TCSS 422 A - Fall 2021
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

pavB2023 School of Engineering and Technology, University of Washington

OBJECTIVES - 5/9

| = Questions from 5/2 & Midterm Review |
= Assignment O Grades Posted
= Assignment 1 - May 11
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.2

Slides by Wes J. Lloyd

5/9/2023

L12.1

TCSS 422 A — Fall 2021

School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 11:59p

= Thursday surveys: due ~ Mon @ 11:59p

=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Sllabus TCSS 422 - Online Dai
P - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Fall 2021]
May}D12025 School of Engineering and Technology, University of Washington - Tacoma Liz3
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Fall 2021]
MavBi2n2y School of Engineering and Technology, University of Washington - Tacoma L12.4
4

Slides by Wes J. Lloyd

5/9/2023

L12.2

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (48 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.52 ({ - previous 6.98)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.48 ({ - previous 6.07)

TCSS422: Computer Operating Systems [Fall 2021]

L12.5
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

FEEDBACK FROM 5/2

® From the practice midterm, in the FIFO example, A and C
are both 10 time slices, but why there were 10 As but
only 4 Cs on the diagram?

= There are actually 9 Cs, there should be 10

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L126

May 9, 2023

Slides by Wes J. Lloyd L12.3

TCSS 422 A — Fall 2021

School of Engineering and Technology

FIFO EXAMPLE

= Operation of CPU schedulers can be visualized with timing
graphs.

= The graph below depicts a FIFO scheduler where three jobs
arrive in the sequence A, B, C, where job A runs for 10 time
slices, job B for 5 time slices, and job C for 10 time slices.

I
FIFO |AAAAAAAAAABBBBBCCCCCCCCCC

TCSS422: Operating Systems [Spring 2023]
May} 12025 School of Engineering and Technology, University of Washington - Tacoma Liz.7

MIDTERM RESULTS

= Statistics
= Average: 83.28 =
= Mode: 92.0 ,
= Median: 85.0
= Min score: 41
= Lower quartile: 77.00

= 2nd quartile: 85.0 : |
|
%%

of students

= 31 quartile: 93
® Max score: 102

®m Standard deviation:
13.49

= Curve: +2
= Missing: 4

TCSS 422A Spring 2023 Midterm

TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

L12.8

Slides by Wes J. Lloyd

5/9/2023

L12.4

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

MIDTERM REVIEW

TCSS422: Operating Systems [Fall 2021]

L12.9
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted |

= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.10

May 9, 2023

10

Slides by Wes J. Lloyd L12.5

TCSS 422 A — Fall 2021
School of Engineering a

nd Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
m Assignment O Grades Posted
I- Assignment 1 - Nov 12 I

® Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.11

11

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12

= Tutorial 2: Pthread Tutorial - to be posted

= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.12

12

Slides by Wes J. Lloyd

5/9/2023

L12.6

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

TUTORIAL 2

® Pthread Tutorial

= Practice using:
= pthreads
= Locks
= Condition variables

= Generate and visualize prime number generation in parallel

= To be posted in next couple of days

TCSS422: Operating Systems [Fall 2021]

112.13
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

13

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
| = Chapter 29: Lock Based Data Structures |
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L1214

May 9, 2023

14

Slides by Wes J. Lloyd L12.7

TCSS 422 A — Fall 2021

School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Fall 2021]

L) & AR School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review

= Assignment O Grades Posted

= Assignment 1 - Nov 12

= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Slo Counter
= Concurrent Structures: Linked List, Queue, Hash Table

® Chapter 30: Condition Variables

= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.16

16

Slides by Wes J. Lloyd

5/9/2023

L12.8

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

APPROXIMATE (SLOPPY) COUNTER

® Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically

Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.17

17

APPROXIMATE COUNTER - MAIN POINTS

® |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+1l

= Synchronization occurs only every so often:
e.g. every 1000 counts

® Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= |t’s approximate because it’s not so accurate (until the end)

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.18

18

Slides by Wes J. Lloyd L12.9

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
m Assignment O Grades Posted
m Assignment 1 - Nov 12
® Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

| = Concurrent Structures: Linked List, |Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

