TCSS 422 A — Spring 2023
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Linux Thread API, 3
Lock Implementations, %
N

Lock-based data structures,

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

. TCSS422: Operating Systems [Spring 2023]
Pl) School of Engineering and Technology, University of Washington

4/27/2023

OBJECTIVES - 4/27

| = Questions from 4/25 |
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

‘TCS5422: Operating Systems [Spring 2023]

fllez v School of Engineering and Technology, University of Washington - Tacoma

102

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Spring 2023]

April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

1103

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

1 2 3 a4 s & 7 8 3 10

TCSS422: Computer Operating Systems [Spring 2023]

Qe 202y School of Engineering and Technology, University of Washington - Tacoma L104

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (40 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 7.30 (! - previous 7.44)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.70 (4 - previous 5.84)

TCS5422: Computer Operating Systems [Spring 2023]

e School of Engineering and Technology, University of Washington -Tacoma

L0

FEEDBACK FROM 4/25

= In what situations would it be useful to provide attributes
different from the defaults for pthread_create?

= pthread_attr_init() initializes a pthread attribute type

= The type is pthread_attr_t

= Once the type is initialized, there is an API to configure the
attr record

= API functions:

= pthread_attr_setaffinity_np(), pthread_attr_setdetachstate(),
pthread_attr_setguardsize(), pthread_attr_setinheritsched(),
pthread_attr_setschedparam(), pthread_attr_setschedpolicy(),
pthread_attr_setscope(), pthread_attr_setstack(),
pthread_attr_setstackaddr(), pthread_attr_setstacksize(),
pthread_getattr_np(), pthread_setattr_default_np()

= See man pages for more info on this API

TCS5422: Operating Systems [Spring 2023]

DD School of Engineering and Technology, University of Washington - Tacoma

1106

Slides by Wes J. Lloyd

L10.1

TCSS 422 A — Spring 2023
School of Engineering and Technology

FEEDBACK - 2

= In what situations would it be useful to provide attributes
different from the defaults for pthread_mutex_Init?

® From the man pages:

= pthread_mutexattr_init() initializes a mutex attribute type

= The type is pthread_mutexattr_t

= LinuxThreads supports only one mutex attribute: the mutex
kind
= PTHREAD_MUTEX_FAST_NP for ‘fast’ mutexes
= PTHREAD_MUTEX_RECURSIVE_NP for ‘recursive’ mutexes
= PTHREAD_MUTEX_ERRORCHECK_NP for ‘error checking’ mutexes
= NP indicates these are non-portable extensions to the standard.

= The kind determines what happens if a thread attempts
to lock a mutex it already owns with pthread_mutex_lock().

= The default mutex kind is PTHREAD_MUTEX_FAST_NP (‘fast’).

TCSS422: Operating Systems [Spring 2023]
‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma L7

= With different purposes, each type of thread will be used
in different scenarios, isn't it?

= REINTERPRETATION :
= For what different purposes will each type of thread be
used in?
= Not clear what is meant by “each type of thread”
= |s this referring to threads vs. processes?
= |s this referring to threads with different INIT attributes?

April 27,2023

‘TCSS422: Operating Systems [Spring 2023] 1109
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
| = Asslgnment 1 - Due Tue May 9 |
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma Lot

11

Slides by Wes J. Lloyd

4/27/2023

FEEDBACK - 3

= (CONTINUED) In what situations would it be useful to provide
attributes different from the defaults for pthread_mutex_init?
If the mutex is of the ‘fast’ kind, pthread_mutex_lock() simply
suspends the calling thread forever.

If the mutex is of the ‘recursive’ kind, the call to
pthread_mutex_lock() returns immediately with a success
return code. The number of times the thread owning the
mutex has locked it is recorded in the mutex. The owning
thread must call pthread_mutex_unlock() the same number of
times before the mutex returns to the unlocked state.

