TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Linux Thread API,

Lock Implementations, 3
Lock-based data structures, m<:

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2023]

Ravi2je02s School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 5/2

| ® Questions from 4/27 |

® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

May 2, 2023

Slides by Wes J. Lloyd L11.1



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Sllabus TCSS 422 - Online Dai
P - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Spring 2023]
May;2;2023 School of Engineering and Technology, University of Washington - Tacoma L3
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[ | Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Spring 2023]
ilavi22izy School of Engineering and Technology, University of Washington - Tacoma L11.4
4

Slides by Wes J. Lloyd L11.2



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (43 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.98 (Y - previous 7.30)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 6.07 (T - previous 5.70)

TCSS422: Computer Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.5

FEEDBACK FROM 4/27

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma 1116

May 2, 2023

Slides by Wes J. Lloyd L11.3



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
|- C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28 |
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

L11.7
School of Engineering and Technology, University of Washington - Tacoma

May 2, 2023

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
|l Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L118

May 2, 2023

Slides by Wes J. Lloyd L11.4



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
|l Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2‘
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.9

QulIZ 2

Canvas Quiz - Practice CPU Scheduling Problems

Posted in Canvas

Unlimited attempts permitted

Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)
Multiple choice and fill-in the blank

® Quiz automatically scored by Canvas

= Please report any grading problems

Due Tuesday May 2"9 at 11:59pm

= Link:
https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS422: Operating Systems [Spring 2023]

LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma

L11.10

10

Slides by Wes J. Lloyd L11.5


https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
-|Chapter 28: Locksl
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.11

11

CHAPTER 28 -

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington -

May 2, 2023

12

Slides by Wes J. Lloyd L11.6



TCSS 422 A — Spring 2023
School of Engineering and Technology

“LOCK BUILDING” CPU INSTRUCTIONS

ON ARM PROCESSORS

® Two instructions used together to support synchronization
on RISC systems

® These instructions are not on x86 processors
®They are on RISC CPUs: Alpha, PowerPC, ARM

= Load-linked (LL)
= L oads value into register
= Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Spring 2023]

L11.1
School of Engineering and Technology, University of Washington - Tacoma 3

May 2, 2023

13

LL/SC LOCK

int LoadLinked (int *ptr) {
*ptr;
}

(no one has updated *ptr since the LoadLinked to this address) {
*ptr = value;

1; // success!

1
2
3
4
5 int StoreConditional (int *ptr, int value) {
6
7
8

® LL instruction loads pointer value (ptr)
® SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1114

May 2, 2023

14

Slides by Wes J. Lloyd

5/2/2023

L11.7



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

LL/SC LOCK - 2

1 void lock (lock_t *lock) {

2 1) {

3 (LoadLinked (&lock->flag) == 1)

4 i // spin until it’s zero

5 (storeConditional (&lock->flag, 1

3 i /7 if i o-1 cess: all done
7 ot er again
8 }

9}

10

11 wvoid unlock(lock t *lock) {

12 lock->flag = 0;

13}

® Provides a two instruction lock

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.15

15

OBJECTIVES - 5/2

® Questions from 4/27

® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9

® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)

= Chapter 28: Locks

|- Chapter 29: Lock Based Data Structures |
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

May 2, 2023

16

Slides by Wes J. Lloyd L11.8



TCSS 422 A — Spring 2023
School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2023]

L) 2 AR School of Engineering and Technology, University of Washington -

LOCK-BASED
CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

TCSS422: Operating Systems [Spring 2023]

LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma

L11.18

18

Slides by Wes J. Lloyd

5/2/2023

L11.9



TCSS 422 A — Spring 2023
School of Engineering and Technology

COUNTER STRUCTURE W/0O LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t {
2 int value;
3 } counter t;
4
5 void init (counter t *c) {
[ c->value = 07
7 }
8
9 void increment (counter t *c) {
10 c->value++;
11 1
12
13 vold decrement (counter t *c) {
14 c->value-—;
15 1
16
17 int get(counter t *c) {
13 return c-»value;
19 1
May 2, 2023 TCSS422: Operating Systems [Spring 2023] 111.19

