TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Linux Thread API,

Lock Implementations, 3
Lock-based data structures, m<:

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2023]

apali27;12023 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 4/27

| = Questions from 4/25 |
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

April 27, 2023

Slides by Wes J. Lloyd L10.1

TCSS 422 A — Spring 2023

School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 11:59p

® Thursday surveys: due ~ Mon @ 11:59p

=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom

Syllabus « TCSS422- Online Daily Feedback Survey - 4/1

™ Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Nicriiccinne Niiiz N el sl crimrnar

TCSS422: Computer Operating Systems [Spring 2023]

L10..
School of Engineering and Technology, University of Washington - Tacoma 03

April 27, 2023

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

[©| Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

[| Question 2 0.5 pts

Please rate the pace of today's class:

ol 2 3 4 5 6 7 8 9 10

slow Just Right Fast

TCSS422: Computer Operating Systems [Spring 2023]

Lyl 2, 2 School of Engineering and Technology, University of Washington - Tacoma L104

Slides by Wes J. Lloyd

4/27/2023

L10.2

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (40 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.30 (Y - previous 7.44)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.70 ({ - previous 5.84)

TCSS422: Computer Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.5 |

FEEDBACK FROM 4/25

= In what situations would it be useful to provide attributes
different from the defaults for pthread_create?

®m pthread_attr_init() initializes a pthread attribute type

= The type is pthread_attr_t

® Once the type is initialized, there is an API to configure the
attr record

= API functions:

m pthread_attr_setaffinity_np(), pthread_attr_setdetachstate(),
pthread_attr_setguardsize(), pthread_attr_setinheritsched(),
pthread_attr_setschedparam(), pthread_attr_setschedpolicy(),
pthread_attr_setscope(), pthread_attr_setstack(),
pthread_attr_setstackaddr(), pthread_attr_setstacksize(),
pthread_getattr_np(), pthread_setattr_default_np()

= See man pages for more info on this API

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.6 |

Slides by Wes J. Lloyd L10.3

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

FEEDBACK - 2

= |n what situations would it be useful to provide attributes
different from the defaults for pthread_mutex_init?

= From the man pages:
= pthread_mutexattr_init() initializes a mutex attribute type
= The type is pthread_mutexattr_t

= | inuxThreads supports only one mutex attribute: the mutex
kind
= PTHREAD_MUTEX_FAST_NP for ‘fast’ mutexes
= PTHREAD_MUTEX_RECURSIVE_NP for ‘recursive’ mutexes
= PTHREAD_MUTEX_ERRORCHECK_NP for ‘error checking’ mutexes
= NP indicates these are non-portable extensions to the standard.

= The kind determines what happens if a thread attempts
to lock a mutex it already owns with pthread_mutex_lock().

® The default mutex kind is PTHREAD_MUTEX_FAST_NP (‘fast’).

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.7

FEEDBACK - 3

= (CONTINUED) In what situations would it be useful to provide
attributes different from the defaults for pthread_mutex_init?

= If the mutex is of the ‘fast’ kind, pthread_mutex_lock() simply
suspends the calling thread forever.

= |f the mutex is of the ‘recursive’ kind, the call to
pthread_mutex_lock() returns immediately with a success
return code. The number of times the thread owning the
mutex has locked it is recorded in the mutex. The owning
thread must call pthread_mutex_unlock() the same number of
times before the mutex returns to the unlocked state.

= |If the mutex is of the ‘error checking’ kind,
pthread_mutex_lock() returns immediately with the error code
EDEADLK.

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.8

Slides by Wes J. Lloyd L10.4

TCSS 422 A — Spring 2023
School of Engineering and Technology

FEEDBACK - 4

= With different purposes, each type of thread will be used
in different scenarios, isn't it?

= REINTERPRETATION :

= For what different purposes will each type of thread be
used in?

= Not clear what is meant by “each type of thread”
= |s this referring to threads vs. processes?
= |s this referring to threads with different INIT attributes?

