBJECTIVES – 5/11
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: feedback
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: Feedback - 4
	Slide 13: OBJECTIVES – 5/11
	Slide 14: OBJECTIVES – 5/11
	Slide 15: OBJECTIVES – 5/11
	Slide 16: Chapter 30 – condition variables
	Slide 17: OBJECTIVES – 5/11
	Slide 18: Covering conditions
	Slide 19: Covering conditions - 2
	Slide 20: Cover conditions - 3
	Slide 21: Chapter 31: Semaphores
	Slide 22: OBJECTIVES – 5/11
	Slide 23: Chapter 32 – concurrency problems
	Slide 24: Concurrency bugs in open source software
	Slide 25: OBJECTIVES – 5/11
	Slide 26: Non-deadlock bugs
	Slide 27: Atomicity violation - mysql
	Slide 28: Atomicity violation - solution
	Slide 29: Order violation bugs
	Slide 30: Order violation - solution
	Slide 31: Order violation – solution - 2
	Slide 32: Non-deadlock bugs - 1
	Slide 33: Non-deadlock bugs - 2
	Slide 34: We will return at 4:50pm
	Slide 35: Deadlock bugs
	Slide 36: OBJECTIVES – 5/11
	Slide 37: Reasons for deadlocks
	Slide 38: Conditions for deadlock
	Slide 39: OBJECTIVES – 5/11
	Slide 40: Prevention – mutual exclusion
	Slide 41: Prevention – mutual exclusion - 2
	Slide 42: mutual exclusion: List insertion
	Slide 43: mutual exclusion – list insertion - 2
	Slide 44: Mutual exclusion – list insertion - 3
	Slide 45: Conditions for deadlock
	Slide 46: Prevention lock – hold and wait
	Slide 47: Conditions for deadlock
	Slide 48: Prevention – no preemption
	Slide 49: No preemption – livelocks problem
	Slide 50: Conditions for deadlock
	Slide 51: Prevention – circular wait
	Slide 52: Conditions for deadlock
	Slide 53
	Slide 54: Deadlock avoidance via intelligent scheduling
	Slide 55: Intelligent scheduling - 2
	Slide 56: Intelligent scheduling - 3
	Slide 57: Detect and recover
	Slide 58: OBJECTIVES – 5/11
	Slide 59: Chapter 13: ADDRESS SPACES
	Slide 60: OBJECTIVES – 5/11
	Slide 61: Memory virtualization
	Slide 62: Memory virtualization - 2
	Slide 63: Motivation for memory virtualization
	Slide 64: Early memory management
	Slide 65: Multiprogramming with shared memory
	Slide 66: Address space
	Slide 67: Address space - 2
	Slide 68: Address space - 3
	Slide 69: Virtual addressing
	Slide 70: Virtual addressing - 2
	Slide 71: Goals of OS memory virtualization
	Slide 72: Goals - 2
	Slide 73: OBJECTIVES – 5/11
	Slide 74: Chapter 14: The memory API
	Slide 75: OBJECTIVES – 5/11
	Slide 76: malloc
	Slide 77: Sizeof()
	Slide 78: Free()
	Slide 79
	Slide 80
	Slide 81: Dangling Pointer (1/2)
	Slide 82: Dangling Pointer (2/2)
	Slide 83: Calloc()
	Slide 84: Realloc()
	Slide 85: Double free
	Slide 86: System calls
	Slide 87: Questions