School of Engineering and Technology, University of Washington - Tacoma

19

CONCURRENT COUNTER

1 typedef struct _ counter t {

2 int value;

3 pthread lock_t lock;

4 } counter t;

5

3 vold init(counter_t *c) {

7 c->value = 07

8 Pthread mutex init(&c->lock, NULL);
9 }

10

11 void increment (counter t *c) {

12 Pthread mutex lock(ac->lock):
13 c->value++;

14 Pthread mutex unlock(&c->lock);
15 1

16

= Add lock to the counter
= Require lock to change data

May 2, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L11.20

20

Slides by Wes J. Lloyd

5/2/2023

L11.10



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)

17 void decrement (counter t *c) {

18 Pthread mutex lock(&c->lock):

19 c->value-—;

20 Pthread mutex unlock(&c->lock);

21 }

22

23 int get(counter_t *c) {

24 Pthread mutex lock(&c->lock):

25 int rc = c-»value;

26 Pthread_mutex_unlock(ac->lock):

27 return rc;

28 }

TCSS422: Operating Systems [Spring 2023

pavije02s School of E:gineerigngyand Te£h':\ologgy, Un]iversity of Washington - Tacoma t.21

21

CONCURRENT COUNTERS - PERFORMANCE

® Concurrent counter is considered a “precise counter”
® iMac: four core Intel 2.7 GHz i5 CPU
® Each thread increments counter 1,000,000 times

157
X Precise
© Approximate
w
T 10
=]
o
2
£
F 5]
0 ¥ ¥ e ?
1 2 3 4

Threads

scales poorly

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

| May 2, 2023

22

Slides by Wes J. Lloyd L11.11



TCSS 422 A — Spring 2023
School of Engineering and Technology

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core

=N =100 tps

= 10 cores (x10)
=N =1000 tps (x10)

= |s parallel counting with a shared counter an embarrassingly
parallel problem?

TCSS422: Operating Systems [Spring 2023]

111.2.
School of Engineering and Technology, University of Washington - Tacoma 3

May 2, 2023

23

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
| = Approximate Counter (Sloppy Counter) |
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1124

May 2, 2023

24

Slides by Wes J. Lloyd

5/2/2023

L11.12



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

APPROXIMATE (SLOPPY) COUNTER

® Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically

Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.25

25

APPROXIMATE COUNTER - MAIN POINTS

® |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting

= Instead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

® Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= |t's approximate because it’s not so accurate (until the end)

TCSS422: Operating Systems [Spring 2023]

LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma

L11.26

26

Slides by Wes J. Lloyd L11.13



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

APPROXIMATE COUNTER - 2

= Update threshold (S) = 5
®m Synchronized across four CPU cores
= Threads update local CPU counters

Time Ly L, Ls Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5=>0 1 3 4 5 (from L;)
7 0 2 4 520 10 (from L,)

May;2;2023 ZE:(Slezgf S:geifetier:'ignsgyas:\ednjliEi?\i?oggi?f]i]iversity of Washington - Tacoma L1127

27

THRESHOLD VALUE S

® Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

154

0 T T T T T T F—F—x
1 2 4 8 16 32 64 128 256 5121024

Approximation Factor (S)

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L11.28

May 2, 2023

28

Slides by Wes J. Lloyd L11.14



TCSS 422 A — Spring 2023

5/2/2023
School of Engineering and Technology

APPROXIMATE COUNTER - EXAMPLE

= Example implementation - sloppybasic.c

m Also with CPU affinity

May 2, 2023 TCSS422: Operating Systems [Spring 2023]

111.2!
School of Engineering and Technology, University of Washington - Tacoma 9

29

“n "

@& When poll is active, respond at pollev.com/wesleylloyd641
7 Text WESLEYLLOYDG641 to 22333 once to join

Which of the following is NOT a problem as a
result of having a low S-value for the

approximate counter (Sloppy Counter)
threshold?

The counter overhead is very high.

The counterimplementation performs a very
large number of LOCK/UNLOCK API calls.

The global counter value is highly accurate.

The counter performs very few local to global
counter updates.