L12.19
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

19

CONCURRENT LINKED LIST PERFORMANCE

m Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

20

Slides by Wes J. Lloyd L12.10

TCSS 422 A — Fall 2021

School of Engineering and Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
m Assignment O Grades Posted
m Assignment 1 - Nov 12
® Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.21

21

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.22

22

Slides by Wes J. Lloyd

5/9/2023

L12.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

@ U W R

L struct _ node t {
int value;
struct _ node t *next:
} node_t;

struct _ queue t {

node_t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex t tailLock;
} queue_t;

void Queue_Init (queue_t *q) {
node t *tmp = malloc(sizeof (node_t)):
tmp-»>next = NULL;
g->head = g->tail = tmp;
pthread mutex_init (&g->headLock, NULL);
pthread mutex init(eg->taillock, NULL);

May 9, 2023

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L12.23

23

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)

d Queue Enqueue(queue t *q, int value) ({
node t *tmp = malloc(sizeof (node t));
assert (tmp != NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(ag->tailLock);
g-»tail->next = tmp;

g->tail = tmp;
pthread mutex unlock(&g->taillLock);

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.24

24

Slides by Wes J. Lloyd

5/9/2023

L12.12

TCSS 422 A — Fall 2021

School of Engineering and Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
m Assignment O Grades Posted
m Assignment 1 - Nov 12
® Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue,
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.25

25

CONCURRENT HASH TABLE

mConsider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

L12.26

26

Slides by Wes J. Lloyd

5/9/2023

L12.13

TCSS 422 A — Fall 2021

School of Engineering and Technology

= iMac wi

May 9, 2023

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts

th four-core Intel 2.7 GHz CPU
15 1
O Simple Concurrent List
X Concurrent Hash Table
o
© 10+
Q
(5]
8
]
E 51
=
0 T T

¥ ol
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.27

27

CONCURRENT HASH TABLE

1 #define BUCKETS (101)
2
3 Cypedef struct _ hash t {
4 list_t 1ists[BUCKETS];
5 } hash_t;
&
7 void Hash Init(hash t *H) {
8 int i;
9 for (1 = 0; 1 < BUCKETS; i++) {
10 List Init (&H->1ists[i]);
11 }
12 1
13
14 int Hash_ Insert(hash t *H, int key) {
15 int bucket = key % BUCKETS;
1é return List_Insert(&H->1ists[bucket], key):
17 1
18
19 int Hash Lookup(hash t *H, int key) {
20 int bucket = key % BUCKETS;
21 return List_Lookup (sH->1lists[bucketl], key):
22 1
May 9, 2023 TCSS422: Operating Systems [Fall 2021] 112.28

School of Engineering and Technology, University of Washington - Tacoma

28

Slides by Wes J. Lloyd

5/9/2023

L12.14

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

.'Which is a major advantage of using concurrent data'.
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

29

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.h

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

30

Slides by Wes J. Lloyd L12.15

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
| = Chapter 30: Condition Variables |
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.31

31

CHAPTER 30 -

CONDITION VARIABLES

TCSS422: Operating Systems [Fall 2021]

May 9, 2023 School of Engineering and Technology, University of Washington -

32

Slides by Wes J. Lloyd

5/9/2023

L12.16

TCSS 422 A — Fall 2021

5/9/2023
School of Engineering and Technology

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

mConsider when a precondition must be fulfilled
before it is meaningful to proceed ...

May 9, 2023 TCSS422: Operating Systems [Fall 2021]
Y3, School of Engineering and Technology, University of Washington - Tacoma

L12.33

33

CONDITION VARIABLES - 2

® Support a signaling mechanism to alert
threads when preconditions have been satisfied

® Eliminate busy waiting

® Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on (FIFO) queue to WAIT for signals

= Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

May 9, 2023 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.34

34

Slides by Wes J. Lloyd L12.17

TCSS 422 A — Fall 2021

School of Engineering and Technology

CONDITION VARIABLES - 3

® Condition variable

| pthread cond t c; |

= Requires initialization

® Condition API calls

pthread cond wait(pthread cond t *c, pthread mutex t *m); // wait ()
pthread cond_signal (pthread cond t *c); // signal ()

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= signal()
= Wakes up thread, awakening thread acquires lock

TCSS422: Operating Systems [Fall 2021]