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.9

OBJECTIVES - 4/27

® Questions from 4/25
['=°C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28 |
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.10

April 27, 2023

10

Slides by Wes J. Lloyd

4/27/2023

L10.5

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
| = Assignment 1 - Due Tue May 9 |
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.11

11

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
| * Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2023

L10.12

12

Slides by Wes J. Lloyd

4/27/2023

L10.6

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

QuUIZ 1

m Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas
= Due Thursday April 27t at 11:59pm

= Link:

= https://faculty.washington.edu/wlloyd/courses/tcss422/
quiz/TCSS422_s2023_quiz_1.pdf

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.13

13

QUIZ 2

® Canvas Quiz - Practice CPU Scheduling Problems

Posted in Canvas

Unlimited attempts permitted

Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

® Multiple choice and fill-in the blank

® Quiz automatically scored by Canvas

= Please report any grading problems

Due Tuesday May 2"9 at 11:59pm

= Link:
https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.14

14

Slides by Wes J. Lloyd L10.7

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
®m Chapter 27: Linux Thread API
| = pthread_cond_wait/_sighal/_broadcast |
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.15

15

CONDITIONS AND SIGNALS

= Condition variables support “signaling”
between threads

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond signal (pthread cond t *cond):;

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queue<, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2023

L10.16

16

Slides by Wes J. Lloyd

4/27/2023

L10.8

TCSS 422 A — Spring 2023
School of Engineering and Technology

CONDITIONS AND SIGNALS -2

int pthread_cond_signal (pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.17

17

CONDITIONS AND SIGNALS -3

= Wait example:

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex_lock (&lock) ;
while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock

a=a+ b;
pthread mutex_unlock (&lock) ;

= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released bv this code)
C e . . State variable set,
= When initialized, another thread signals | -pies other thread(s)
pthread_mutex_lock (&lock) ; to proceed above.
initialized = 1;
pthread cond signal (&init);
pthread mutex unlock(slock):;

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.18

April 27, 2023

18

Slides by Wes J. Lloyd

4/27/2023

L10.9

TCSS 422 A — Spring 2023
School of Engineering and Technology

CONDITION AND SIGNALS - 4

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_ t cond = PTHREAD COND_INITIALIZER;

pthread mutex lock(&lock) ;
rhile (initialized == 0)

pthread cond wait(&cond, &lock) ;
// Perform work that requires lock
a=a+b;
pthread mutex unlock (&lock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked

= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *

= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 27, 2023 TCSS422: Operating Systems [Spring 2023]

110.1!
School of Engineering and Technology, University of Washington - Tacoma 0.19

19

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

m List of pthread manpages
" man -k pthread

= May need to install Linux package for pthread APl documentation:
" sudo apt install glibc-doc

April 27, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.20

20

Slides by Wes J. Lloyd

4/27/2023

L10.10

TCSS 422 A — Spring 2023

School of Engineering and Technology

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c

clean:

$(cCc) $(CFLAGS) $A -0 $@

$(RM) -f $(binaries) *.o

® Example builds multiple single file programs

= All target

= pthread_mult

= Example if multiple source files should produce a single executable

= clean target

TCSS422: Operating Systems [Spring 2023]

110.21
School of Engineering and Technology, University of Washington - Tacoma 0

April 27, 2023

21

“u

Condition variables provide only NON-BLOCKING

Condition variables introduce a FIFO queue
enabling control of the order that threads will

Condition variables must first be initialized toa
non-NULL value before being used in the program.

@& When poll is active, respond at pollev.com/wesleylloyd641
7 Text WESLEYLLOYDG641 to 22333 once to join

What key feature differentiates condition

variables from mutex_locksinC?

API calls.

Locks can not be used without condition
variables.

receive the lock which provides fairness.