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

30

Slides by Wes J. Lloyd L11.15



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
|- Concurrent Structures: Linked ListlQueue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.31

31

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1 // basic node structure
2 typedef struct _ node t {
3 int key:
4 struct _ node t *next;
5 } node_t:
6
7 // basic list structure (one used per list)
g typedef struct _ 1list_t {
9 node_t *head;
10 pthread mutex_t lock:
11 } list_ts
12
13 vold List_Init(list_t *L) {
14 L->head = NULL;
15 pthread mutex init (sL->lock, NULL);
16 }
17
(Cont.)
TCSS422: Operating Systems [Spring 2023
payj22023 School of Er?gineerigngyand TeEh':\ologgy, Un]iversity of Washington - Tacoma t11.32

32

Slides by Wes J. Lloyd L11.16



TCSS 422 A — Spring 2023
School of Engineering and Technology

CONCURRENT LINKED LIST - 2

® |[nsert - adds item to list
m Everything is critical!
= There are two unlocks

School of Engineering and Technology, University of Washington - Tacoma

(Cont.)
18 int List_ Insert (list t *L, int key) {
19 pthread mutex lock(&L->lock);
20 node t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc")
23 pthread mutex unlock(&L->lock);
24 return -1; // fail }
26 new->key = key;
27 new->next = L->head;
28 L->head = new;
29 pthread mutex unlock(&L->lock);
30 return 0; // success
31 }
(Cont.)
May 2, 2023 TCSS422: Operating Systems [Spring 2023] 111.33

33

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

School of Engineering and Technology, University of Washington - Tacoma

(Cont.)
32
32 int List Lookup (list t *L, int key) {
33 pthread mutex lock(s&L->lock):
34 node t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex unlock(&L->lock);
38 return 0; // success
39 1
40 curr = curr->next;
41 1
42 pthread mutex unlock(&L->1ock);
43 return -1; // failure
44 1
May 2, 2023 TCSS422: Operating Systems [Spring 2023] L1134

34

Slides by Wes J. Lloyd

5/2/2023

L11.17



TCSS 422 A — Spring 2023

School of Engineering and Technology

CONCURRENT LINKED LIST

® First Implementation:

= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

® Second Implementation ...

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.35

35

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {
2 L->head = NULL:
3 pthread mutex init (aL->lock, NULL);
4 }
5
[3 vold List_Insert(list t *L, int key) {
7 // synchronization not needed
8 node_t *new = malloc(sizeof (node_t));
9 if (new == NULL) {
10 perror ("malloc") ;
11 return;
12 1
13 new->key = key;
14
15 // Jjust lock critical sectior
16 pthread mutex lock(&L->lock);
17 new->next = L->head;
18 L->head = new;
19 pthread mutex unlock(&L->1ock);
20 }
21
TCSS422: Operating Systems [Spring 2023]
LLYZ 2025 School of Er?gineerigngyand Tech':\ologgy, University of Washington - Tacoma L1136

36

Slides by Wes J. Lloyd

5/2/2023

L11.18



TCSS 422 A — Spring 2023
School of Engineering and Technology

CCL - SECOND IMPLEMENTATION - 2

= L ookup
(cont.)
22 int List Lookup (list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L—>lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr-skey == key) {
28 rv = 07
29 break;
30 1
31 curr = curr->next;
32 1
33 pthread mutex unlock(&L->1ock);
34 return rv; // now both success and failure
35 1
TCSS422: Operating Systems [Spring 2023
May;2;2023 School of E:gineerigngyand Te£h':\ologgy, Un]iversity of Washington - Tacoma L11.37

37

CONCURRENT LINKED LIST PERFORMANCE

m Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2023]

LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma

38

Slides by Wes J. Lloyd

5/2/2023

L11.19



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Hash Table

= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.39

39

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Spring 2023]

LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma

L11.40

40

Slides by Wes J. Lloyd L11.20



TCSS 422 A — Spring 2023
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

@ U W R

ty] struct _ node t {
int value;
struct _ node t *next:

} node_t;

typedef struct _ queue t {

node_t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex t tailLock;

} queue_t;

void Queue_Init (queue_t *q) {
node t *tmp = malloc(sizeof (node_t)):
tmp-»>next = NULL;
g->head = g->tail = tmp;
pthread mutex_init (&g->headLock, NULL);
pthread mutex init(eg->taillock, NULL);