L12.35
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

35

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

= All threads woken up in FIFO order - based on when started to wait

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.36

May 9, 2023

36

Slides by Wes J. Lloyd

5/9/2023

L12.18

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCSS422: Operating Systems [Fall 2021]

L12.37
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

37

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables
| = Producer/Consumer |
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.38

May 9, 2023

38

Slides by Wes J. Lloyd L12.19

TCSS 422 A — Fall 2021

School of Engineering and Technology

MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Example program: “nosignal.c”

TCSS422: Operating Systems [Fall 2021]

L12.39
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

39

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

1 void thr exit() { < Child calls
2 done = 1;

3 Pthread cond_signal (&c);

4 }

5

6 void thr_join() { < Parent calls
7 if (done == 0)

8

9

Pthread cond wait (&c);

}

® Subtle race condition introduced
= Parent thread calls thr_join() and executes comparison (line 7)
® Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal is lost !
= The parent deadlocks

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.40

May 9, 2023

40

Slides by Wes J. Lloyd

5/9/2023

L12.20

TCSS 422 A - Fall 2021
School of Engineering and Technology

PRODUCER / CONSUMER

Work Queue

i

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.41

41

= Producer

= Consumer

PRODUCER / CONSUMER

= Produces items - e.g. child the makes matricies

= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)

= Grabs data out of the buffer
= Qur example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
® Multithreaded web server example
= Http requests placed into work queue; threads process

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.42

42

Slides by Wes J. Lloyd

5/9/2023

L12.21

TCSS 422 A — Fall 2021

School of Engineering and Technology

PRODUCER / CONSUMER - 2

® Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -I

= Synchronized access:
sends output from grep = wc as it is produced

= File stream

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.43

43

WE WILL RETURN AT

2:50PM

TCSS422: Operating Systems [Fall 2021]

May 9, 2023 School of Engineering and Technology, University of Washington -

44

Slides by Wes J. Lloyd

5/9/2023

L12.22

TCSS 422 A - Fall 2021
School of Engineering and Technology

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data, Consumer “gets” data
= “Bounded Buffer” shared data structure requires

synchronization
1 int buffer;
2 int count = 0; // initially, empty
3
4 void put (int value) {
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert (count == 1);
12 count = 0;
13 return buffer;
14 }

May 9, 2023 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L12.45

45

PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1. Producer Function 2. Consumer Function

[R N N R N

void *producer(void *arg) {

int iz
int leops = (int) arg:
for (1 = 0; 1 < loops; i++) |

put(i);
}
}

void *consumer (void *arg) {
int i;
while (1) {
int tmp = get():
printf("$d\n", tmp);

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.46

46

Slides by Wes J. Lloyd

5/9/2023

L12.23

TCSS 422 A - Fall 2021
School of Engineering and Technology

= The shared data structure needs synchronization!
1 cond_t cond;
2 mutex t mutex:
3
4 void *producer(void *arg) {
5 int i
3 for (i = 07 1 < loops; i++) { Producer
7 » Pthread mutex lock(smutex): '/ pl
8 if (count == 1) !/ p2
9 Pthread cond wait (&cond, &amutex); // p3
10 put (i) s '/ pd
11 Pthread_cond_signal (&cond) ; /1 p3
12 Pthread mutex unlock(&mutex); // pé
13 }
14 1
15
16 vold *consumer(void *arg) {
17 int i;
18 for (1 = 0; 1 < loops; i++) {
19 » Pthread mutex_lock (&mutex); // cl
y
TCSS422: Operating Systems [Fall 2021
May 9;2023 School of E:gineerigngyand Tet[:hnology,]University of Washington - Tacoma L12.47

47

PRODUCER/CONSUMER - 4

20 if (count == 0)

21 Pthread_cond_wait (&cond, &mutex);

22 int tmp = get();

23 Pthread cond_signal (&cond) ; g

24 Pthread mutex unlock (&mutex); // c6

25 printf ("%d\n", tmp);

26 } Consumer
27 }

® This code as-is works with just:
(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.48

48

Slides by Wes J. Lloyd

5/9/2023

L12.24

TCSS 422 A - Fall 2021
School of Engineering and Technology

= Two threads

Legend
c1/p1- lock

c2/p2- check var
c3/p3- wait

c4- put()

p4- get()