If the mutex is of the ‘error checklng’ kind,
pthread_mutex_lock() returns immediately with the error code
EDEADLK.

‘ April 27,2023

‘TCSS422: Operating Systems [Spring 2023] 108
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 4/27

= Questions from 4/25
| = C Tutorlal - Polnters, Strings, Exec In C - Due Frl Apr 28 |
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

‘ April 27,2023

TCS5422: Operating Systems [Spring 2023] 110.10
School of Engineering and Technology, University of Washington - Tacoma

10

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
| = Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

. 7CS5422: Operating Systems [Spring 2023]
‘ REDERETD School of Engineering and Technology, University of Washington - Tacoma Lo

12

L10.2

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

QuiZz 1 Quiz 2

= Active reading on Chapter 9 - Proportional Share Schedulers = Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas

= Unlimited attempts permitted

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

® Posted in Canvas
= Due Thursday April 27t at 11:59pm

= Link: = Multiple choice and fill-in the blank
= https://faculty.washington.edu/wlloyd/courses/tcss422 ® Quiz automatically scored by Canvas
qulz/TCSS422_s2023_qulz_1.pdf = Please report any grading problems

= Due Tuesday May 2" at 11:59pm

= Link:

canvas.uw.edu/courses/1642522/asslgnments/8316759

TCSS422: Operating Systems [Spring 2023] ‘TCSS422: Operating Systems [Spring 2023]
‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma L1 Gpallzl A School of Engineering and Technology, University of Washington - Tacoma s

13 14

OBJECTIVES - 4/27

CONDITIONS AND SIGNALS

= Questions from 4/25 = Condition variables support “signaling”

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28 between threads
® Assignment 1-Due Tue May 9 int pthread cond wait (pthread cond t *cond,
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2) pthread mutex t *mutex);
= Chapter 27: Linux Thread API 1 ptheeed cond slonal (pihzead cond b feond);
| = pthread_cond_walt/_slgnal/_broadcast | = pthread_cont_t datatype
alChanten 2.8: LT . = pthread_cond_wait()
= Introduction, Lock Granularity - -

= Puts thread to “sleep” (waits) (THREAD is BLOCKED)

= Threads added to >FIFQ queue<, lock is released

= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
= When signal occurs, interrupt fires, wakes up first thread,

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table (THREAD is RUNNING), lock is provided to thread
TCSS422: Operating Systems [Spring 2023] TCSS422: Operating Systems [Spring 2023]
‘ Apel27,2023 School of Engineering and Technology, University of Washington - Tacoma. L1 ‘ April27,2023) School of Engineering and Technology, University of Washington - Tacoma o8

15 16

CONDITIONS AND SIGNALS -2 CONDITIONS AND SIGNALS -3

int pthread_cond_signal(pthread_cond_t * cond); = Wait example:

int pthread_cond_broadcast(pthread_cond_t * cond); pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond t cond = PTHREAD_COND_INITIALIZER;

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFQ “walt” queue
= The goal is to unblock a thread to respond to the signal

while (initialized == 0)
pthread cond_wait (&cond, &lock) ;

pthread mutex_lock (&lock) ;
// Perform work that requires lock

a=a+b;
® pthread_cond_broadcast() pthread_mutex_unlock (slock) ;
= Unblocks all threads in FIFO “walt” queue, currently blocked on the .
specified condition variable = wait puts thread to sleep, releases lock
= Broadcast is used when all threads should wake-up for the signal = when awoken, lock reacquired (but then released bv this code)
(T B State variable set,
= Which thread is unblocked first? = When initialized, another thread signals Enables other thread(s)
= Determined by OS scheduler (based on priority) pthrsad matex lock (slogk) ; to proceed above.
= Thread(s) awoken based on placement order in FIFQO walt queue initialized = 1 -
ead_cond_signal (&init);

= When awoken threads acquire lock as in pthread_mutex_Tock ()

pthread mutex_unlock(&lock) ;