May 2, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L11.41

41

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)

Queue Enqueue(queue t *q, int value) ({
node t *tmp = malloc(sizeof (node t));
assert (tmp != NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(ag->tailLock);
g-»tail->next = tmp;

g->tail = tmp;
pthread mutex unlock(&g->taillLock);

May 2, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L11.42

42

Slides by Wes J. Lloyd

5/2/2023

L11.21



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue,[Hash Table

= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.43

43

CONCURRENT HASH TABLE

mConsider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1144

May 2, 2023

44

Slides by Wes J. Lloyd L11.22



TCSS 422 A — Spring 2023
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15 1
O Simple Concurrent List
X Concurrent Hash Table
o
© 10+
Q
o
@
&
]
E 51
=
0 T T

¥ ol
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

1 #define BUCKETS (101)
2
3 Cypedef struct _ hash t {
4 list_t 1ists[BUCKETS];
5 } hash_t;
&
7 void Hash Init(hash t *H) {
8 int i;
9 for (1 = 0; 1 < BUCKETS; i++) {
10 List Init (&H->1ists[i]);
11 }
12 1
13
14 int Hash_ Insert(hash t *H, int key) {
15 int bucket = key % BUCKETS;
1é return List_Insert(&H->1ists[bucket], key):
17 1
18
19 int Hash Lookup(hash t *H, int key) {
20 int bucket = key % BUCKETS;
21 return List_Lookup (sH->1lists[bucketl], key):
22 1
May 2, 2023 TCSS422: Operating Systems [Spring 2023] L11.46

School of Engineering and Technology, University of Washington - Tacoma

46

Slides by Wes J. Lloyd

5/2/2023

L11.23



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

.'Which is a major advantage of using concurrent data'.
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

47

LOCK-FREE DATA STRUCTURES

® Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle. com/en/Javazwvase[ii[docs[aplz

java.base/java/util/concurrent/atomic/package-summary.

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

May 2, 2023

48

Slides by Wes J. Lloyd L11.24



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

OBJECTIVES - 5/2

® Questions from 4/27
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour |

TCSS422: Operating Systems [Spring 2023]

| May;2;2023 School of Engineering and Technology, University of Washington - Tacoma

L11.49

49

WE WILL RETURN AT

5:05PM

TCSS422: Operating Systems [Spring 2023]

Ty 2 AP School of Engineering and Technology, University of Washington -

50

Slides by Wes J. Lloyd L11.25



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

MIDTERM
REVIEW

TCSS422: Operating Systems [Spring 2023]

L) 2 AR School of Engineering and Technology, University of Washington -

MIDTERM

= Thursday May 4th

® |In Class in BHS 106 (2.0 hrs 3:40 - 5:40p)

= Test designed to take less than 2 hours

= Two pages of notes, double-sided, any-size paper permitted
= No book, other notes, cell phones, or internet

= Basic calculators OK

= Individual work

® Coverage: all content up through Chapter 29, sloppy counter

= Preparation:
= Practice quiz: Quiz 2: CPU scheduling (posted)

= Auto grading w/ multiple attempts allowed as study aid
® Practice- second hour of lecture

= Series of problems presented with some time to solve

= Will then work through solutions

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L11.52

May 2, 2023

52

Slides by Wes J. Lloyd L11.26



TCSS 422 A — Spring 2023

5/2/2023
School of Engineering and Technology

FIFO EXAMPLE

= Operation of CPU schedulers can be visualized with timing
graphs.

= The graph below depicts a FIFO scheduler where three jobs
arrive in the sequence A, B, C, where job A runs for 10 time
slices, job B for 5 time slices, and job C for 10 time slices.

I
FIFO |AAAAAAAAAABBBBBCCCCCCCCC
I
0 10 15 25

May 2, 2023 TCSS422: Operating Systems [Spring 2023]

L11.
School of Engineering and Technology, University of Washington - Tacoma 53

53

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15

|

|
SJF |

|

|

0

May 2, 2023 TCSS422: Operating Systems [Spring 2023] L1154

School of Engineering and Technology, University of Washington - Tacoma

54

Slides by Wes J. Lloyd L11.27



TCSS 422 A — Spring 2023
School of Engineering and Technology

Q1 - SJF-2

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C: TT Job C:

What is the average response time for all jobs?