¢5/p5- signal
c6/p6- unlock

EXECUTION TRACE:

NO WHILE, 1 PRODUCER, 2 CONSUMERS

Tey State Tey State T, State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
» <3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Read pd Running 1 Buffer now full
Ready Ready pS Running 1 T,y awoken
Ready Ready p6 Running 1
Ready Ready pl Running 1
Ready Ready p2 Running 1
Ready Read p3 Sleep 1 Buffer full; sleep
Ready| cl Running Sleep 1 T, sneaks in ...
Ready c2 Running Sleep 1
Readly| cd Running Sleep 0 ... and grabs data
Ready c5 Running Ready 0 T, awoken
Ready| c6 Running Ready 0
» c4 Running Ready Ready 0 Oh oh! No data

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.49

49

SYNCHRONIZATION

= T., needs to wake T, to T,

PRODUCER/CONSUMER

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is insufficient ...

= What if T, puts a value, wakes T,; whom consumes the value

= Then T, has a value to put, but T ,’s signal on &cond wakes T,
= There is nothing for T,, consume, so T, sleeps
® Tg4, Teo, and T, all sleep forever

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.50

50

Slides by Wes J. Lloyd

5/9/2023

L12.25

TCSS 422 A - Fall 2021
School of Engineering and Technology

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ta State Te2 State T, State Count Comment
cl Running Ready Ready 0
2 Running Ready Ready 0
<3 Sleep Ready Ready 0 Nothing to get
Legend Sleep cl Running Ready 0
C1 /p1 - Iock Sleep c2 Running Ready 0
02/p2_ check var Sleep 3 Sleep Ready 0 Nothing to get
c3/p3- wait e g) R
c4- pUt() Sleep Sleep p4 Running 1 Buffer now full
p4- get() * Ready Sleep p5 Running 1 T,y awoken
C5/p5_ Slgnal Ready Sleep p6 Running 1
C6/p6‘ Un|OCk Ready Sleep pl Running 1
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep 1 Must sleep (full)
» c2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T, grabs data
» 5 Running Ready Sleep 0 Oops! Woke T,
May 9;2023 Zgﬁzgﬁf g::i?;:er:'ignsgy;zn]rset[:;i:l)f:gzyfluniversity of Washington - Tacoma L12:51

51

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

Tey State Tey State T, State Count Comment

M (cont)
cl /p1 - lock c6 Running Ready Sleep 0
02/p2' check var cl Running Ready Sleep 0
C3/p3_ wait c2 Running Ready Sleep 0
c4- put() 3 Sleep Ready Sleep 0 Nothing to get
p4_ get() i:eep c2 Ru;’mmg S:eep 0 I
05/p5_ Slgnal eep) c3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.52

52

Slides by Wes J. Lloyd

5/9/2023

L12.26

TCSS 422 A - Fall 2021
School of Engineering and Technology

TWO CONDITIONS

® Required w/ multiple producer and consumer threads
m Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

©®d oUW N

cond_t empty, full;
mutex_t mutex;

Vo

1 *producer (void *arg) {
int i;
for (1 = 0; 1 < loops; i++) {
Pthread_mutex_lock (&mutex) ;
while (count == 1)
Pthread cond wait (&empty, &mutex);
put (i) ;
Pthread cond_signal(&full);
Pthread _mutex_unlock (émutex) ;

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.53

53

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= >> Becomes BOUNDED BUFFER, can store multiple matricies

[I R e T N

int buffer[MAX];
int fill = 0:
int use = 0;

int count = 0;

void put (int value) {
buffer[fill] = value:
£i11 = (fill + 1) % MAX;
count++;

int get() {
int tmp = buffer([use];
use = (use + 1) % MAX;
count--;
return tmp;

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.54

54

Slides by Wes J. Lloyd

5/9/2023

L12.27

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

1
2 mutex t mutex;
3
4 void *producer(void *arg) {
5 int i;
[for (1 = 0; 1 < loops; i++) {
7 Pthread mutex lock (&mutex) ; // pl
8 while (count == MAX) // p2
9 Pthreadﬁcondﬁwait(&emEty, &mutex) ; // p3
10 put(i); // pd
11 Pthread cond signal (&full); // B5
12 Pthread mutex unlock(amutex) ; '/ pé
13 }
14 1
15
16 vold *consumer (void *arg) {
17 int i;
18 or (1 =0; i < loops; i++) {
19 Pthread mutex lock(&mutex); f/ cl
20 while (count == 0) f/ ez
21 Pthread cond wait(&«full, &amutex); // c3
22 int tmp = get () ’ [/ c4
TCSS422: Operating Systems [Fall 2021
RavE 12023 School of E:gineerigngyand Tet[:hnology,]University of Washington - Tacoma H12.55

55

FINAL P/C - 3

(Cont.)