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

22

Slides by Wes J. Lloyd

4/27/2023

L10.11

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.23

23

CHAPTER 28 -

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington -

April 27, 2023

24

Slides by Wes J. Lloyd L10.12

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

®m Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

| balance = balance + 1;

m A “critical section”:

1 lock_t mutex; // some globally-allocated lock ‘mutex’
2
3 lock (&mutex) ;
4 balance = balance + 1;
5 unlock (amutex) ;
apali2712023 gf:zzlzgf g:geifetler:'ignsgyas:\ednjliEi?\%?oggi?lﬁi]iversity of Washington - Tacoma +1025

25

LOCKS - 2

= | ock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

® Lock variables store the state of the lock
® States
= Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.26

April 27, 2023

26

Slides by Wes J. Lloyd L10.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

LOCKS - 3

"pthread mutex lock (&lock)
= Try to acquire lock
= |If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
Thread “owns” the lock

® No other thread can acquire the lock before the owner
releases it.

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.27

27

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction,lLock Granularityl
= Spin Locks, Test and Set, Compare and Swap
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.28

28

Slides by Wes J. Lloyd

4/27/2023

L10.14

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

LOCKS - 4

= Program can have many mutex (lock) variables to
“serialize” many critical sections

® L ocks are also used to protect data structures

= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”

Fine grained - means just one grain of sand at a time through an
hour glass

= Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.29 |

29

FINE GRAINED?

® |s this code a good example of “fine grained parallelism”?

pthread_mutex_Tock(&lock);
a = b++;
b=a*c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++
} .
e=¢e-1;
pthread_mutex_unlock (&lock);

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.30

30

Slides by Wes J. Lloyd L10.15

TCSS 422 A — Spring 2023
School of Engineering and Technology

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b=a*c;
pthread_mutex_unTock(&lock_b);

pthread_mutex_lock(&lock_d) ;
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . .

April 27, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L10.31

31

FINE-GRAINED

Many Lock (kernel) calls

More overhead from
excessive locking

More parallelism
Higher code complexity

LOCK GRANULARITY TRADE-OFF SPACE

COARSE-GRAINED

Few Lock (kernel) calls

Low overhead from
minimal locking

Less parallelism
Low code complexity

School of Engineering and Technology, University of Washington - Tacoma

& debugging & simpler debugging
Every program
implementation

lies someplace along
the trade-off space...
April 27, 2023 TCSS422: Operating Systems [Spring 2023] 14.32

32

Slides by Wes J. Lloyd

4/27/2023

L10.16

TCSS 422 A — Spring 2023
School of Engineering and Technology

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness good lock?

= Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

® Qverhead

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.33

33

BUILDING LOCKS

® Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHGS8B
CMPXCHG16B

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2023 110.34

34

Slides by Wes J. Lloyd

4/27/2023

L10.17

TCSS 422 A — Spring 2023
School of Engineering and

Technology

HISTORICAL IMPLEMENTATION

To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts () ;

void unlock () {

1

2

3 i
4

5 EnableInterrupts () ;
6

+

Any thread could disable system-wide interrupt
= What if lock is never released?

On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost

= If not queued...

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.35

35

WE WILL RETURN AT

4:55PM

TCSS422: Operating Systems [Spring 2023]

Spii2ranzs School of Engineering and Technology, University of Washington -

36

Slides by Wes J. Lloyd

4/27/2023

L10.18

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity

= Spin Locks| Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

L10.37
School of Engineering and Technology, University of Washington - Tacoma 03

April 27, 2023

37

BASIC SPIN LOCK IMPLEMENTATION

= Demonstration of lock implementation using C code
® C code is compiled to assembly, instructions are not atomic
m |dea is to imagine “what if” the lock code were atomic

