TCSS 422 A - Fall 2021
School of Engineering and Technology

5/9/2023

TCSS 422: OPERATING SYSTEMS

Lock-based data structures Il, &
Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Fall 2021]

May 32023 School of Engineering and Technology, University of Washington

OBJECTIVES - 5/9

| = Questions from 5/2 & Midterm Review |
= Assignment O Grades Posted
= Assignment 1 - May 11
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TC55422; Operating Systems [Fall 2021]
LhEyE) s School of Engineering and Technology, University of Washington - Tacoma 122

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Zoom ~ Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e
TCSS422: Computer Operating Systems [Fall 2021]
May 9,2023 School of Engineering and Technology, University of Washington - Tacoma uz3

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

1 2 3 a4 s & 7 8 3 10

TCSS422: Computer Operating Systems [Fall 2021]

May 9, 2023 School of Engineering and Technology, University of Washington - Tacoma L124

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (48 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.52 (| - previous 6.98)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.48 ({ - previous 6.07)

TCSS422: Computer Operating Systems [Fall 2021]
LERED School of Engineering and Technology, University of Washington -Tacoma 12e

FEEDBACK FROM 5/2

= From the practice midterm, In the FIFO example, A and C
r h 10 time sli why there were 10 A
only 4 Cs on the dlagram?
=There are actually 9 Cs, there should be 10

TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma e

Slides by Wes J. Lloyd

L12.1

TCSS 422 A - Fall 2021
School of Engineering and Technology

5/9/2023

FIFO EXAMPLE

= Operation of CPU schedulers can be visualized with timing
graphs.

= The graph below depicts a FIFO scheduler where three jobs
arrive in the sequence A, B, C, where job A runs for 10 time
slices, job B for 5 time slices, and job C for 10 time slices.

|
FIFO |AAAAAAAAAABBBBBCCCCCCCCCC

0 10 15 25
TCSS422: Operating Systems [Spring 2023]
‘ LB RS School of Engineering and Technology, University of Washington - Tacoma 27

MIDTERM RESULTS

= Statlstics

= Average: 83.28

= Mode: 92.0

= Median: 85.0

= Min score: 41

= Lower quartile: 77.00
= 2"d quartile: 85.0

= 31 quartile: 93

= Max score: 102

= Standard deviation:

of students

TCSS 422A Spring 2023 Midterm

13.49
= Curve: +2
= Missing: 4
‘ May9, 2023 TCSS562: Software Engineering for Cloud Computing [Fall 2021] 28

School of Engineering and Technology, University of Washington - Tacoma

MIDTERM REVIEW

TC55422; Operating Systems [Fall 2021]
‘ May 9,2023 School of Engineering and Technology, University of Washington - Tacoma 2

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
|= Asslgnment 0 Grades Posted |

= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Fall 2021)

‘ May 59,2023 School of Engineering and Technology, University of Washington - Tacoma

210

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
| = Asslgnment 1 - Nov 12 |

= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Fall 2021] o
School of Engineering and Technology, University of Washington - Tacoma

‘ May 9, 2023

10

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorlal 2: Pthread Tutorlal - to be posted]
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

212

11

Slides by Wes J. Lloyd

12

L12.2

TCSS 422 A — Fall 2021

School of

Engineering and Technology

TUTORIAL 2

= Pthread Tutorial
= Practice using:
= pthreads
= Locks
= Condition variables

= Generate and visualize prime number generation in parallel

= To be posted in next couple of days

TCS5422: Operating Systems [Fall 2021]

‘ LA RS School of Engineering and Technology, University of Washington - Tacoma

1213

13

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Fall 2021]

NS School of Engineering and Technology, University of Washington -

15

APPROXIMATE (SLOPPY) COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value
Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter
Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Fall 20211

LERED School of Engineering and Technology, University of Washington - Tacoma

1217

5/9/2023

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
|- Chapter 29: Lock Based Data Structures |
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021)

‘ Y School of Engineering and Technology, University of Washington - Tacoma

1214

14

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Slo Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021)

‘ [May 32023 School of Engineering and Technology, University of Washington - Tacoma

216

16

APPROXIMATE COUNTER - MAIN POINTS

= |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+l
= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= It's approximate because it's not so accurate (until the end)

218

TCS5422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

17

Slides by Wes J. Lloyd

18

L12.3

TCSS 422 A - Fall 2021
School of Engineering and Technology

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
| = Concurrent Structures: Linked List, |Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021]