23 Pthread cond signal (sempty): // c5
24 Pthread mutex_unlock(smutex); // cé
25 printf("%d\n", tmp):

26 }

27 }

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.56

May 9, 2023

56

Slides by Wes J. Lloyd L12.28

TCSS 422 A - Fall 2021
School of Engineering and Technology

Using one condition variable, and no while loop is
sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

57

Using one condition variable, with a while loop is
sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

58

Slides by Wes J. Lloyd

5/9/2023

L12.29

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

Using two condition variables, and a while loop is
sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

59

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables
= Producer/Consumer
|___= Covering Conditions |
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.60

May 9, 2023

60

Slides by Wes J. Lloyd L12.30

TCSS 422 A — Fall 2021

School of Engineering and Technology

scarce

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

= When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.61

61

COVERING CONDITIONS - 2

® o~ oUW

// how many bytes of the heap are free?
int bytesLeft = MAX HEAP_ SIZE;

// need lock and condition too
cond_t c;
mutex t m;

void *

allocate (int size) {

Pthread mutex_lock(&m) ;
»whlle (bytesLeft < size)

Check available memory

Pthread cond wait(&c, &m);

void *ptr = ...; // get mem from heap
bytesLeft -= size;

Pthread mutex unlock (&m) ;

return ptr;

}

void free(void *ptr, int size) {
Pthread mutex lock(&m);

bytesLeft += size;
Pthread cond signal (&c) ¢
Pthread mutex unlock (&m)

}

[Broadeast |

May 9, 2023

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.62

62

Slides by Wes J. Lloyd

5/9/2023

L12.31

TCSS 422 A — Fall 2021

School of Engineering and Technology

COVER CONDITIONS -3

= Broadcast awakens all blocked threads requesting memory

= Each thread evaluates if there’s enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Fall 2021]

L12.63
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

63

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - Dining Philosophers Problem @ "
= Classic computer science problem about \ B35 /
sharing eating utensils , A\ NV
= Each philosopher tries to obtain two forks g LOEY ’7
in order to eat £ . =

= Mimics deadlock as there are not enough forks % " "5
Y
= Solution is to have one left-handed philosopher o ’ >

that grabs forks in opposite order

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.64

May 9, 2023

64

Slides by Wes J. Lloyd

5/9/2023

L12.32

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
| = Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]

| May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.65

65

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Fall 2021]

May 9, 2023 School of Engineering and Technology, University of Washington -

66

Slides by Wes J. Lloyd L12.33

TCSS 422 A — Fall 2021

School of Engineering and Technology

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

m “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Morzilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

67

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review

= Assignment O Grades Posted

= Assignment 1 - Nov 12

= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

* Non-deadlock concurrency bugs |

= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

L12.68

68

Slides by Wes J. Lloyd

5/9/2023

L12.34

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=QOrder violation: failure to initialize lock/condition
before use

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.69 |

69

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd
ENULLis OinC

® Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_info deleted

1 Threadl::
2 1f(thd->proc_info)
3
. 4 fputs (thd->proc_info , .)7

Programmer intended 5

variable to be accessed 6 }

atomically... 7
8 Thread2.: .
9 Ithd—>prociinfo = NULL :I

TCSS422: Operating Systems [Fall 2021]
Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma L12.70

70

Slides by Wes J. Lloyd L12.35

TCSS 422 A - Fall 2021
School of Engineering and Technology

® Add locks

ATOMICITY VIOLATION - SOLUTION

for all uses of: thd->proc_info

[R N R N I N

w

}

B R
=W O

=
o

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;

Threadl::
pthread mutex lock(&lock):
if (thd-»proc_info) {

fputs (thd-»proc_info , ..)7

pthread mutex_unlock (slock);

Thread2::
pthread mutex lock(&lock);
thd-»>proc_info = NULL;
pthread mutex unlock (&lock);

May 9, 2023

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L12.71

71

ORDER VIOLATION BUGS

WU W

Threadl::
void init () {

mThread = PR_CreateThread(mMain, ..);
}

Thread2::
volid mMain(..) {

mState = mThread->State
}

®What if mThread is not initialized?

