
TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.1Slides by Wes J. Lloyd

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

Lock-based data structures II,
Condition Variables,

Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – May 11

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.2

OBJECTIVES – 5/9

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 9, 2023
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

ONLINE DAILY FEEDBACK SURVEY

May 9, 2023
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L12.4

 Please classify your perspective on material covered in today’s

class (48 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.52 ( - previous 6.98)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.48 ( - previous 6.07)

May 9, 2023
TCSS422: Computer Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.5

MATERIAL / PACE

 From the practice midterm, in the FIFO example, A and C

are both 10 time slices, but why there were 10 As but

only 4 Cs on the diagram?

▪ There are actually 9 Cs, there should be 10

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.6

FEEDBACK FROM 5/2

1 2

3 4

5 6

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.2Slides by Wes J. Lloyd

 Operation of CPU schedulers can be visualized with timing

graphs.

 The graph below depicts a FIFO scheduler where three jobs

arrive in the sequence A, B, C, where job A runs for 10 time

slices, job B for 5 time slices, and job C for 10 time slices.

|

FIFO |AAAAAAAAAABBBBBCCCCCCCCCC

|___________________________________

0 10 15 25

May 9, 2023
TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L12.7

FIFO EXAMPLE

 Statistics

 Average: 83.28

 Mode: 92.0

 Median: 85.0

 Min score: 41

 Lower quartile: 77.00

 2nd quartile: 85.0

 3 rd quartile: 93

 Max score: 102

 Standard deviation:
13.49

 Curve: +2

 Missing: 4

May 9, 2023
TCSS562: Software Engineering for Cloud Computing [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

MIDTERM RESULTS

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.9

MIDTERM REVIEW

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.10

OBJECTIVES – 5/9

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.11

OBJECTIVES – 5/9

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.12

OBJECTIVES – 5/9

7 8

9 10

11 12

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.3Slides by Wes J. Lloyd

 Pthread Tutorial

 Practice using:

▪ pthreads

▪ Locks

▪ Condition variables

 Generate and visualize prime number generation in parallel

 To be posted in next couple of days

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.13

TUTORIAL 2

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.14

OBJECTIVES – 5/9

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L12.15

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

OBJECTIVES – 5/9

 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically

▪ Global counter has lock to protect global counter value

▪ Update threshold (S) – referred to as sloppiness threshold:

How often to push local values to global counter

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?

Why do we want counters local to each CPU Core?

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.17

APPROXIMATE (SLOPPY) COUNTER

 Idea of the Approximate Counter is to RELAX the

synchronization requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading -off split-second

accuracy of the counter

 Approximate counter: trade-off accuracy for speed

▪ It’s approximate because it’s not so accurate (until the end)

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

APPROXIMATE COUNTER – MAIN POINTS

13 14

15 16

17 18

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.4Slides by Wes J. Lloyd

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.19

OBJECTIVES – 5/9

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.20

CONCURRENT LINKED LIST PERFORMANCE

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.21

OBJECTIVES – 5/9

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the

same time

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.22

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.23

CONCURRENT QUEUE

 Add to queue

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.24

CONCURRENT QUEUE - 2

19 20

21 22

23 24

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.5Slides by Wes J. Lloyd

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.25

OBJECTIVES – 5/9

Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.26

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.27

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.28

CONCURRENT HASH TABLE

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.2
9

 Lock-free data structures in Java

 Java.uti l .concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.html

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.30

LOCK-FREE DATA STRUCTURES

25 26

27 28

29 30

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.6Slides by Wes J. Lloyd

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.31

OBJECTIVES – 5/9

CHAPTER 30 –

CONDITION VARIABLES

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.3
2

 There are many cases where a thread wants to

wait for another thread before proceeding with

execution

Consider when a precondition must be fulfilled

before it is meaningful to proceed …

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.33

CONDITION VARIABLES

 Support a signaling mechanism to alert

threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or

respond to state changes in the application

 Threads are placed on (FIFO) queue to WAIT for signals

 Signal: wakes one thread (thread waiting longest)

broadcast wakes all threads (ordering by the OS)

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.34

CONDITION VARIABLES - 2

 Condition variable

▪ Requires initialization

 Condition API calls

 wait() accepts a mutex parameter

▪ Releases lock, puts thread to sleep, thread added to FIFO queue

 signal()

▪ Wakes up thread, awakening thread acquires lock

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.35

CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to put waiting threads on a queue?

why not use a stack?