What is the average turnaround time for all jobs? ___________

TCSS422: Operating Systems [Spring 2023]

L11.
School of Engineering and Technology, University of Washington - Tacoma 55

May 2, 2023

55

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
Cc T=10 15

|

|
CPU |

|

|

0

TCSS422: Operating Systems [Spring 2023]
LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma L1156

56

Slides by Wes J. Lloyd

5/2/2023

L11.28



TCSS 422 A — Spring 2023
School of Engineering and Technology

Q2 - STCF - 2

® What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C: TT Job C:

® What is the average response time for all jobs?

® What is the average turnaround time for all jobs?

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

57

Q3 - OPERATING SYSTEM APIs

1. Provide a definition for what is a blocking API call

2. Provide a definition for a non-blocking API call

3. Provide an example of a blocking API call.
Consider APIs used to manage processes and/or threads.

4. Provide an example of a non-blocking API call.
Consider APIs used to manage processes and/or threads.

TCSS422: Operating Systems [Spring 2023]

LLYZ 2025 School of Engineering and Technology, University of Washington - Tacoma

L11.58

58

Slides by Wes J. Lloyd

5/2/2023

L11.29



TCSS 422 A — Spring 2023
School of Engineering and Technology

Q4 - OPERATING SYSTEM APIs - 1l

1. When implementing memory synchronization for a
multi-threaded program list one advantage of combining the use
of a condition variable with a lock variable via the Linux C
thread API calls: pthread mutex_lock () and pthread_cond_wait ()

2. When implementing memory synchronization for a
multi-threaded program using locks, list one disadvantage of
using blocking thread API calls such as the Linux C thread API
calls for: pthread_mutex_lock()and pthread cond_wait ()

3. List (2) factors that cause Linux blocking API calls to
introduce overhead into programs:

TCSS422: Operating Systems [Spring 2023]

L11.
School of Engineering and Technology, University of Washington - Tacoma 59

May 2, 2023

59

Q5 - PERFECT MULTITASKING

OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly 1/nth of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user voluntarily yielding the CPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L11.60

May 2, 2023

60

Slides by Wes J. Lloyd

5/2/2023

L11.30



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

TCSS422: Operating Systems [Spring 2023] L11.6

Mav2yzus School of Engineering and Technology, University of Washington - Tacoma 1

61

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
Cc T=10 15
|
I
RR I
I
|
0

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L11.62

May 2, 2023

62

Slides by Wes J. Lloyd L11.31



TCSS 422 A — Spring 2023
School of Engineering and Technology

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

NOTE: In the class, we mentioned

Job Arrival Time Job Length | howitis not clear at time
A T=0 25 t=13 if job A or B will be run.
B T=5 10

The solution on the next page
c T=10 15 assumes job A will be run.

But a solution where job B
runs next at time t=13 is

also okay because the problem
does not specify a rule.

RR

|
|
|
|
|
0

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.63 |

63

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

(X 2:)?

ne Y ol

Where n is the number of jobs, and x; is the time share of each

process Jain’s fairness index=1 for best case fairness, and 1/n for
worst case fairness.

J(xlij!"‘ixﬂ) =

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?

Job A: Job B: Job C:

With these values, calculate Jain’s fairness index from t=10 to t=50.

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1164

May 2, 2023

64

Slides by Wes J. Lloyd

5/2/2023

L11.32



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

Q6 - 11

(X )’

T(z1, T2y yTp) = ————
] ) ] n-z:‘=1x‘-2

TCSS422: Operating Systems [Spring 2023]

Mavj2an2s School of Engineering and Technology, University of Washington - Tacoma L11.65

65

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following

tradeoffs:
1. High number of Global Updates 2. High Performance
3. High Overhead 4. High Accuracy
5. Low number of Global Updates 6. Low Performance
7. Low Overhead 8. Low Accuracy
Low sloppy threshold (S) High sloppy threshold (S)
| |
LLYZ 2025 ;gszzlzgégr?gei':etier:ignsgy::\ednig\iirlfgi?ailiversity of Washington - Tacoma L11.66