®mDesired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

May 9, 2023

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L12.72

72

Slides by Wes J. Lloyd

5/9/2023

L12.36

TCSS 422 A — Fall 2021

School of Engineering and Technology

ORDER VIOLATION - SOLUTION

® Use condition & signal to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD COND_ INITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
6 vold init(){
7
8 mThread = PR _CreateThread(mMain,..);
9
10 // signal that the thread has been created.
11 pthread mutex lock(amtLock);
12 mtInit = 1;
13 IEthread cond signal(&mtcand) ;I
14 pthread mutex unlock(&mtLock) ;
15
16}
17
18 Thread2::
19 void mMain(.){
20
TCSS422: Operating Systems [Fall 2021
RavE 12023 School of E:gineerigngyand TeLhnoIogy,]University of Washington - Tacoma H12.73

73

ORDER VIOLATION - SOLUTION - 2

® Use condition & signal to enforce order

21 // walt for the thread to be initialized ..

22 pthread mutex lock(amtLock):

23 while (mtInit == _0)

24 Ipthreadﬁcondﬁwait(&mtcond, &thock);l
25 pthread HMUTEX UHTOCK TRMCLOCKTY

26

27 mState = mThread->State;

28

29 }

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.74

74

Slides by Wes J. Lloyd

5/9/2023

L12.37

TCSS 422 A — Fall 2021

School of Engineering and Technology

NON-DEADLOCK BUGS - 1

= 97% of Non-Deadlock Bugs were
= Atomicity
=QOrder violations

mConsider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

® Desire for automated tool support (IDE)

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.75

75

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

mQOrder violation
= Must consider all variable accesses
= Must know desired order

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.76

76

Slides by Wes J. Lloyd

5/9/2023

L12.38

TCSS 422 A — Fall 2021

5/9/2023
School of Engineering and Technology

DEADLOCK BUGS

1

3

® Presence of a cycle in code
® Thread 1 acquires lock L1, waits for lock L2
® Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1); lock(L2); —————>» | Lock Ll
lock (L2); lock(L1l);

®m Both threads can block, unless
one manages to acquire both locks

Wanted by
Aq pajuesp

Lock L2
Holds

May 9, 2023 TCSS422: Operating Systems [Fall 2021]

L12.77
School of Engineering and Technology, University of Washington - Tacoma

77

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
® Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
| = Deadlock causes |
= Deadlock prevention

| May 9, 2023 TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.78

78

Slides by Wes J. Lloyd L12.39

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
® Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

1 Vector v1,v2;

2 v1.AddAll (v2);

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1l); call at nearly the same time
deadlock could result

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.79

79

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wat resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.80

May 9, 2023

80

Slides by Wes J. Lloyd L12.40

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 5/9

® Questions from 5/2 & Midterm Review
m Assignment O Grades Posted
m Assignment 1 - Nov 12
® Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

= Deadlock prevention |

TCSS422: Operating Systems [Fall 2021]

112.81
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

81

PREVENTION - MUTUAL EXCLUSION

® Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

® C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap (int *address, int expected, int new){
2 if (*address == expected) {

3 *address = new;

4 return 1; // success

5 }

&

-

return 0;

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.82

May 9, 2023

82

Slides by Wes J. Lloyd

5/9/2023

L12.41

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

PREVENTION - MUTUAL EXCLUSION - 2

® Recall atomic increment

void AtomicIncrement (int *wvalue, int amount) {
do{
int old = *value;
twhile (CompareAndSwap(value, old, old+amount)==0);

[C I TON O

mCompare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®When it runs it is ALWAYS atomic (at HW level)

TCSS422: Operating Systems [Fall 2021]