\\\\%\;;\‘“\‘g"'ﬂ;(% ; typedef struct lock t { int flag; } lock t;
3 void init(lock t *mutex) {
4 // 0 = lock is available, 1 = held
5 mutex->flag = 0;
6 }
. 7
= Is this lock 8 void lock(lock t *mutex) {
implementation: 9 (mutex->flag == 1) // TEST the flag
10 ; // spin-wait (do nothing)
11)C0rrect? 11 mutex->flag = 1; // now SET it !
: 12}
(2)Fair? 15
(3)Performant? 14 wvoid unlock(lock_t *mutex) {
15 mutex->flag = 0;
16}

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.38

| April 27, 2023

38

Slides by Wes J. Lloyd L10.19

TCSS 422 A — Spring 2023 4/27/2023

School of Engineering and Technology

BASIC SPIN LOCK: CORRECT?

= |f both threads can run at the same time, then correctness
requires luck... (e.g. basic spin lock is incorrect)

Threadl Thread2

call lock ()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag = 1; // set flag to 1 (too!)

= Here both threads have “acquired” the lock simultaneously

TCSS422: Operating Systems [Spring 2023]

April 27, 2023 School of Engineering and Technology, University of Washington - Tacoma L10.39 |

39

BASIC SPIN LOCK: PERFORMANCE ?

void Tock(lock_t *mutex)

{

mutex->flag = 1;

// while Tock is unavailable, wait..

= What is wrong with while(<cond>); ?

® Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%
= Continuously loops, and evaluates mutex->flag value...
= If multiple threads wait for the CPU, more CPU capacity is wasted
= Generates heat...

TCSS422: Operating Systems [Spring 2023]

aenlZzuzs School of Engineering and Technology, University of Washington - Tacoma L1040

40

Slides by Wes J. Lloyd L10.20

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
® Introduction, Lock Granularity

= Spin Locks) Test and Set,/Compare and Swap

= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.41

41

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks
= Book presents pseudo code of C implementation for
TEST-AND-SET instruction that needs to be atomic
= TEST-and-SET checks old value improving on basic spin lock
= TEST-and-SET returns the old value so it can be checked
= Comparison is made in the caller
= Assumption is the TEST-AND-SET routine runs atomically on the CPU
= Here is the C-pseudo code:

1 int TestAndSet (int *ptr, int new) {
2 int old = *ptr; / fetcl val
3 *ptr = new;
4 old;
5
aenlZzuzs ;E:Zﬁlzgf gr?gei':et;:?nzy:zedni£ii275gi?ai1versity of Washington - Tacoma L1042

42

Slides by Wes J. Lloyd

4/27/2023

L10.21

TCSS 422 A — Spring 2023

School of Engineering and Technology

TEST-AND-SET - 2

= Jock() method checks that TestAndSet doesn’t return 1
® |f TestAndSet returns 1:

= This indicates someone else has the lock

typedef struct _ lock t {
int flag:
} lock t:

void init(lock_t *lock) {
// 0 indic hat 1

// 1 that
lock->flag = 0;
}

void lock(lock_t *lock) {
(TestAndSet (&lock->flag, 1) == 1)
. // spin-wait
; spin-wait

)

void unlock(lock_t *lock) {
lock->flag = 0;

}

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.43 |

43

SPIN LOCK EVALUATION

= Correctness:

= Spin locks with atomic Test-and-Set:
Critical sections won’t be executed simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it... lock distribution is random

= Performance:

= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting (< 1 time quantum)
= Performance is slow when multiple threads share a CPU

Especially if “spinning” for long periods

April 27, 2023

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1044

44

Slides by Wes J. Lloyd

4/27/2023

L10.22

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap |
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.45

45

COMPARE AND SWAP

® Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

m Adds a comparison to TestAndSet method
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

® Useful for wait-free synchronization

= Supports implementation of shared data structures which can be
updated atomically (as a unit) using Hardware support:
x86 CompareAndSwap instructions

= Shared data structure updates become “wait-free”
= Upcoming in Chapter 32

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.46

April 27, 2023

46

Slides by Wes J. Lloyd

4/27/2023

L10.23

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

COMPARE AND SWAP

= Compare and Swap

int CompareAndSwap (int *ptr, int expected, int new) {
int actual = *ptr;
(actual == expected)
*ptr = new;
actual;