TCS5422: Operating Systems [Spring 2023] . TC55422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma Lo REDERETD School of Engineering and Technology, University of Washington - Tacoma Hots

17 18

Slides by Wes J. Lloyd L10.3

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_f2021_quiz_1.pdf
https://canvas.uw.edu/courses/1642522/assignments/8316759

TCSS 422

A — Spring 2023

School of Engineering and Technology

4/27/2023

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

thread mutex lock (slock) ;
Hne (initialized == 0)
pthread cond wait(&cond, &lock) ;
/7 Perform work that requires lock

a=a+b;
pthread_mutex_unlock (slock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TCSS422: Operating Systems [Spring 2023]
Lnlleh s School of Engineering and Technology, University of Washington - Tacoma L1

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

= May need to install Linux package for pthread APl documentation:
" sudo apt install glibc-doc

19

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cc) $(CFLAGS) $A -o $@

ean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs

= All target
= pthread_mult

= Example if multiple source files should produce a single executable
= clean target

TCS5422: Operating Systems [Spring 2023]
Apel27,2023 School of Engineering and Technology, University of Washington - Tacoma L2

‘TCS5422: Operating Systems [Spring 2023]
‘ fllez v School of Engineering and Technology, University of Washington - Tacoma o020
I. .I
€ When poll is active, respond at pollev.com/wesleylloyd641

= Text WESLEYLLOYD641 to 22333 once to join

What key feature differentiates condition

variables from mutex_locksinC?

Conditian variables provide only NON-BLOCKING
APl cals.

Locks can not be used witheut condition
variales

Condition variables introduce a FIFQ queue
enabling control of the arder that theeass wil
recenve the lack which provides faimess.

Condition variables must first be initialized toa
nan-HULL value before being used in the program.

Mone of the above

- P For \ e srsen et e n

21

22

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
Chapter 28: Locks

Introductlon, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]
e School of Engineering and Technology, University of Washington - Tacoma Loz

CHAPTER 28 -

LOCKS ' 3e":

TCSS422: Operating Systems [Spring 2023]

i)]
Aerlz2023 School of Engineering and Technology, University of Washington -

23

Slides by Wes J. Lloyd

24

TCSS 422 A — Spring 2023
School of Engineering and Technology

= Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance — balance + 1;

= A “critical section”:

1 lock_t mutex;
; ioL.ﬂ.HmuLex] H
4 balance = balance + 1
5 unlock (smutex) ;
TCSS422: Oy ing Sy [Spring 2023]
‘ Lnlleh s school afE:;r::e’:\gngy:‘nZ"“lsech:Lrugw University of Washington - Tacoma Li.2s
" pthread_mutex_lock (&lock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock
=Thread with lock enters critical section
Thread “owns” the lock
= No other thread can acquire the lock before the owner
releases it.
TCSS422: Oy ing Sy [Spring 2023]

LOCKS - 4

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
Fine gralned - means just one grain of sand at a time through an
hour glass
=Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCS5422: Operating Systems [Spring 2023]
‘ e School of Engineering and Technology, University of Washington - Tacoma 1029

4/27/2023

= Lock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock
= States
= Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

‘TCS5422: Operating Systems [Spring 2023]
‘ Gpallzl A School of Engineering and Technology, University of Washington - Tacoma o026

26

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

. Introduction
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]
‘ April27,2023) School of Engineering and Technology, University of Washington - Tacoma o028

28

FINE GRAINED?

= |s this code a good example of “fine grained parallelism”?

pthread_mutex_Tock(&lock);

a = b+

b=a*c;

*d =a+ b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;

fn
} N
e=e-1;
pthread_mutex_unlock (&lock) ;
. TCS5422: Operating Systems [Spring 2023]
‘ REDERETD School of Engineering and Technology, University of Washington -Tacoma o0

29

Slides by Wes J. Lloyd

30

L10.5

TCSS 422 A — Spring 2023
School of Engineering and Technology

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock (&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock (&lock_a);

pthread_mutex_lock (&lock_b);
=a* c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);

*d =a+ b +c;
pthread_mutex_unlock (&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma.