‘ LA RS School of Engineering and Technology, University of Washington - Tacoma

1219

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant
= Users must “wait” in line for a single lock to access/modify
any item
= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list
= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...
= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TC55422; Operating Systems [Fall 2021]
‘ LhEyE) s School of Engineering and Technology, University of Washington - Tacoma v220

19

20

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

Hash Table

TCS5422: Operating Systems [Fall 2021

‘ RaySiz0zs School of Engineering and Technology, University of Washington - Tacoma

1221

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= [tems can be added and removed by separate threads at the
same time

TC55422; Operating Systems [Fall 2021]
‘ May 59,2023 School of Engineering and Technology, University of Washington - Tacoma n222

21

22

CONCURRENT QUEUE

= Remove from queue

node Tt *next;

queue_t |

(node_t))

mutex_init (&q->tail L)

TCS3422: Operating Systems [Fall 2021]

‘ LERED School of Engineering and Technology, University of Washington -Tacoma

11223

CONCURRENT QUEUE - 2

= Add to queue

(Cont.}
value) {
(node_t))+

tmp->value =
tmp->next =

(Cont.)

TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 224

23

Slides by Wes J. Lloyd

24

TCSS 422 A — Fall 2021

5/9/2023
School of Engineering and Technology

OBJECTIVES - 5/9 CONCURRENT HASH TABLE

= Questions from 5/2 & Midterm Review

= Assignment 0 Grades Posted = Consider a simple hash table

= Assignment 1 - Nov 12 =Fixed (static) size

= Tutorial 2: Pthread Tutorial - to be posted =Hash maps to a bucket

= Chapter 29: Lock Based Data Structures
* Sloppy Counter Bucket is implemented using a concurrent linked list
= Concurrent Structures: Linked List, Queue, One lock per hash (bucket)

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

Hash bucket is a linked lists

School of Engineering and Technology, University of Washington - Tacoma

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ LA RS School of Engineering and Technology, University of Washington - Tacoma L1225 LhEyE) s i 1226

25 26

INSERT PERFORMANCE -

CONCURRENT HASH TABLE CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU
15

BUCKETS (101)

© Simpie Concurient List
X Cancurrent Hash Tabi

i < BUCKETS; i++)
ist_Init (s#->lists[i)):

Time {seconds|
3
Hewe

14 t Hash_Insert (hash_t *H
- 15 E ey & B
o 16 List_Insert(sH->1ists[bucket], key):
0+ e T - + 17)
0 10 20 30 40 18
Inserts (Thousands) 19 Hash_Lookup (hash_t *H,

20 bucket
scales 21

ey % B
List_Lookup(sHl->1istslbucket], key):

ng Systems [Fall 202
ring and Technology,

May 9, 2023

TC55422; Operating Systems [Fall 2021]
‘ May 59,2023 School of Engineering and Technology, University of Washington - Tacoma r228

27 28

[| |
Whichisa major advantage of using concurrent data
. LOCK-FREE DATA STRUCTURES
structures in your programs?

= Lock-free data structures in Java

Locks are encapsulated within data

structure code ensuring thread safety. = Java.util.concurrent.atomic package

= Classes:
Lock granularity tradeoff already = AtomicBoolean
optimized inside data structurew = Atomiclnteger
’ " = AtomicintegerArra
Multiple threads can more easily - Atomiclnt € Fi I;IU dat
share data omicintegerFie pdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater
= AtomicReference

All of the above

None of the above

= See: ttps //docs. oracle com[enz|ava[|avase[11(docs[agl[

" | Tssa22: Operating Systems [Fall 2021
o v comtent y e L ESETD School of Engineering and Technology, University of Washington - Tacoma

29 30

Slides by Wes J. Lloyd L12.5

TCSS 422

A —Fall 2021

School of Engineering and Technology

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

= Chapter 30: Condition Variables

= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021]

LA RS School of Engineering and Technology, University of Washington - Tacoma

1231

31

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

= Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCS5422: Operating Systems [Fall 2021

May$9, 2023 School of Engineering and Technology, University of Washington - Tacoma

11233

33

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

pthread_cond_wait (pthread cond_t *c, pthread mutex_t *m);
pthread_cond_signal {pthread_cond_t *c):

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Fall 20211

LERED School of Engineering and Technology, University of Washington - Tacoma

1235

5/9/2023

CHAPTER 30 -

CONDITION VARIABLES

TCSS422: Operating Systems [Fall 2021]

payiian2s School of Engineering and Technology, University of Washington -

32

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on (FIFQ) queue to WAIT for signals