C implementation on 1-core VM:

[W N

Count is correct, no deadlock

3 7 // spin

= x86 CPU provides “cmpxchgl” compare-and-exchange instructions
= cmpxchg8b
= cmpxchglé6b

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.47

April 27, 2023

47

When implementing locks in a high-level language
(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable
Condition variables
ATOMIC instructions

Fairness

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

48

Slides by Wes J. Lloyd L10.24

TCSS 422 A — Spring 2023
School of Engineering and Technology

“LOCK BUILDING” CPU INSTRUCTIONS

ON ARM PROCESSORS

® Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

® | oad-linked (LL)
= L oads value into register
= Same as typical load
= Used as a mechanism to track competition

® Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.49

49

LL/SC LOCK

int LoadLinked (int *ptr) {
*ptr;
}

(no one has updated *ptr since the LoadLinked to this address) {
*ptr = value;

1; // success!

1
2
3
4
5 int StoreConditional (int *ptr, int value) {
6
7
8

® LL instruction loads pointer value (ptr)
® SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.50

50

Slides by Wes J. Lloyd

4/27/2023

L10.25

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

LL/SC LOCK - 2

1 void lock(lock_t *lock) {

2 1) {

3 (LoadLinked (&lock->flag) == 1)

4 i // spin until it’s zero

5 (storeConditional (&lock->flag, 1

3 i /7 if i o-1 cess: all done
7 ot er again
8 }

9}

10

11 wvoid unlock(lock t *lock) {

12 lock->flag = 0;

13}

® Two instruction lock

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.51

51

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
| = Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.52

| April 27, 2023

52

Slides by Wes J. Lloyd L10.26

TCSS 422 A — Spring 2023

School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2023]

Sptli2anzs School of Engineering and Technology, University of Washington -

LOCK-BASED
CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

EConsiderations:

=Correctness
= Performance
=Lock granularity

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.54

54

Slides by Wes J. Lloyd

4/27/2023

L10.27

TCSS 422 A — Spring 2023

School of Engineering and Technology

COUNTER STRUCTURE W/0O LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t {
2 int value;

3 } counter t;

4

5 void init (counter t *c) {

[c->value = 07

7 }

8

9 void increment (counter t *c) {
10 c->value++;

11 1

12

13 vold decrement (counter t *c) {
14 c->value-—;

15 1

16

17 int get(counter t *c) {

13 return c-»value;

19 1

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.55

55

CONCURRENT COUNTER

[R N R N I N

typedef struct _ counter t {
int value;
pthread lock_t lock;
} counter t;

vold init(counter_t *c) {

c->value = 0;

Pthread mutex init(&c->lock, NULL);
}

void increment (counter t *c) {
Pthread mutex lock(ac->lock):
c->value++;
Pthread mutex unlock(&c->lock);

= Add lock to the counter
= Require lock to change data

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.56

56

Slides by Wes J. Lloyd

4/27/2023

L10.28

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)

17 void decrement (counter t *c) {

18 Pthread mutex lock(&c->lock):
19 c->value-—;

20 Pthread mutex unlock(&c->lock);
21 }

22

23 int get(counter_t *c) {

24 Pthread mutex lock(&c->lock):
25 int rc = c-»value;

26 Pthread_mutex_unlock(ac->lock):
27 return rc;

28 }

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.57

57

CONCURRENT COUNTERS - PERFORMANCE

® Concurrent counter is considered a “precise counter”
® iMac: four core Intel 2.7 GHz i5 CPU
® Each thread increments counter 1,000,000 times

157
X Precise
© Approximate
w
T 10
=]
o
2
£
F 5]
0 ¥ ¥ e ?
1 2 3 4

Threads

scales poorly

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.58

| April 27, 2023

58

Slides by Wes J. Lloyd L10.29

TCSS 422 A — Spring 2023
School of Engineering and Technology

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core

=N =100 tps

= 10 cores (x10)
=N =1000 tps (x10)

= |s parallel counting with a shared counter an embarrassingly
parallel problem?