▪ Queue (FIFO), Stack (LIFO)

 Why do we want to not busily wait for the lock to become

available?

▪ Using condition variables eliminates busy waiting by putting threads

to “sleep” and yielding the CPU.

 A program has 10-threads, where 9 threads are waiting. The

working thread finishes and broadcasts that the lock is

available. What happens next?

▪ All threads woken up in FIFO order - based on when started to wait

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.36

CONDITION VARIABLES - QUESTIONS

31 32

33 34

35 36

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.7Slides by Wes J. Lloyd

Matrix generation example

Chapter 30

signal.c

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.37

MATRIX GENERATOR

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.38

OBJECTIVES – 5/9

 The worker thread produces a matrix

▪ Matrix stored using shared global pointer

 The main thread consumes the matrix

▪ Calculates the average element

▪ Display the matrix

 What would happen if we don’t use a condition variable to

coordinate exchange of the lock?

 Example program: “nosignal.c”

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.39

MATRIX GENERATOR

 Subtle race condition introduced

 Parent thread calls thr_join() and executes comparison (line 7)

 Context switches to the child

 The child runs thr_exit() and signals the parent, but the parent

is not waiting yet. (parent has not reached line 8)

 The s ignal is lost !

 The parent deadlocks

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.40

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

 Parent calls

 Child calls

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.41

PRODUCER / CONSUMER

 Producer

▪ Produces items – e.g. child the makes matricies

▪ Places them in a buffer

▪ Example: the buffer size is only 1 element (single array pointer)

 Consumer

▪ Grabs data out of the buffer

▪ Our example: parent thread receives dynamically

generated matrices and performs an operation on them

▪ Example: calculates average value of every element (integer)

 Multithreaded web server example

▪ Http requests placed into work queue; threads process

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.42

PRODUCER / CONSUMER

37 38

39 40

41 42

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.8Slides by Wes J. Lloyd

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

▪ Similar to piping output from one Linux process to another

▪ grep pthread signal.c | wc –l

▪ Synchronized access:

sends output from grep → wc as it is produced

▪ File stream

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.43

PRODUCER / CONSUMER - 2

WE WILL RETURN AT

2:50PM

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.4
4

 Buffer is a one element shared data structure (int)

 Producer “puts” data, Consumer “gets” data

 “Bounded Buffer” shared data structure requires

synchronization

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.45

PUT/GET ROUTINES

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Without synchronization:

1. Producer Function 2. Consumer Function

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.46

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.47

PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 PROBLEM: no while. If thread wakes up it MUST execute

 If we scale to (2+) consumer’s it fails

▪ How can it be fixed ?

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.48

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2

21 Pthread_cond_wait(&cond, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&cond); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Consumer

43 44

45 46

47 48

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.9Slides by Wes J. Lloyd

 Two threads

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.49

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 When producer threads awake, they do not check if there is

any data in the buffer…

▪ Need “while” statement, “if” statement is insufficient …

 What if Tp puts a value, wakes Tc1 whom consumes the value

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.50

PRODUCER/CONSUMER

SYNCHRONIZATION

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.51

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.52

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Required w/ multiple producer and consumer threads

 Use two condition variables: empty & full

▪ One condition handles the producer

▪ the other the consumer

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.53

TWO CONDITIONS

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex);

8 while (count == 1)

9 Pthread_cond_wait(&empty, &mutex);

10 put(i);

11 Pthread_cond_signal(&fill);

12 Pthread_mutex_unlock(&mutex);

13 }

14 }

15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

 >> Becomes BOUNDED BUFFER , can store multiple matricies

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.54

FINAL PRODUCER/CONSUMER

49 50

51 52

53 54

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.10Slides by Wes J. Lloyd

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.55

FINAL P/C - 2

full

(&full);