11031

4/27/2023

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED

Many Lock (kernel) calls

COARSE-GRAINED
Few Lock (kernel) calls

Low overhead from
minimal locking

More overhead from
excessive locking

More parallelism
Higher code complexity

Less parallelism
Low code complexity

& debugging & simpler debugging
Every program
implementation

lies someplace along
the trade-off space...
‘TCS5422: Operating Systems [Spring 2023]
‘ fllez v School of Engineering and Technology, University of Washington - Tacoma 132

31

= Correctness
= Does the lock work?
= Are critical sections mutually exclusive?
(atomic-as a unit?)
= Fairness

of acquiring it?

= Overhead

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?

\

= Do all threads that compete for a lock have a fair chance

TCS5422: Operating Systems [Spring 2023]

‘ Apel27,2023 School of Engineering and Technology, University of Washington - Tacoma

11033

32

BUILDING LOCKS

= Locks require hardware support
=To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction

CMPXCHG
CMPXCHG8B
CMPXCHG16B
TCS5422: Operating Systems [Spring 2023]
‘ An|27,2023 School of Engineering and Technology, University of Washington - Tacoma L1034

33

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

i lock() {
DisableInterrupts(}s

i unlock () {
EnableInterrupts();

B

1

= Any thread could disable system-wide interrupt
= What if lock is never released?

= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

= On a multiprocessor processor each CPU has its own interrupts

TCS5422: Operating Systems [Spring 2023]

‘ April 27,2023 School of Engineering and Technology, University of Washington - Tacoma

1035

34

WE WILL RETURN AT

4:55PM

TCSS422: Operating Systems [Spring 2023]

i)]
Aerlz2023 School of Engineering and Technology, University of Washington -

35

Slides by Wes J. Lloyd

36

L10.6

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table

‘ April 27,2023

TCSS422: Operating Systems [Spring 2023] 11037
School of Engineering and Technology, University of Washington - Tacoma

37

BASIC SPIN LOCK: CORRECT?

= |f both threads can run at the same time, then correctness
requires luck... (e.g. basic spin lock is incorrect)

Threadl Thread2
call lock()

while (flag == 1)

interrupt: switch to Thread 2

call 1ock()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag =

= Here both threads have “acquired” the lock simultaneously

‘ April 27,2023

TCS5422: Operating Systems [Spring 2023] L1039
School of Engineering and Technology, University of Washington - Tacoma

39

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin LocksCompare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2023]

‘ e School of Engineering and Technology, University of Washington - Tacoma Lot

41

Slides by Wes J. Lloyd

4/27/2023

BASIC SPIN LOCK IMPLEMENTATION

= Demonstration of lock implementation using C code
= C code is compiled to assembly, instructions are not atomic
= |dea is to imagine “what if” the lock code were atomic

1 __lock t | flags | lock_ti
2
3 init(lock t *mutex) {
3 3
5 mitex->flag = 07
6
= Is this lock 8 lock t *motex) |
implementation: L] [E ->flag == 1)
10 :
(1)Correct? 11 mutex->flag = 17
f 1z)
2)Fair? 12
(3!Performant? 14 unlock{lock_t *mutex) |
15 mutex->flag = 07
16)
‘TCS5422: Operating Systems [Spring 2023]
‘ Gpallzl A ‘ School of Engineering and Technology, University of Washington - Tacoma 38

38

BASIC SPIN LOCK: PERFORMANCE ?

void Tock(Tock_t *mutex)

// while Tock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%
= Continuously loops, and

mutex->flag value...
= If multiple threads wait for the CPU, more CPU capacity is wasted
= Generates heat...