= Slgnal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

TCS5422: Operating Systems [Fall 2021)

‘ May9, 2023 School of Engineering and Technology, University of Washington - Tacoma

1234

34

CONDITION VARIABLES - QUESTIONS

= Why would we want to put walting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?
= All threads woken up in FIFO order - based on when started to wait

1236

TCS5422: Operating Systems [Fall 2021]

‘ e School of Engineering and Technology, University of Washington - Tacoma

35

Slides by Wes J. Lloyd

36

L12.6

TCSS 422 A - Fall 2021
School of Engineering and Technology

5/9/2023

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCS5422: Operating Systems [Fall 2021]

‘ WETy) RS School of Engineering and Technology, University of Washington - Tacoma

11237

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
| = Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021] 1238
School of Engineering and Technology, University of Washington - Tacoma

‘ May9, 2023

37

MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

coordinate exchange of the lock?

= Example program: “nosignal.c”

= What would happen if we don’t use a condition variable to

TCS5422: Operating Systems [Fall 2021

‘ May 9,2023 School of Engineering and Technology, University of Washington - Tacoma

11239

39

PRODUCER / CONSUMER

Work Queue

&l

TCS3422: Operating Systems [Fall 2021]

‘ LERED School of Engineering and Technology, University of Washington - Tacoma

1241

41

Slides by Wes J. Lloyd

38

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

thr_exit() {
done = 1;
Pthread_cond_signal(sc);

€ Child calls

o

thr_join0) { € Parent calls
(done = 0}
Pthread_cond_wait(&c)

B e w

}

= Subtle race condition introduced

= Parent thread calls thr_JoIn() and executes comparison (line 7)
= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal Is lost !
= The parent deadlocks

TCS5422: Operating Systems [Fall 2021] 12,40
School of Engineering and Technology, University of Washington - Tacoma

‘ May 9, 2023

40

PRODUCER / CONSUMER

= Producer
= Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS3422: Operating Systems [Fall 2021] 1242
School of Engineering and Technology, University of Washington - Tacoma

‘ May 9, 2023

42

L12.7

TCSS 422 A - Fall 2021
School of Engineering and Technology

PRODUCER / CONSUMER - 2

= Bounded buffer

= grep pthread signal.c | wc -1
= Synchronized access:

sends output from grep > wc as it is produced
= File stream

= Producer / Consumer is also known as Bounded Buffer

= Similar to piping output from one Linux process to another

TCS5422: Operating Systems [Fall 2021]

‘ WETy) RS School of Engineering and Technology, University of Washington - Tacoma

11243

43

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data, Consumer “gets” data
= “‘Bounded Buffer” shared data structure requires

synchronlization

1 int buffer;
2 int count = 0; initiall:
3
4 void put(int value) {
5 ount
6
7 value
8 }
9
10 in
11
12
13
14 1

‘ R TCS5422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L1245

45

PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

Pthread_cond_wait(icond, smutex);

1 cond_t condy

2 muteX t mutexs

3

1 void *producer(void *arg) [

M o Producer
& [l i< loopss i+4) |

7 * Pt utex_lock(smutex) ; 1

8 if (count == 1)

10 put (i} ;
11 Pthread_cond_signal (scond) ;
12 Pthread mutex_unlock (kmutex):
13 }
14)
15
16 *consuner (rarg) |
17 nt i
18 (i =0: 1< loopa: i++) |
13 9 Pthread_mutex_lock(smutex)
TCSS422: Operating Systems [Fall 2021]
‘ LERETS T e T e L

47

Slides by Wes J. Lloyd

WE WILL RETURN AT
2:50PM

TCSS422: Operating Systems [Fall 2021]

payiian2s School of Engineering and Technology, University of Washington -

44

PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1. Producer Function 2. Consumer Function

1 *producer (rarg) (
2
3 loops = (int] args
4 (i =07 i< loopsy i+#) |
5 putiin;
B .
7 }
8
3 *consumer {vold arg) [
10 i]
1 o
12 nt tmp = get{):
13 printf("sd\n”, tmp):
11)
15 }
‘ C D TC55422: Operating Systems [Fall 2021]

School of Engineering and Technology, University of Washington - Tacoma

L1246

46

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread cond wait(&cond, &mutex);

22 nt tmp = get();

23 Pthread_cond_signal (&cond) ;

24 pthread mutex_unlock (smutex) ;

25 printf ("3d\n", tmp);