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.59

59

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
® Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter) |

= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.60

April 27, 2023

60

Slides by Wes J. Lloyd

4/27/2023

L10.30

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

APPROXIMATE (SLOPPY) COUNTER

® Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically

Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.61

61

APPROXIMATE COUNTER - MAIN POINTS

® |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting

= Instead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

® Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= |t's approximate because it’s not so accurate (until the end)

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.62

62

Slides by Wes J. Lloyd L10.31

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

APPROXIMATE COUNTER - 2

= Update threshold (S) = 5
®m Synchronized across four CPU cores
= Threads update local CPU counters

Time Ly L, Ls Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5=>0 1 3 4 5 (from L;)
7 0 2 4 520 10 (from L,)

April 27, 2023 ZE:(Slezgf S:geifetier:'ignsgyas:\ednjliEi?\i?oggi?f]i]iversity of Washington - Tacoma L10.63

63

THRESHOLD VALUE S

® Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

154

0 T T T T T T F—F—x
1 2 4 8 16 32 64 128 256 5121024

Approximation Factor (S)

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L1064

April 27, 2023

64

Slides by Wes J. Lloyd L10.32

TCSS 422 A — Spring 2023

4/27/2023
School of Engineering and Technology

APPROXIMATE COUNTER - EXAMPLE

= Example implementation - sloppybasic.c

m Also with CPU affinity

April 27, 2023 TCSS422: Operating Systems [Spring 2023]

L10.
School of Engineering and Technology, University of Washington - Tacoma 065

65

“n "

@& When poll is active, respond at pollev.com/wesleylloyd641
7 Text WESLEYLLOYDG641 to 22333 once to join

Which of the following is NOT a problem as a
result of having a low S-value for the

approximate counter (Sloppy Counter)
threshold?

The counter overhead is very high.

The counterimplementation performs a very
large number of LOCK/UNLOCK API calls.

The global counter value is highly accurate.

The counter performs very few local to global
counter updates.

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

66

Slides by Wes J. Lloyd L10.33

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25

® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

® Assignment 1 - Due Tue May 9

® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)

® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

|- Concurrent Structures: Linked ListIQueue, Hash Table

April 27, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L10.67

67

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1 // basic node structure

2 typedef struct _ node t {

3 int key:

4 struct _ node t *next;

5 } node_t:

3

7 // bas list structure (cne used per list)
g typedef struct _ 1list_t {

9 node_t *head;

10 pthread mutex_t lock:

11 } list t;

12

13 vold List_Init(list_t *L) {

14 L->head = NULL;

15 pthread mutex init (sL->lock, NULL);
16 }

17

(Cont.)

April 27, 2023 TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma

L10.68

68

Slides by Wes J. Lloyd

4/27/2023

L10.34

TCSS 422 A — Spring 2023
School of Engineering and Technology

CONCURRENT LINKED LIST - 2

® |[nsert - adds item to list
m Everything is critical!
= There are two unlocks

(Cont.)

18 int List_ Insert (list t *L, int key) {

19 pthread mutex lock(&L->lock);

20 node t *new = malloc(sizeof (node_t));
21 if (new == NULL) {

22 perror ("malloc")

23 pthread mutex unlock(&L->lock);
24 return -1; // fail }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread mutex unlock(&L->lock);

30 return 0; // success

31 }

(Cont.)

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.69

69

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

(Cont.)