TCS5422: Operating Systems [Spring 2023] 110.40
School of Engineering and Technology, University of Washington - Tacoma

‘ April 27,2023

40

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks

= Book presents pseudo code of C implementation for
TEST-AND-SET instruction that needs to be atomic
= TEST-and-SET checks old value improving on basic spin lock
= TEST-and-SET returns the old value so it can be checked
= Comparison is made in the caller
= Assumption is the TEST-AND-SET routine runs atomically on the CPU
= Here is the C-pseudo code:

TestandSet (int *ptr, new) {
old trs
ptr =

‘ April 27,2023

TCS3422: Operating Systems [Spring 2023] 1042
School of Engineering and Technology, University of Washington - Tacoma

42

L10.7

TCSS 422 A — Spring 2023

4/27/2023
School of Engineering and Technology

= |lock() method checks that TestAndSet doesn’t return 1 = Correctness:
= If TestAndSet returns 1: = Spin locks with atomic Test-and-Set:
= This indicates someone else has the lock Critical sections won’t be executed simultaneously by (2) threads
1 f t _lock t (
2 t flag: .
I 1 ecker T = Fairness:
H init{lock_t *lock) = No fairness guarantee. Once a thread has a lock, nothing forces it to
N relinquish it... lock distribution is random
8 lock->flag = 0
E
10 . = Performance:
1 Lock{lock_t *lock)
12 (TestAndset (slock->flag, 1) == 1} = Spin locks perform “busy waiting”
13 s
] = Spin locks are best for short periods of waiting (< 1 time quantum)
1 unleckiieck £ 10ck | = Performance is slow when multiple threads share a CPU
HE jeskiae = Especially if “spinning” for long periods
TCSS422: Oy ing Sy [Spring 2023] TCS5422: O ling Sy [Spring 2023]
‘ Lnlleh s school afE:;r::e’:\gngy:‘nZ"“lsech:nEw University of Washington - Tacoma L3 ‘ Gpallzl A School of E::i’:e‘e’:igngv:\ed"}sech:alrfgm University of Washington - Tacoma Lo.as

OBJECTIVES - 4/27 COMPARE AND SWAP

= Questions from 4/25

= Checks that the lock variable has the expected value FIRST,
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28 before changing its value
= Assignment 1 - Due Tue May 9 = If so, make assignment

= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2) gaetiiniaivelaiiccation
= Chapter 27: Linux Thread API

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularit

= Adds a comparison to TestAndSet method
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization
= Spin Locks, Test and Set| Compare and Swap = Supports implementation of shared data structures which can be
= Chapter 29: Lock Based Data Structures updated atomically (as'a unit) !Jsing Hardware support:
= Approximate Counter (Sloppy Counter) x86 CompareAndSwap instructions
PP) i = Shared data structure updates become “wait-free”
= Concurrent Structures: Linked List, Queue, Hash Table

= Upcoming in Chapter 32

School of Engineering and Technology, University of Washington - Tacoma

TCS5422: Operating Systems (Spring 2023] TC55422: Operating Systems (Spring 2023]
‘ Apel27,2023 School of Engineering and Technology, University of Washington - Tacoma. Li4s April27,2023) tioae

45 46

[| |
"When implementing locks in a high-level Ianguage'
COMPARE AND SWAP s
(e.g. C), what is missing that prevents
implementation of CORRECT locks?
= Compare and Swap
expected, int new
Shared state variable
WM C implementation on 1-core VM: Condition variables
Count is correct, no deadlock) .
: ATOMIC instructions
}
= x86 CPU provides “cmpxchgl” compare-and-exchange instructions Fairness
* cmpxchg8b
* cmpxchgl6b None of the above
[nzams |10 oo b) ssinon s -~ — _ . .