26) Consumer
27 }

= This code as-is works with just:
(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCS5422: Operating Systems [Fall 2021]

e School of Engineering and Technology, University of Washington - Tacoma

L1248

48

5/9/2023

L12.8

TCSS 422 A - Fall 2021
School of Engineering and Technology

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS
T | State [To| state |7, | State | Count Comment
= Two threads <1 | Running Ready Ready [
2 | Running Ready Ready 0
‘ 3| sleep Ready Ready 0 Nothing to get
Legend Steep Ready | plL | Running 0
c1/p1-lock Sleep Ready | p2 | Running | 0
¢2/p2- check var Sleep Reacy‘ p4 | Running 1 Buffer now full
¢3/p3- wait Ready Ready 85 | Running 1 7., awoken
c4- put() ::-:J, Ready p6 | Running 1
eacly Ready | pl | Runming | 1
p4- get() Ready Resdy | p2 | Running 1
c5/p5- signal Ready ReacfllP 53 | Sleep 1 Buffer ull; sleep
c6/p6- unlock Resdypcl | Running Sleep 1 7., sneaks in
Ready | €2 | Running Sleep 1
RescyllPc4 | Running Sleep 0 . and grabs data
Ready | 5 | Ruming Ready | D 7, awoken
foscy <6 | Humming Ready 0
‘ <4 | Running Ready Ready 0 Oh ohl No data
EEE s e

49

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ta State Ta State TF State Count Comment
1 | Running Ready Readly [
€2 | Running Ready Ready [
S| Sleep Readly Readly 0 Nothing to get
Legend Steep | cL | Running Ready 0
c1/p1- lock Sleep €2 | Rur Ready [
c2/p2- check var Seep [<3| Skeep Readly 0 Nothing to get
¢3/p3- wait z\eep S:eeo pl | Running 0
c4- put() ._:N:p Sleep 2 m-m:‘\j 0))
Sleep Sleep p4 | Running 1 Buffer now full
p4- QEtQ ’ Readly Sleep | pS | Running 1 7., awoken
¢5/p5- signal Ready Seep | p6 | Runming [1
c6/p6- unlock Ready Sleep pl | Running 1
Ready Skeep | p2 | Rumming | 1
Ready Sleep p3 Sleep. 1 Must sleep (full)
‘ €2 | Running Sleap Sleep. 1 Recheck condition
4 | Running Sleep Sleep 0 Ty grabs data
’ <5 | Running Ready Sleep 0 Oops! Woke T,;
[wesam [Iumommimemenilaon - wesingon mwoms

51

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

= Required w/ multiple producer and consumer threads

School of Engineering and Technology, University of Washington - Tacoma

1 cond_t empty, full;
2 mutex_t mutex;
3
4 *producer (void *arg) (
5 int i;
6 [t 1 < loops; i++) |
7 Pthread_mutex_lock (smutex) ;
8 (count == 1)
9 Pthread_cond wait (sempty, &mutex):
10 put (i);
11 Pthread_cond_signal (&full);
12 Pthread mutex_unlock (smutex) ;
13 }
14 }
15
‘ Way9, 2023 TCS8422: Operating Systems [Fall 2021] 1253

5/9/2023

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is Insufficlent ...
= What if T, puts a value, wakes T;; whom consumes the value
= Then T, has a value to put, but T;;’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

® Teq, Tep, @and T, all sleep forever

= T, needs to wake T, to T,

TCS5422: Operating Systems [Fall 2021)

‘ Y School of Engineering and Technology, University of Washington - Tacoma

250

50

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T;, runs, no data to consume

L 7 Ty | State |1, stte [T, | sate |Count| comment
_g_e en - . - - (cont)
ct /p1 - lock L3 Running Ready Sleep 0
c2/p2- check var a | fuming Ready Sleep o
c3/p3- wait 2 | Running Ready Sleep 0
c4- put() 3 Sleep Ready Sleep] Nothing to get
P4- get() Sleep| <2 Running Sleep (]

4 Sleep il <3 Sleep Sleep 0 Everyone asloep
c5/p5- signal
c6/p6- unlock

TCS5422: Operating Systems [Fall 2021)

‘ May 59,2023 School of Engineering and Technology, University of Washington - Tacoma

252

52

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= >> Becomes BOUNDED BUFFER, can store multiple matricies