112.83
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

83

MUTUAL EXCLUSION: LIST INSERTION

E Consider list insertion

void insert(int wvalue){
node £ * n = malloc(sizeof(node t));
assert(n != NULL);
n->value = value ;
n->next = head;
head = n;

o0 W

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.84

May 9, 2023

84

Slides by Wes J. Lloyd L12.42

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

MUTUAL EXCLUSION - LIST INSERTION - 2

®Lock based implementation

1 void insert(int wvalue){
2 node t * n = malloc(sizeof (node t));
3 assert(n != NULL):
4 n->value = value ;
5 lock(listlock); // begin critical section
[n->next = head;
7 head = n;
8 unlock(listlock) ; //end critical section
9 }
TCSS422: Operating Systems [Fall 2021
RavE 12023 School of E:gineerigngyand Tet[:hnology,]University of Washington - Tacoma L1285

85

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert (int value) {
node_t *n = malloc(sizeof (node_t));
assert(n != NULL);
n->value = value;
do {
n->next = head;
} while (CompareAndSwap (&head, n->next, n));

@ d oUW N

}

= Assign &head to n (new node ptr)
®0Only when head = n->next

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.86

86

Slides by Wes J. Lloyd L12.43

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.87

87

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
® Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock (L1);
lock (L2);

s Wb e

unlock (prevention) H

= Effective solution - guarantees no race conditions while

acquiring L1, L2, etc.

Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

112.88

88

Slides by Wes J. Lloyd L12.44

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

May 9, 2023 TCSS422: Operating Systems [Fall 2021]

L12.89
School of Engineering and Technology, University of Washington - Tacoma

89

PREVENTION - NO PREEMPTION

" When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
= pthread_mutex_timedlock() - try and wait awhile

1 top:
2 lock(Ll): N 0
3 1f(tryLock(L2) == -1){
4 unlock(Ll);
5 goto top; STOPP'NG
6 }
ANY
= Eliminates deadlocks TIME
May 9, 2023 TCSS422: Operating Systems [Fall 2021] 112.90

School of Engineering and Technology, University of Washington - Tacoma

90

Slides by Wes J. Lloyd L12.45

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

NO PREEMPTION - LIVELOCKS PROBLEM

ECan lead to livelock

1 top:

2 lock(Ll):

3 1f(tryLock(L2) == -1){
4 unlock(Ll) ;

5 goto top:

[

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the :
livelock race! . Vi)

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.91

91

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Condition Description

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Circular wait There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2021]

| May 9, 2023 School of Engineering and Technology, University of Washington - Tacoma

112.92

92

Slides by Wes J. Lloyd L12.46

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
= Always acquire locks in same order
=1, L2, L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

TCSS422: Operating Systems [Fall 2021]

| May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.93

93

CONDITIONS FOR DEADLOCK

= If any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wat resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.94

94

Slides by Wes J. Lloyd L12.47

TCSS 422 A - Fall 2021
School of Engineering and Technology

“n

The dining philosophers problem where 5
philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

95

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

EConsider a smart scheduler

=Scheduler knows which locks threads use

E Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

®Lock requirements of threads:

T1 T2 LE] T4
L1 yes yes no no
L2 yes yes yes no

TCSS422: Operating Systems [Fall 2021]

Elayii2u2s School of Engineering and Technology, University of Washington - Tacoma

L12.96

96

Slides by Wes J. Lloyd

5/9/2023

L12.48

TCSS 422 A — Fall 2021

School of Engineering and Technology

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

CPU 1

CPU 2

®ENo deadlock can occur

EConsider:

T1 T2 T3 T4
L1 yes yes yes no
L2 yes yes yes no

TCSS422: Operating Systems [Fall 2021]

L12.97
School of Engineering and Technology, University of Washington - Tacoma

May 9, 2023

97

INTELLIGENT SCHEDULING - 3

® Scheduler produces schedule

® Scheduler must be conservative and not take risks
= Slows down execution - many threads

® There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCSS422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma L12.98

May 9, 2023

98

Slides by Wes J. Lloyd

5/9/2023

L12.49

TCSS 422 A — Fall 2021

School of Engineering and Technology

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

® How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

® Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Fall 2021]

May}D12025 School of Engineering and Technology, University of Washington - Tacoma