47 48

Slides by Wes J. Lloyd L10.8

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

“LOCK BUILDING” CPU INSTRUCTIONS

ON ARM PROCESSORS LL/SC LOCK

= Cooperative instructions used together to support
synchronization on RISC systems

1
3
= No support on x86 processors 5
7

© LoadLinked(int *ptr) {
*ptr:

1t StoreConditional (int *ptr, int value)

(no one has updated *ptr since the LoadLinked to this address) {
*ptr = walue;

8 1z
= Load-linked (LL) H o

= Supported by RISC: Alpha, PowerPC, ARM

1 {
o N 11)

= Loads value into register 12

= Same as typical load

= Used as a mechanism to track competition = LL instruction loads pointer value (ptr)

. = SC only stores if the load link pointer has not changed
= Store-conditional (SC)

M L, = Requires HW support
= Performs “mutually exclusive” store .
= C code is psuedo code
= Allows only one thread to store value
TCSS422: Oy ating Syste [Spring 2023] TCSS422: Oy iting Syste [Spring 2023]
‘ Lzl school ofz:;:ee’:fngy:neﬂsem:n:fw University of Washington - Tacoma L4 ‘ fllez v School of E:;i’:ee’:igngvaned"}sech:alrfgm University of Washington - Tacoma oso

LL/SC LOCK - 2 OBJECTIVES - 4/27
1 T lock(lock_t *lock) | = Questions from 4/25
H P Goattaxeaietockostiag = 1 = C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
g {Aluxu;l:undltinnnl[&lutk-)flaq 1) == 1) - ASSignment 1 - Due Tue May 9
j i el iccess: a 4 = Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
¢ 1 = Chapter 27: Linux Thread API
10 ! . = pthread_cond_wait/_signal/_broadcast
1 rock-stiag =01 = Chapter 28: Locks
1B 1 = Introduction, Lock Granularity
Two Instruction lock = Spin Locks, Test an mpare and Sw
= Two instruction loc
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
[z [e e i o [z [e e B i - s oz
51

52

LOCK-BASED

CONCURRENT DATA STRUCTURES

= Adding locks to data structures make them
thread safe.

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

= Considerations:
=Correctness
=Performance
=Lock granularity

. TCSS422: Operating Systems [Spring 2023
Aerizr0zs School of Engineering and Technology, University of Washington -

TC55422: Operating Systems [Spring 2023]
‘ DD School of Engineering and Technology, University of Washington -Tacoma Lose

54

53

Slides by Wes J. Lloyd L10.9

TCSS 422 A — Spring 2023
School of Engineering and Technology

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe

__counter t |
valuej
)} counter_t;

1
3
Il

init (counter_t *c) {
c->value = 0;

13 decrement (¢
14 c->valus

17 get(counter_t *c) |
18 c->values

TCSS422: Operating Systems [Spring 2023]
‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma Lioss

55

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

BEE

sc->lock);

| mutex_unlock (sc->1ock) 1
re:

R E

R RN

‘ April 27,2023

TCS5422: Operating Systems [Spring 2023] L1057
School of Engineering and Technology, University of Washington - Tacoma

57

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second (tps)

= 1 core

=N =100 tps

= 10 cores (x10)
= N = 1000 tps (x10)

= |s parallel counting with a shared counter an embarrassingly
parallel problem?

TCS5422: Operating Systems [Spring 2023] 1059
School of Engineering and Technology, University of Washington - Tacoma

‘ April 27,2023

4/27/2023

CONCURRENT COUNTER

1 __counter_t {

2 int vaiues

3 pthread lock t lock:

a) counter_t;

B ounter t *c) {

7 1ue = 0;

8 Pthread mutex_init{&c->lock, NULL);
k4)

10

1 ounter_t *c) {

1z mutex_lock(&c->1ock) i
13 -~

14 ead mutex unlock(sc->lock) s
15)

16

= Add lock to the counter
= Require lock to change data

‘TCS5422: Operating Systems [Spring 2023]
‘ Gpallzl A School of Engineering and Technology, University of Washington - Tacoma o6