1 © bufferiMax] s
2 t el =
3 t uss
4 t count =
& { put(int valuel (
7 Duffer(£i11) = valuer
8 FLL = (111 + 1) % MAXs
counteer
10 }
1
12 get 0 1
13 tmp = butfer(usels
1 S0 b MK
15
16 s
17 ¥
TCSS422: Operating Systems [Fall 2021]
‘ e Sl o o e e e g e e T s

53

Slides by Wes J. Lloyd

54

L12.9

TCSS 422 A - Fall 2021
School of Engineering and Technology

FINAL P/C - 2

1
2 mutex T mutexr
3
4

*producer {
i

2d_cond wait(gempty, &mutex):

cond_signal (&full);
wtex_unlock (smutex);

16 *consumer (x *arg) {

17 iz

18 ti=0; i< ivh |

19 pthread_mutex_lock (smutex):

20 while (count == 0)

21 Bt] ond_wait{ sfull, &mutex);
22

TC55422; Operating Systems [Fall 2021]
‘ LA RS School of Engineering and Technology, University of Washington - Tacoma L1255

55

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
" Using one condition variable, and no while loop is "

™ o comten, . 1

FINAL P/C - 3

Pthread_cond_signal (Sempty);
Pthread_mutex_unlock(smutex):
printf(“%d\n", tmp):

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

TC55422; Operating Systems [Fall 2021]
‘ LhEyE) s School of Engineering and Technology, University of Washington - Tacoma 126

56

[| |
" Using one condition variable, with a while loop is "

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

e comtent hel |
™ o comten, . 1

57

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

58

|
" Using two condition variables, and a while loop is "

™ o comten, . 1

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
| = Covering Conditlons |
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma L1260

59

Slides by Wes J. Lloyd

60

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

COVERING CONDITIONS COVERING CONDITIONS - 2

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:
= When a program deals with huge memory

allocation/deallocation on the heap o
= Access to the heap must be managed when memory is i
scarce 1 byteslest —- 3
15 Pthread mutex
1 pter

PREVENT: Out of memory: u

- queue requests until memory is free - i free(void Tptr, it size) {
Pthread mutex m 5
21 bytesLeft += sizes
= Which thread should be woken up? z

School of Engineering and Technology, University of Washington - Tacoma

TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
‘ LA RS School of Engineering and Technology, University of Washington - Tacoma L1261 LhEyE) s 262

61 62

COVER CONDITIONS - 3 CHAPTER 31: SEMAPHORES

= Broadcast awakens all blocked threads requesting memory = Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

= Each thread evaluates if there’s enough memory: (bytesLeft < = Allows fewer concurrency related variables in your code

size) = Potentially makes code more ambiguous
= Reject: requests that cannot be fulfilled- go back to sleep = For this reason, with limited time in a
Insufficient memory 10-week quarter, we do not cover

= Run: requests which can be fulfilled
with newly available memory!

= Ch. 31.6 - DIning Phllosophers Problem
= Classic computer science problem about

. sharing eating utensils
= Another use case: coordinate a group of busy threads to = (Elh il msmpiey (e i el (e (s

gracefully end, to EXIT the program in order to eat ;

& .

= Mimics deadlock as there are not enough forks <

= Overhead ¥

- = Solution is to have one left-handed philosopher = * =
= Many threads may be awoken which can’t execute that grabs forks in opposite order ; -

-
~
TC55422; Operating Systems [Fall 2021] TC55422; Operating Systems [Fall 2021]
May$9, 2023 School of Engineering and Technology, University of Washington - Tacoma L1263 May9, 2023 School of Engineering and Technology, University of Washington - Tacoma 264

63 64

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review

= Assignment O Grades Posted

= Assignment 1 - Nov 12

= Tutorial 2: Pthread Tutorial - to be posted

= Chapter 29: Lock Based Data Structures CHAPTER 32 =

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table CO N CU R R EN CY

= Chapter 30: Condition Variables

= Producer/Consumer P RO B LE MS

= Covering Conditions
|= Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Fall 2021] 112,65 May 9, 2023 TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma I School of Engineering and Technology, University of Washington - a L1266

‘ May 9, 2023

65 66

Slides by Wes J. Lloyd L12.11

TCSS 422 A - Fall 2021
School of Engineering and Technology

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock ~ Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser a1 16
Open Office Office Suite 6 2
Total 74 31
EEE e e

67

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Order violation: failure to initialize lock/condition
before use

TC55422; Operating Systems [Fall 2021]
‘ May 9,2023 School of Engineering and Technology, University of Washington - Tacoma L1269