&full,

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.56

FINAL P/C - 3

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.5
7

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.5
9

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.60

OBJECTIVES – 5/9

55 56

57 58

59 60

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.11Slides by Wes J. Lloyd

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.61

COVERING CONDITIONS

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.62

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory: (bytesLeft <

size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.63

COVER CONDITIONS - 3

 Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous

▪ For this reason, with limited time in a
10-week quarter, we do not cover

 Ch. 31.6 – Dining Philosophers Problem

▪ Classic computer science problem about
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher
that grabs forks in opposite order

May 9, 2023 L12.64

CHAPTER 31: SEMAPHORES

TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.65

OBJECTIVES – 5/9

CHAPTER 32 –

CONCURRENCY

PROBLEMS

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma L12.66

61 62

63 64

65 66

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.12Slides by Wes J. Lloyd

 “Learning from Mistakes – A Comprehensive Study on

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and

Operating Systems (ASPLOS 2008), Seattle WA

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.67

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.68

OBJECTIVES – 5/9

Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition

before use

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.69

NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among

separate threads is not enforced (e.g. non-atomic)

 Simple example: proc_info deleted

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.70

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.71

ATOMICITY VIOLATION - SOLUTION

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.72

ORDER VIOLATION BUGS

67 68

69 70

71 72

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.13Slides by Wes J. Lloyd

 Use condition & signal to enforce order

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.73

ORDER VIOLATION - SOLUTION

 Use condit ion & signal to enforce order

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.74

ORDER VIOLATION – SOLUTION - 2

97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.75

NON-DEADLOCK BUGS - 1

Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.76

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless

one manages to acquire both locks

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.77

DEADLOCK BUGS

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.78

OBJECTIVES – 5/9

73 74

75 76

77 78

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.14Slides by Wes J. Lloyd

 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time

deadlock could result

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.79

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.80

CONDITIONS FOR DEADLOCK

 Questions from 5/2 & Midterm Review

 Assignment 0 Grades Posted

 Assignment 1 – Nov 12

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.81

OBJECTIVES – 5/9

 Build wait-free data structures

▪ Eliminate locks altogether

▪ Build structures using CompareAndSwap atomic CPU (HW)

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.82

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.83

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.84

MUTUAL EXCLUSION: LIST INSERTION

79 80

81 82

83 84

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.15Slides by Wes J. Lloyd

 Lock based implementation

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.85

MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.86

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

 Four conditions are required for dead lock to occur

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.87

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while

acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.88

PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.89

CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.90

PREVENTION – NO PREEMPTION

85 86

87 88

89 90

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.16Slides by Wes J. Lloyd

Can lead to livelock

 Two threads execute code in parallel →

always fail to obtain both locks

 Fix: add random delay

▪Allows one thread to win the

livelock race!

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.91

NO PREEMPTION – LIVELOCKS PROBLEM

 Four conditions are required for dead lock to occur

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.92

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire

program

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.93

PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT

EXSIST, describe why deadlock can not occur?

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.94

CONDITIONS FOR DEADLOCK

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L10.9
5

Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario:

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

 Lock requirements of threads:

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.96

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

91 92

93 94

95 96

TCSS 422 A – Fall 2021
School of Engineering and Technology

5/9/2023

L12.17Slides by Wes J. Lloyd

Scheduler produces schedule:

No deadlock can occur

Consider:

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.97

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the

difficulty having intimate lock knowledge about every

thread

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.98

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and

recovery techniques.