56

CONCURRENT COUNTERS - PERFORMANCE

= Concurrent counter is considered a “precise counter”
= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

B
i g

ol

1 2 3 4
Threads
scales poorly
TCS5422: Operating Systems [Spring 2023]
‘ April27,2023) ‘ School of Engineering and Technology, University of Washington - Tacoma ose

58

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures
I " ApproxI Counter (Sloppy C ;I

= Concurrent Structures: Linked List, Queue, Hash Table

. 7CS5422: Operating Systems [Spring 2023]
‘ REDERETD ‘ School of Engineering and Technology, University of Washington - Tacoma 1060

59

Slides by Wes J. Lloyd

60

L10.10

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/27/2023

= Provides single logical shared counter

4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically
Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter

Small (S): more updates, more overhead

= Why this implementation?
Why do we want counters local to each CPU Core?

APPROXIMATE (SLOPPY) COUNTER

= Implemented using local counters for each ~CPU core

Large (S): fewer updates, more performant, less synchronized

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma

L1061

APPROXIMATE COUNTER - MAIN POINTS

= |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+l
= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= It's approximate because it's not so accurate (until the end)

L1062

‘TCS5422: Operating Systems [Spring 2023]

‘ Gpallzl A School of Engineering and Technology, University of Washington - Tacoma

61

62

APPROXIMATE COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

Time | 1, [P P ™ G
o o 0 0 o o
1 0 0 1 1 0
2 1 Qo 2 1 a
3 2 0 3 1 o
4 3 0 3 2 0
5 4 1 3 3 0
3 530 1 3 4 5 (from 1,)
7 o 2 a 530 10 (from 1,)

TCS5422: Operating Systems [Spring 2023]

‘ Apel27,2023 School of Engineering and Technology, University of Washington - Tacoma.

11063

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S - What is the consequence?

15

Time (seconds)

it

0+— ey %
1 2 4 8 16 32 B4 128 256 5121024
Approximation Factor ()

TCS5422: Operating Systems [Spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

11064

‘ April 27,2023 ‘

63

64

= Example implementation - sloppybasic.c

= Also with CPU affinity

APPROXIMATE COUNTER - EXAMPLE

TCS5422: Operating Systems [Spring 2023]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L1065

u € When poll is active, respond at pollev.com/wesleylloyd641
= Text WESLEYLLOYD641 to 22333 once to join

Which of the following is NOT a problem as a
result of having a low S-value for the

approximate counter (Sloppy Counter)
threshold?

The caunter overhead is very high.

The counter implementation performsa very
arge number of LOCK/UNLOCK AP calls.

The global counter value is highly accurate,

The caunter perfarms very few lacal to global
counter updates,

Nene of the above

65

Slides by Wes J. Lloyd

66

L10.11

TCSS 422 A — Spring 2023

4/27/2023
School of Engineering and Technology

OBJECTIVES - 4/27

CONCURRENT LINKED LIST - 1

= Questions from 4/25

= Simplification - only basic list operations shown

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28 Structs and initialization:
= Assignment 1 - Due Tue May 9 1
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2) m—”‘"*-f t
= Chapter 27: Linux Thread API 4 , EXuct _node_t tnext:

= pthread_cond_wait/_signal/_broadcast 6
= Chapter 28: Locks H

= Introduction, Lock Granularity ;‘

= Spin Locks, Test and Set, Compare and Swap :;
= Chapter 29: Lock Based Data Structures 11

= Sloppy Counter 15

| * Concurrent Structures: Linked List| Queue, Hash Table o
(Cont.)
\ April 27,2023 e tans7 \ April 27,2023 St o rgamye e Tt Uiy ofWashingian - Taoena tanse