69

5/9/2023

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
| = Non-deadlock concurrency bugs |
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Fall 2021] L1268
School of Engineering and Technology, University of Washington - Tacoma

‘ May9, 2023

68

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

= NULL is O in C

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1
3
4)i
Programmer intended 5
variable to be accessed ‘ € I
atomically... ;
9
[s [Iin oo (00 estiogon s

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

pthread mutex t lock = PTHREAD MUTEX INITIALIZER:

1

2

3 Threadl::

4 pthread mutex_loc
5

&

8

k(slock)

info)(

{thd->pro

fputs(thd->proc_infe , .)7

1
10 pthread_mutex_unlock (slock) i

12 Thread2::

13 pthread_mutex_
4 thd->proc_infs
15 pthread_mutex_unlock (slock) :

TCSS422: Operating Systems [Fall 2021]
‘ LERED School of Engineering and Technology, University of Washington - Tacoma L

70

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
= E.g. something is checked before it is set
= Example:

1 Threadl::

2 init0 [

3 mrthread = PR_CreateThread (mMain, .);
4

6 Thread2::

7 1 mMain.) {

8 mstate = mThread->State

9 1

= What if mThread is not initialized?

TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma L2

71

Slides by Wes J. Lloyd

72

L12.12

TCSS 422 A - Fall 2021
School of Engineering and Technology

ORDER VIOLATION - SOLUTION

= Use condition & signal to enforce order

pthread_mutex t mtLock = PTHREAD MUTEX
pthread_cond_t mtCond = PTHREAD_COND_IN
mtInit = 0

ITIALIZER:
IALIZER;

Thread 1::
init0{

1
1

mThread = PR_CreateThread (mMain,..):

utex_lock (smtLock) ;

School of Engineering and Technology, University of Washington - Tacoma

16 Threadz::
18 mMain(.){
20
‘ May®) 202 TC55422: Operating Systems [Fall 2021 273

73

NON-DEADLOCK BUGS - 1

®97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

TCS5422: Operating Systems [Fall 2021

‘ May 9,2023 School of Engineering and Technology, University of Washington - Tacoma

1275

75

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1:

Thread 2:

lock(L1);

lock (L2);

= Both threads can block, unless
one manages to acquire both locks

TCS3422: Operating Systems [Fall 2021]

‘ LERED School of Engineering and Technology, University of Washington - Tacoma

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

, antLock) |

T
SRREBEE

mState = mThread-»State;

TC55422; Operating Systems [Fall 2021]
‘ LhEyE) s School of Engineering and Technology, University of Washington - Tacoma v27e

74

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

TC55422; Operating Systems [Fall 2021]
‘ May 59,2023 School of Engineering and Technology, University of Washington - Tacoma 1278

76

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency blig_s

| = Deadlock causes |

= Deadlock prevention

TCS3422: Operating Systems [Fall 2021] 278
School of Engineering and Technology, University of Washington - Tacoma

‘ May 9, 2023

77

Slides by Wes J. Lloyd

78

5/9/2023

L12.13

TCSS 422 A - Fall 2021
School of Engineering and Technology

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

1
2

vector

w1.Adda11

= Vector is thread safe (synchronized) by design
= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCS5422: Operating Systems [Fall 2021]

‘ WETy) RS School of Engineering and Technology, University of Washington - Tacoma

1279

5/9/2023

CONDITIONS FOR DEADLOCK

= Four condltlons are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Held-and-wait resources

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

TC55422; Operating Systems [Fall 2021]
‘ LhEyE) s School of Engineering and Technology, University of Washington - Tacoma 280

79

OBJECTIVES - 5/9

= Questions from 5/2 & Midterm Review
= Assignment O Grades Posted
= Assignment 1 - Nov 12
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
| = Deadlock preventlon |

TCS5422: Operating Systems [Fall 2021

‘ RaySiz0zs School of Engineering and Technology, University of Washington - Tacoma

L1281

80

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 CompareAndSwap (expected, int new)|{
2 (*address
3 *ade
4
5]
& i
7 |
[s [Iin oo (00 estiogon s

81

82

= Recall atomic increment

1 AtomicIncrement (*value, int amount) [

old = *value;
{ CompareaAndSwapivalue, old, old:amount)==0);

= Compare and Swap tries over and over until
successful

PREVENTION - MUTUAL EXCLUSION -

= CompareAndSwap is guaranteed to be atomic
" When it runs it is ALWAYS atomic (at HW level)

2

TCS3422: Operating Systems [Fall 2021]