May 9, 2023
TCSS422: Operating Systems [Fall 2021]
School of Engineering and Technology, University of Washington - Tacoma

L12.99

DETECT AND RECOVER QUESTIONS

97 98

99 100

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/9
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/2
	Slide 7: Fifo example
	Slide 8: Midterm Results
	Slide 9: Midterm review
	Slide 10: OBJECTIVES – 5/9
	Slide 11: OBJECTIVES – 5/9
	Slide 12: OBJECTIVES – 5/9
	Slide 13: Tutorial 2
	Slide 14: OBJECTIVES – 5/9
	Slide 15: Chapter 29 – LOCK Based data structures
	Slide 16: OBJECTIVES – 5/9
	Slide 17: approximate (sloppy) counter
	Slide 18: approximate counter – main points
	Slide 19: OBJECTIVES – 5/9
	Slide 20: Concurrent Linked list performance
	Slide 21: OBJECTIVES – 5/9
	Slide 22: Michael and scott concurrent queues
	Slide 23: Concurrent queue
	Slide 24: Concurrent queue - 2
	Slide 25: OBJECTIVES – 5/9
	Slide 26: Concurrent hash table
	Slide 27: Insert performance – concurrent hash table
	Slide 28: Concurrent hash table
	Slide 29
	Slide 30: Lock-free data structures
	Slide 31: OBJECTIVES – 5/9
	Slide 32: Chapter 30 – condition variables
	Slide 33: Condition variables
	Slide 34: Condition variables - 2
	Slide 35: Condition variables - 3
	Slide 36: Condition variables - questions
	Slide 37: Matrix generator
	Slide 38: OBJECTIVES – 5/9
	Slide 39: Matrix generator
	Slide 40: attempt to use condition variable without a while statement
	Slide 41: Producer / consumer
	Slide 42: Producer / consumer
	Slide 43: Producer / consumer - 2
	Slide 44: We will return at 2:50pm
	Slide 45: Put/get routines
	Slide 46: Producer / consumer - 3
	Slide 47: Producer / consumer - 3
	Slide 48: Producer/consumer - 4
	Slide 49: Execution trace: no while, 1 producer, 2 consumers
	Slide 50: producer/consumer synchronization
	Slide 51: Execution trace: while, 1 condition, 1 producer, 2 consumers
	Slide 52: Execution trace – 2 while, 1 condition, 1 producer, 2 consumers
	Slide 53: Two conditions
	Slide 54: Final producer/consumer
	Slide 55: Final p/c - 2
	Slide 56: Final p/c - 3
	Slide 57
	Slide 58
	Slide 59
	Slide 60: OBJECTIVES – 5/9
	Slide 61: Covering conditions
	Slide 62: Covering conditions - 2
	Slide 63: Cover conditions - 3
	Slide 64: Chapter 31: Semaphores
	Slide 65: OBJECTIVES – 5/9
	Slide 66: Chapter 32 – concurrency problems
	Slide 67: Concurrency bugs in open source software
	Slide 68: OBJECTIVES – 5/9
	Slide 69: Non-deadlock bugs
	Slide 70: Atomicity violation - mysql
	Slide 71: Atomicity violation - solution
	Slide 72: Order violation bugs
	Slide 73: Order violation - solution
	Slide 74: Order violation – solution - 2
	Slide 75: Non-deadlock bugs - 1
	Slide 76: Non-deadlock bugs - 2
	Slide 77: Deadlock bugs
	Slide 78: OBJECTIVES – 5/9
	Slide 79: Reasons for deadlocks
	Slide 80: Conditions for deadlock
	Slide 81: OBJECTIVES – 5/9
	Slide 82: Prevention – mutual exclusion
	Slide 83: Prevention – mutual exclusion - 2
	Slide 84: mutual exclusion: List insertion
	Slide 85: mutual exclusion – list insertion - 2
	Slide 86: Mutual exclusion – list insertion - 3
	Slide 87: Conditions for deadlock
	Slide 88: Prevention lock – hold and wait
	Slide 89: Conditions for deadlock
	Slide 90: Prevention – no preemption
	Slide 91: No preemption – livelocks problem
	Slide 92: Conditions for deadlock
	Slide 93: Prevention – circular wait
	Slide 94: Conditions for deadlock
	Slide 95
	Slide 96: Deadlock avoidance via intelligent scheduling
	Slide 97: Intelligent scheduling - 2
	Slide 98: Intelligent scheduling - 3
	Slide 99: Detect and recover
	Slide 100: Questions