66

Slides by Wes J. Lloyd L11.33



TCSS 422 A — Spring 2023
School of Engineering and Technology

MULTI-LEVEL FEEDBACK QUEUE

= Review the bonus lecture for scheduling examples
including several Multi-level-feedback-queue problems (MLFQ)

shttps://tinyurl.com/4sepy582

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.67

67

SOLUTIONS

TCSS422: Operating Systems [Spring 2023]

May 2, 2023 L11.68

School of Engir ing and University of i - Tacoma

68

Slides by Wes J. Lloyd

5/2/2023

L11.34


https://tinyurl.com/4sepy582

TCSS 422 A — Spring 2023

5/2/2023
School of Engineering and Technology

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15
|
I
|
|
0 5 35 50
TCSS422: Operating Systems [Spring 2023]
| Mayj212025 School of Engineering and Technology, University of Washington - Tacoma L1169

69

Q1 - SJF-2

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: O TT Job A: 26

rr gob B: (5 -5=20 ot gob B: 35-57330

RT Job C: IO - lo = 25 TT Job c: 90 -[0=9D

What is the average response time for all jobs? 3 =

What is the average turnaround time for all jobs? __3 —_

May 2, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L11.70

70

Slides by Wes J. Lloyd L11.35



TCSS 422 A — Spring 2023
School of Engineering and Technology

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 55 20

B T=5 20 5' O

(& T=10 15

CPU
° 5 S 30 50O
TCSS422: Operating Systems [Spring 2023]
May;2;2023 School of Engineering and Technology, University of Washington - Tacoma L1171

71

Q2 - STCF - 2

® What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: Q TT Job A: 60

RT Job B: O TT Job B: 5-5 <10

Rr Job c: 15710 < > 11 Job c: 010 =20

= What is the average response time for all jobs? >____3 ——
Aol

&504170 12 . %0

—_— =
>

= What is the average turnaround time for all jobs? ___3 —— _
TCSS422: Operating Systems [Spring 2023]
payj22023 School of Engineering and Technology, University of Washington - Tacoma L7z

72

Slides by Wes J. Lloyd

5/2/2023

L11.36



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

Q3 - OPERATING SYSTEM APIs

1. Provide a definition for what is a blocking API call

(4
phhredd _mutex_ Vo clk () — R roMS freezes AND WATTS ”'\"'S(\;:":f;“';‘;.c

2. Provide a definition for a non-blocking API call
feRiorms 145 AcTibn 1 mmeDIaetly /o WarT

3. Provide an example of a blocking API call.

Consider APIs used to manage processes and/or threads.
NDLI"’() thl‘eltlrfnnJ_,wﬁH'f P'””'CAA—JO\'\

4. Provide an example of a non-blocking API call.

Consider APIs used to manage processes and/or threads.
Hhr:aa_mo-l—c)f,‘)n\o"k( cork () Cﬂcvfc,w

TCSS422: Operating Systems [Spring 2023]

Mayj212025 School of Engineering and Technology, University of Washington - Tacoma

L11.73 |

73

Q4 - OPERATING SYSTEM APIs - 11

1. When implementing memory synchronization for a
multi-threaded program list one advantage of combining the use
of a condition variable with a lock variable via the Linux C
thread API calls: pthread mutex lock() and pthread cond wait ()

_ - - ——— . =
FIFO wat gueve - Awsdhredls in 7RI ORADER ihen wp s

2. When implementing memory synchronization for a
multi-threaded program using locks, list one disadvantage of
using blocking thread API calls such as the Linux C thread API
calls for: pthread_mutex_lock ()and pthread cond_wait ()

DEAROCK Can 0cCUR Wiich (Reezes fhe th/ead when the Loc 1S
. . . neveR aumLabL e

3. List (2) factors that cause Linux blocking API calls to

introduce overhead into programs: Copf walts VN RESORCE

Conrd S h yseR—7Wegnt To v 1K APT. o UNAVPILABLE g pPls
FIre GRANeD Lo0CERANULARITY . "Afuchh