‘ LERED School of Engineering and Technology, University of Washington - Tacoma

11283

MUTUAL EXCLUSION: LIST INSERTION

= Consider list insertion

1 inzert (int value){
2 ¢ (sizeof (node_t)) s
3
4
]
TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma e

83

Slides by Wes J. Lloyd

84

L12.14

TCSS 422 A - Fall 2021
School of Engineering and Technology

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

insert (value) {

node_t *n = malloc(sizeof (node_t));
assert(n != NULL);

n->value = value;

{

n->next = head;

© o e W

) (CompareandSwap (shead, n->next, n));
'

1 insert (int value) {
2 node_t * n = malloc(sizeof (node_t)) s
3 assert(n ! Vi
" n->value = value ;
5 Lock(listlock 1
& >next d;
8 ock) #
9]
TC55422; Operating Systems [Fall 2021]
‘ LA RS School of Engineering and Technology, University of Washington - Tacoma L1285

85

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

= Assign &head to n (new node ptr)
= Only when head = n->next

TC55422; Operating Systems [Fall 2021]
‘ LhEyE) s School of Engineering and Technology, University of Washington - Tacoma 286

86

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (L2

unlock{prevention)

Held-and-wait

resources

No preemption

Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

TC55422; Operating Systems [Fall 2021]
‘ May 9,2023 School of Engineering and Technology, University of Washington - Tacoma 287

87

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Held-and-wait

resources

*No preemption

Resources cannot be forcibly removed from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Fall 2021]
‘ LERED School of Engineering and Technology, University of Washington - Tacoma L1289

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Fall 2021] L1288
School of Engineering and Technology, University of Washington - Tacoma

‘ May 9, 2023

88

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
= pthread_mutex_timedlock() - try and wait awhile

T tepr
z Lock (L) N 0
3 (tryLlock(L2) == -1){
4 unlock(Ll):
: b STOPPING
& 1

=Eliminates deadlocks TIME
TCS5422: Operating Systems [Fall 2021]
‘ WIEJELEFD School of Engineering and Technology, University of Washington - Tacoma 11290

89

Slides by Wes

J. Lioyd

90

5/9/2023

L12.15

TCSS 422 A - Fall 2021 5/9/2023
School of Engineering and Technology

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

Lock (L) ¢
{ trylock(n2) == -1)|
unlock(Ll):
top;

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the
livelock race!

re

TC55422; Operating Systems [Fall 2021]
‘ LA RS School of Engineering and Technology, University of Washington - Tacoma L2t

91

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
= Always acquire locks in same order
=L1, L2, L3, ...
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

=Must carry out same ordering through entire
program

‘ May 9, 2023

TCS5422: Operating Systems [Fall 2021] L1283
School of Engineering and Technology, University of Washington - Tacoma

93

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

.. ove comtent. X hely L

CONDITIONS FOR DEADLOCK

= Four condltlons are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Held-and-wait resources

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

Circular wait There exists a circular chain of threads such that each thread holds one more
* resources that are being requested by the next thread in the chain

TC55422; Operating Systems [Fall 2021]
‘ LhEyE) s School of Engineering and Technology, University of Washington - Tacoma 292

92

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description
Mutual Exclusion | Threads claim exclusive control of resources that they require.

“ Threads hold resources allocated to them while waiting for additional
Hold-and-wait resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TC55422; Operating Systems [Fall 2021]
‘ May 59,2023 School of Engineering and Technology, University of Washington - Tacoma 204

Circular wait

94

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

i yes yos no o
[[e yes | yes e |
TCS5422: Operating Systems [Fall 2021]
‘ e School of Engineering and Technology, University of Washington - Tacoma 126

95

Slides by Wes J. Lloyd

96

TCSS 422 A - Fall 2021
School of Engineering and Technology

INTELLIGENT SCHEDULING - 2

= Scheduler produces schedule:

=No deadlock can occur

= Consider:
5% yes yes yes ne
[e yes | yes yes | no |
TC55422; Operating Systems [Fall 2021]
l LA RS School of Engineering and Technology, University of Washington - Tacoma L1297

5/9/2023

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TC55422; Operating Systems [Fall 2021]
l LhEyE) s School of Engineering and Technology, University of Washington - Tacoma 208

97

DETECT AND RECOVER

action.
= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day

recovery techniques.