L12.99

99

QUESTIONS

100

Slides by Wes J. Lloyd

5/9/2023

L12.50

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/9
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/2
	Slide 7: Fifo example
	Slide 8: Midterm Results
	Slide 9: Midterm review
	Slide 10: OBJECTIVES – 5/9
	Slide 11: OBJECTIVES – 5/9
	Slide 12: OBJECTIVES – 5/9
	Slide 13: Tutorial 2
	Slide 14: OBJECTIVES – 5/9
	Slide 15: Chapter 29 – LOCK Based data structures
	Slide 16: OBJECTIVES – 5/9
	Slide 17: approximate (sloppy) counter
	Slide 18: approximate counter – main points
	Slide 19: OBJECTIVES – 5/9
	Slide 20: Concurrent Linked list performance
	Slide 21: OBJECTIVES – 5/9
	Slide 22: Michael and scott concurrent queues
	Slide 23: Concurrent queue
	Slide 24: Concurrent queue - 2
	Slide 25: OBJECTIVES – 5/9
	Slide 26: Concurrent hash table
	Slide 27: Insert performance – concurrent hash table
	Slide 28: Concurrent hash table
	Slide 29
	Slide 30: Lock-free data structures
	Slide 31: OBJECTIVES – 5/9
	Slide 32: Chapter 30 – condition variables
	Slide 33: Condition variables
	Slide 34: Condition variables - 2
	Slide 35: Condition variables - 3
	Slide 36: Condition variables - questions
	Slide 37: Matrix generator
	Slide 38: OBJECTIVES – 5/9
	Slide 39: Matrix generator
	Slide 40: attempt to use condition variable without a while statement
	Slide 41: Producer / consumer
	Slide 42: Producer / consumer
	Slide 43: Producer / consumer - 2
	Slide 44: We will return at 2:50pm
	Slide 45: Put/get routines
	Slide 46: Producer / consumer - 3
	Slide 47: Producer / consumer - 3
	Slide 48: Producer/consumer - 4
	Slide 49: Execution trace: no while, 1 producer, 2 consumers
	Slide 50: producer/consumer synchronization
	Slide 51: Execution trace: while, 1 condition, 1 producer, 2 consumers
	Slide 52: Execution trace – 2 while, 1 condition, 1 producer, 2 consumers
	Slide 53: Two conditions
	Slide 54: Final producer/consumer
	Slide 55: Final p/c - 2
	Slide 56: Final p/c - 3
	Slide 57
	Slide 58
	Slide 59
	Slide 60: OBJECTIVES – 5/9
	Slide 61: Covering conditions
	Slide 62: Covering conditions - 2
	Slide 63: Cover conditions - 3
	Slide 64: Chapter 31: Semaphores
	Slide 65: OBJECTIVES – 5/9
	Slide 66: Chapter 32 – concurrency problems
	Slide 67: Concurrency bugs in open source software
	Slide 68: OBJECTIVES – 5/9
	Slide 69: Non-deadlock bugs
	Slide 70: Atomicity violation - mysql
	Slide 71: Atomicity violation - solution
	Slide 72: Order violation bugs
	Slide 73: Order violation - solution
	Slide 74: Order violation – solution - 2
	Slide 75: Non-deadlock bugs - 1
	Slide 76: Non-deadlock bugs - 2
	Slide 77: Deadlock bugs
	Slide 78: OBJECTIVES – 5/9
	Slide 79: Reasons for deadlocks
	Slide 80: Conditions for deadlock
	Slide 81: OBJECTIVES – 5/9
	Slide 82: Prevention – mutual exclusion
	Slide 83: Prevention – mutual exclusion - 2
	Slide 84: mutual exclusion: List insertion
	Slide 85: mutual exclusion – list insertion - 2
	Slide 86: Mutual exclusion – list insertion - 3
	Slide 87: Conditions for deadlock
	Slide 88: Prevention lock – hold and wait
	Slide 89: Conditions for deadlock
	Slide 90: Prevention – no preemption
	Slide 91: No preemption – livelocks problem
	Slide 92: Conditions for deadlock
	Slide 93: Prevention – circular wait
	Slide 94: Conditions for deadlock
	Slide 95
	Slide 96: Deadlock avoidance via intelligent scheduling
	Slide 97: Intelligent scheduling - 2
	Slide 98: Intelligent scheduling - 3
	Slide 99: Detect and recover
	Slide 100: Questions