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma LiL74

May 2, 2023

74

Slides by Wes J. Lloyd L11.37



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

Q5 - PERFECT MULTITASKING

OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly EL@_”‘ of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user volumPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCSS422: Operating Systems [Spring 2023]

L11.7!
School of Engineering and Technology, University of Washington - Tacoma 5

May 2, 2023

75

perfecT  CAVRNESS —T0bS of tine same priociqy,

JobS w/ © ifferent cengihg +Diffesent arrival F1mes
ws +o perftatly belance 4heyr runtme

__overtead Erom A ime 4racking! measgywiRundine. can be
INACEVRATR | A ND TRRL 1S a Cost for Malin
MEASURE Meits  (weASRL measTs mn-}} no T he fRfclsc\

— Corketd sthdhian’  howdo AT for overhedd o

c]% when roal,\mnj ‘Vnrine A gusy S ysten
Vn/\_-/ ha v ™o re c_unJ*Egg-f 5\,\1/4-[1\&5

TCSS422: Operating Systems [Spring 2023] L11.7

ilavi22izy School of Engineering and Technology, University of Washington - Tacoma 6

76

Slides by Wes J. Lloyd L11.38



TCSS 422 A — Spring 2023

5/2/2023
School of Engineering and Technology

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with_job
preemption where newly arriving jobs will imdiaﬁfryﬁn. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

NOTE: In the class, we mentioned

Job Arrival Time Job Length | howitis not clear at time

A T=0 S5 29 1§ | t=13if job Aor B will be run.
8 Tjs S'te \Z_ The solution on the next page
c T=10 _ assumes job A will be run.

¢
BB But a solution where job B
| AREY A e e QAH&BBCC runs next at time t=1éis
also okay because the problem
does not specify a rule.

RR

[
[
[
[
o 3 FEEE

May 2, 2023 TCSS422: Operating Systems [Spring 2023]
Y4 School of Engineering and Technology, University of Washington - Tacoma

L11.77 |

77

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis tim‘gs as in the example.

PRV M- ToES AR Apped> T AN o€ bt Ruvgueut AN 1the TJo% PTR
WAL jumy O Ane ST Re AL athes B —and conTIVUES \w

Job Arrival Time Job Length ‘ RR €4 9414m
A T=0 255 Ly Rungueve, % ABC

B T=5 T4

C T=10 1537 b

10 1p 50

|
RR :QM 5 AR CCC| AR Imef{cec | wan)ppIce MAIB Vet AAATQZ AA#AAAS
| d

0 253D By Me® FHHBE A W 07

May 2, 2023 Tm;maung Systems [Spring 2023]
e School of Engineering and Technology, University of Washington - Tacoma

A 13]40
B9l
5/

L11.78 |

78

Slides by Wes J. Lloyd L11.39



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

(i z)?

n'Z?:l ;2

Where n is the number of jobs, and x; is the time share of each

process Jain’s fairness index=1 for best case fairness, and 1/n for
worst case fairness.

J(l‘l,xQ,---,xn) =

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?

Job A: g0 45 Job B: 7z 175 sob c: 3oz 378
With these values, calculate Jain’s fairness index from t=10 to t=50.
| May;2;2023 ;E:zzlzgf (E)::i:;:enrignsgv::\ednjliEi':\rtirI‘oggi?Lzli]iversity of Washington - Tacoma L1179
79
B (E?—l ‘”%’)2 wiesT /‘- =3 =)
J(:rllxa?"‘!xﬂ)_ﬁ -5
ney L E cAse
« _ b
(5% o B19) = (V" -1 cnier |

"Nz
ne }_,‘__\5“ -—ﬁg_((‘\\gl N (.\7531+L.">’)C>Y_> \

—
5. ( 2005+ _O3OLZS+J\L\0415> 1. 12125

—> 13¢Y
3 - (.37 ) 8q1347)
~ ‘]
VARAS ¥1.2,
82212028 ggl?oso?ﬁEagﬁwr:gﬂggsg:;egiﬁgll'ionggy‘zgﬁf\’/]ersity of Washington - Tacoma L11.80

80

Slides by Wes J. Lloyd L11.40



TCSS 422 A — Spring 2023 5/2/2023
School of Engineering and Technology

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following

tradeoffs:

1. High number of Global Updates 2. High Performance
3. High Overhead 4. High Accuracy

5. Low number of Global Updates 6. Low Performance

7. Low Overhead 8. Low Accuracy

Low sloppy threshold (S) High sloppy threshold (S)
R 2579

I I

| May;2;2023 -Srglfz::lzi;CE)::iI:etier:"i;nsgy::\edn]I'se([:f\zgrl‘fgi%i]iversityofWashington - Tacoma L11.81

81

QUESTIONS

82

Slides by Wes J. Lloyd L11.41



	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/2
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/27
	Slide 7: OBJECTIVES – 5/2
	Slide 8: OBJECTIVES – 5/2
	Slide 9: OBJECTIVES – 5/2
	Slide 10: Quiz 2
	Slide 11: OBJECTIVES – 5/2
	Slide 12: Chapter 28 – LOCKS
	Slide 13: “lock Building” CPU instructions on arm processors
	Slide 14: LL/SC Lock
	Slide 15: LL/SC lock - 2
	Slide 16: OBJECTIVES – 5/2
	Slide 17: Chapter 29 – LOCK Based data structures
	Slide 18: Lock-based concurrent data structures
	Slide 19: Counter structure w/o lock
	Slide 20: concurrent counter
	Slide 21: Concurrent counter - 2
	Slide 22: Concurrent counters - Performance
	Slide 23: Perfect scaling
	Slide 24: OBJECTIVES – 5/2
	Slide 25: approximate (sloppy) counter
	Slide 26: approximate counter – main points
	Slide 27: approximate counter - 2
	Slide 28: Threshold value S
	Slide 29: approximate counter - example
	Slide 30
	Slide 31: OBJECTIVES – 5/2
	Slide 32: Concurrent linked list - 1
	Slide 33: Concurrent linked list - 2
	Slide 34: Concurrent linked list - 3
	Slide 35: Concurrent linked list
	Slide 36: Ccl – second implementation
	Slide 37: Ccl – second implementation - 2
	Slide 38: Concurrent Linked list performance
	Slide 39: OBJECTIVES – 5/2
	Slide 40: Michael and scott concurrent queues
	Slide 41: Concurrent queue
	Slide 42: Concurrent queue - 2
	Slide 43: OBJECTIVES – 5/2
	Slide 44: Concurrent hash table
	Slide 45: Insert performance –  concurrent hash table
	Slide 46: Concurrent hash table
	Slide 47
	Slide 48: Lock-free data structures
	Slide 49: OBJECTIVES – 5/2
	Slide 50: We will return at 5:05pm
	Slide 51: Midterm review
	Slide 52: Midterm
	Slide 53: Fifo example
	Slide 54: Q1- shortest job first (SJF) scheduler
	Slide 55: Q1 – sjf - 2
	Slide 56: Q2 – shortest time to completion first (STCF) scheduler
	Slide 57: Q2 – stcf - 2
	Slide 58: Q3 - Operating system apis
	Slide 59: Q4 – operating system apis - II
	Slide 60: Q5 – perfect multitasking  operating system
	Slide 61
	Slide 62: Q6 – round-robin scheduler
	Slide 63: Q6 – round-robin scheduler
	Slide 64: Q6 – rr scheduler - 2
	Slide 65: Q6 - II
	Slide 66: Q7 – sloppy counter
	Slide 67: Multi-level feedback queue
	Slide 68: solutions
	Slide 69: Q1- shortest job first (SJF) scheduler
	Slide 70: Q1 – sjf - 2
	Slide 71: Q2 – shortest time to completion first (STCF) scheduler
	Slide 72: Q2 – stcf - 2
	Slide 73: Q3 - Operating system apis
	Slide 74: Q4 – operating system apis - II
	Slide 75: Q5 – perfect multitasking  operating system
	Slide 76
	Slide 77: Q6 – round-robin scheduler
	Slide 78: Q6 – round-robin scheduler
	Slide 79: Q6 – rr scheduler - 2
	Slide 80: Q6 - II
	Slide 81: Q7 – sloppy counter
	Slide 82: Questions