= Consider the effort tradeoff of finding every deadlock bug

= Allow deadlock to occasionally occur and then take some

Many database systems employ deadlock detection and

TCS5422: Operating Systems [Fall 2021

May$9, 2023 School of Engineering and Technology, University of Washington - Tacoma

L1299

98

QUESTIONS

99

Slides by Wes J. Lloyd

100

L12.17

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/9
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/2
	Slide 7: Fifo example
	Slide 8: Midterm Results
	Slide 9: Midterm review
	Slide 10: OBJECTIVES – 5/9
	Slide 11: OBJECTIVES – 5/9
	Slide 12: OBJECTIVES – 5/9
	Slide 13: Tutorial 2
	Slide 14: OBJECTIVES – 5/9
	Slide 15: Chapter 29 – LOCK Based data structures
	Slide 16: OBJECTIVES – 5/9
	Slide 17: approximate (sloppy) counter
	Slide 18: approximate counter – main points
	Slide 19: OBJECTIVES – 5/9
	Slide 20: Concurrent Linked list performance
	Slide 21: OBJECTIVES – 5/9
	Slide 22: Michael and scott concurrent queues
	Slide 23: Concurrent queue
	Slide 24: Concurrent queue - 2
	Slide 25: OBJECTIVES – 5/9
	Slide 26: Concurrent hash table
	Slide 27: Insert performance – concurrent hash table
	Slide 28: Concurrent hash table
	Slide 29
	Slide 30: Lock-free data structures
	Slide 31: OBJECTIVES – 5/9
	Slide 32: Chapter 30 – condition variables
	Slide 33: Condition variables
	Slide 34: Condition variables - 2
	Slide 35: Condition variables - 3
	Slide 36: Condition variables - questions
	Slide 37: Matrix generator
	Slide 38: OBJECTIVES – 5/9
	Slide 39: Matrix generator
	Slide 40: attempt to use condition variable without a while statement
	Slide 41: Producer / consumer
	Slide 42: Producer / consumer
	Slide 43: Producer / consumer - 2
	Slide 44: We will return at 2:50pm
	Slide 45: Put/get routines
	Slide 46: Producer / consumer - 3
	Slide 47: Producer / consumer - 3
	Slide 48: Producer/consumer - 4
	Slide 49: Execution trace: no while, 1 producer, 2 consumers
	Slide 50: producer/consumer synchronization
	Slide 51: Execution trace: while, 1 condition, 1 producer, 2 consumers
	Slide 52: Execution trace – 2 while, 1 condition, 1 producer, 2 consumers
	Slide 53: Two conditions
	Slide 54: Final producer/consumer
	Slide 55: Final p/c - 2
	Slide 56: Final p/c - 3
	Slide 57
	Slide 58
	Slide 59
	Slide 60: OBJECTIVES – 5/9
	Slide 61: Covering conditions
	Slide 62: Covering conditions - 2
	Slide 63: Cover conditions - 3
	Slide 64: Chapter 31: Semaphores
	Slide 65: OBJECTIVES – 5/9
	Slide 66: Chapter 32 – concurrency problems
	Slide 67: Concurrency bugs in open source software
	Slide 68: OBJECTIVES – 5/9
	Slide 69: Non-deadlock bugs
	Slide 70: Atomicity violation - mysql
	Slide 71: Atomicity violation - solution
	Slide 72: Order violation bugs
	Slide 73: Order violation - solution
	Slide 74: Order violation – solution - 2
	Slide 75: Non-deadlock bugs - 1
	Slide 76: Non-deadlock bugs - 2
	Slide 77: Deadlock bugs
	Slide 78: OBJECTIVES – 5/9
	Slide 79: Reasons for deadlocks
	Slide 80: Conditions for deadlock
	Slide 81: OBJECTIVES – 5/9
	Slide 82: Prevention – mutual exclusion
	Slide 83: Prevention – mutual exclusion - 2
	Slide 84: mutual exclusion: List insertion
	Slide 85: mutual exclusion – list insertion - 2
	Slide 86: Mutual exclusion – list insertion - 3
	Slide 87: Conditions for deadlock
	Slide 88: Prevention lock – hold and wait
	Slide 89: Conditions for deadlock
	Slide 90: Prevention – no preemption
	Slide 91: No preemption – livelocks problem
	Slide 92: Conditions for deadlock
	Slide 93: Prevention – circular wait
	Slide 94: Conditions for deadlock
	Slide 95
	Slide 96: Deadlock avoidance via intelligent scheduling
	Slide 97: Intelligent scheduling - 2
	Slide 98: Intelligent scheduling - 3
	Slide 99: Detect and recover
	Slide 100: Questions