32

32 int List Lookup (list t *L, int key) {

33 pthread mutex lock(s&L->lock):

34 node t *curr = L->head;

35 while (curr) {

36 if (curr->key == key) {

37 pthread mutex unlock(&L->lock);
38 return 0; // success
39 1

40 curr = curr->next;

41 1

42 pthread mutex unlock(&L->1ock);

43 return -1; // failure

44 1

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.70

70

Slides by Wes J. Lloyd

4/27/2023

L10.35

TCSS 422 A — Spring 2023

School of Engineering and Technology

CONCURRENT LINKED LIST

® First Implementation:

= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

® Second Implementation ...

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.71

71

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {

2 L->head = NULL:

3 pthread mutex init (aL->lock, NULL);
4 }

5

[3 vold List_Insert(list t *L, int key) {
7 // synchronization not needed
8 node_t *new = malloc(sizeof (node_t)):
9 if (new == NULL) {

10 perror ("malloc");

11 return;

12 }

13 new->key = key;

14

15 // Jjust lock critical sectior
16 pthread mutex lock(&L->lock);
17 new->next = L->head;

18 L->head = new;

19 pthread mutex unlock(&L->1ock);
20 }

21

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.72

72

Slides by Wes J. Lloyd

4/27/2023

L10.36

TCSS 422 A — Spring 2023

School of Engineering and Technology

CCL - SECOND IMPLEMENTATION - 2

= L ookup
(cont.)
22 int List Lookup (list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L—>lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr-skey == key) {
28 rv = 07
29 break;
30 1
31 curr = curr->next;
32 1
33 pthread mutex unlock(&L->1ock);
34 return rv; // now both success and failure
35 1

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.73

73

= Consider hybrid approach

CONCURRENT LINKED LIST PERFORMANCE

m Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)

= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

74

Slides by Wes J. Lloyd

4/27/2023

L10.37

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Hash Table

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

L10.75

75

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.76

76

Slides by Wes J. Lloyd

4/27/2023

L10.38

TCSS 422 A — Spring 2023
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

@ U W R

ty] struct _ node t {
int value;
struct _ node t *next:

} node_t;

typedef struct _ queue t {

node_t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex t tailLock;

} queue_t;

void Queue_Init (queue_t *q) {
node t *tmp = malloc(sizeof (node_t)):
tmp-»>next = NULL;
g->head = g->tail = tmp;
pthread mutex_init (&g->headLock, NULL);
pthread mutex init(eg->taillock, NULL);

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.77

77

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)

Queue Enqueue(queue t *q, int value) ({
node t *tmp = malloc(sizeof (node t));
assert (tmp != NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(ag->tailLock);
g-»tail->next = tmp;

g->tail = tmp;
pthread mutex unlock(&g->taillLock);

April 27, 2023

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

L10.78

78

Slides by Wes J. Lloyd

4/27/2023

L10.39

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

OBJECTIVES - 4/27

® Questions from 4/25
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
® Assignment 1 - Due Tue May 9
® Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
® Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue,[Hash Table

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2023

L10.79

79

CONCURRENT HASH TABLE

mConsider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Spring 2023]

School of Engineering and Technology, University of Washington - Tacoma L10.80

April 27, 2023

80

Slides by Wes J. Lloyd L10.40

TCSS 422 A — Spring 2023
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15 1
O Simple Concurrent List
X Concurrent Hash Table
o
© 10+
Q
o
@
&
]
E 51
=
0 T T

¥ ol
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

1 #define BUCKETS (101)

2

3 Cypedef struct _ hash t {

4 list_t 1ists[BUCKETS];

5 } hash_t;

&

7 void Hash Init(hash t *H) {

8 int i;

9 for (1 = 0; 1 < BUCKETS; i++) {
10 List Init (&H->1ists[i]);
11 }

12 1

13

14 int Hash_ Insert(hash t *H, int key) {

15 int bucket = key % BUCKETS;

1é return List_Insert(&H->1ists[bucket], key):
17 1

18

19 int Hash Lookup(hash t *H, int key) {

20 int bucket = key % BUCKETS;

21 return List_Lookup (sH->1lists[bucketl], key):
22 1

TCSS422: Operating Systems [Spring 2023]

Fymil| 2o, 210PE] School of Engineering and Technology, University of Washington - Tacoma

L10.82

82

Slides by Wes J. Lloyd

4/27/2023

L10.41

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

.'Which is a major advantage of using concurrent data'.
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

83

LOCK-FREE DATA STRUCTURES

® Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle. com/en/Javazwvase[ii[docs[aplz

java.base/java/util/concurrent/atomic/package-summary.

TCSS422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 27, 2023

84

Slides by Wes J. Lloyd L10.42

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

QUESTIONS

85

Slides by Wes J. Lloyd L10.43

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/27
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/25
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: OBJECTIVES – 4/27
	Slide 11: OBJECTIVES – 4/27
	Slide 12: OBJECTIVES – 4/27
	Slide 13: Quiz 1
	Slide 14: Quiz 2
	Slide 15: OBJECTIVES – 4/27
	Slide 16: Conditions and signals
	Slide 17: Conditions and signals - 2
	Slide 18: conditions and signals - 3
	Slide 19: Condition and SIGNALS - 4
	Slide 20: Pthreads library
	Slide 21: Sample Makefile
	Slide 22
	Slide 23: OBJECTIVES – 4/27
	Slide 24: Chapter 28 – LOCKS
	Slide 25: Locks
	Slide 26: Locks - 2
	Slide 27: Locks - 3
	Slide 28: OBJECTIVES – 4/27
	Slide 29: Locks - 4
	Slide 30: Fine grained?
	Slide 31: Fine grained parallelism
	Slide 32: Lock granularity trade-off space
	Slide 33: Evaluating lock implementations
	Slide 34: Building locks
	Slide 35: Historical implementation
	Slide 36: We will return at 4:55pm
	Slide 37: OBJECTIVES – 4/27
	Slide 38: Basic Spin lock implementation
	Slide 39: Basic Spin lock: Correct?
	Slide 40: Basic Spin lock: performance ?
	Slide 41: OBJECTIVES – 4/27
	Slide 42: Test-and-set instruction
	Slide 43: Test-and-set - 2
	Slide 44: Spin Lock evaluation
	Slide 45: OBJECTIVES – 4/27
	Slide 46: Compare and Swap
	Slide 47: Compare and swap
	Slide 48
	Slide 49: “lock Building” CPU instructions on arm processors
	Slide 50: LL/SC Lock
	Slide 51: LL/SC lock - 2
	Slide 52: OBJECTIVES – 4/27
	Slide 53: Chapter 29 – LOCK Based data structures
	Slide 54: Lock-based concurrent data structures
	Slide 55: Counter structure w/o lock
	Slide 56: concurrent counter
	Slide 57: Concurrent counter - 2
	Slide 58: Concurrent counters - Performance
	Slide 59: Perfect scaling
	Slide 60: OBJECTIVES – 4/27
	Slide 61: approximate (sloppy) counter
	Slide 62: approximate counter – main points
	Slide 63: approximate counter - 2
	Slide 64: Threshold value S
	Slide 65: approximate counter - example
	Slide 66
	Slide 67: OBJECTIVES – 4/27
	Slide 68: Concurrent linked list - 1
	Slide 69: Concurrent linked list - 2
	Slide 70: Concurrent linked list - 3
	Slide 71: Concurrent linked list
	Slide 72: Ccl – second implementation
	Slide 73: Ccl – second implementation - 2
	Slide 74: Concurrent Linked list performance
	Slide 75: OBJECTIVES – 4/27
	Slide 76: Michael and scott concurrent queues
	Slide 77: Concurrent queue
	Slide 78: Concurrent queue - 2
	Slide 79: OBJECTIVES – 4/27
	Slide 80: Concurrent hash table
	Slide 81: Insert performance – concurrent hash table
	Slide 82: Concurrent hash table
	Slide 83
	Slide 84: Lock-free data structures
	Slide 85: Questions