67 68

CONCURRENT LINKED LIST - 2

CONCURRENT LINKED LIST - 3

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.) (cont.)
12 32
19 2 List Lookup(list_t *L, i
20 pthread_muf
21 node_t *cu
22 = (eurr) {
23 (curr->key == key)
22 d_mutex_unlock (sL->1ock) ;
21 39)
e 0 curr = curr->next;
29 a1)
30 a2 pthread mutex_unlock(sL->lock) s
31) 3 :
(Cont.} a4 1
TCS5422: Operating Systems [Spring 2023 TCS5422: Operating Systems [Spring 2023
‘ Gl 2 e Telh:ﬂloggv, University of Washington - Tacoma L1069 ‘ Rl 2R School of Engineering and Tec[h:alaggy, Un!vers\'ty of Washington - Tacoma Loz

69 70

CONCURRENT LINKED LIST

CCL - SECOND IMPLEMENTATION

= First Implementation: = Init and Insert

= Lock everything inside Insert() and Lookup() ! ListInit{list_t i) |
= If malloc() fails lock must be released K . pthread_m t{eL->lock, WULL)¢
Research has shown “exceptlon-based control flow” to be error . N
& List Insert{list t *L, int key)
prone 7
40% of Linux OS bugs occur in rarely taken code paths ; e eof faoda_t1)
Unlocking in an exception handler is considered a poor coding :" .
practice 12 }
R ; . . . 13 new->key = keyr
There is nothing specifically wrong with this example however 14
15
16 pthre
n 17 n
= Second Implementation ... 10 L
19 pthre:
20 1
21
TCSS422: Operating Syste [Spring 2023] i TCSS422: Oy ting Syste & 2023]
[mammm | o ey o vt ons o [mmmm o o eyt v s o

71 72

Slides by Wes J. Lloyd L10.12

TCSS 422 A — Spring 2023
School of Engineering and Technology

4/27/2023

= Lookup

CCL - SECOND IMPLEMENTATION - 2

List_Lookup (list_t 7L, key) |
v h

k(&L->lock)

curr = curr->next;

]
pthread_mutex_unlock (sL->lack) s
i i

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma

11073

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant
= Users must “wait” in line for a single lock to access/modify
any item
Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list
= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...
= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

‘TCS5422: Operating Systems [Spring 2023] L1074
School of Engineering and Technology, University of Washington - Tacoma

‘ April 27,2023

73

74

OBJECTIVES - 4/27

= Questions from 4/25

= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List Hash Table

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 28

TCS5422: Operating Systems [Spring 2023]

‘ Apel27,2023 School of Engineering and Technology, University of Washington - Tacoma

1075

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= [tems can be added and removed by separate threads at the
same time

TCS5422: Operating Systems [Spring 2023]
‘ April27,2023) School of Engineering and Technology, University of Washington - Tacoma o7e

75

CONCURRENT QUEUE

= Remove from queue

node Tt *next;

queue_t |

(node_t))

mutex_init (&q->tail L)

TCS5422: Operating Systems [Spring 2023]

‘ April 27,2023 School of Engineering and Technology, University of Washington - Tacoma.

11077

77

Slides by Wes J. Lloyd

76

CONCURRENT QUEUE - 2

= Add to queue

(Cont.}
value) {
(node_t))+

tmp->value =
tmp->next =

(Cont.)

. 7CS5422: Operating Systems [Spring 2023]
‘ REDERETD School of Engineering and Technology, University of Washington -Tacoma Lozs

78

L10.13

TCSS 422 A — Spring 2023
School of Engineering and Technology

OBJECTIVES - 4/27

= Questions from 4/25
= C Tutorial -
= Assignment 1 - Due Tue May 9
= Quiz 1 (Due Thur Apr 27) - Quiz 2 (Due Tue May 2)
= Chapter 27: Linux Thread API

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue,|Hash Table

Pointers, Strings, Exec in C - Due Fri Apr 28

TCSS422: Operating Systems [Spring 2023]

‘ Lnlleh s School of Engineering and Technology, University of Washington - Tacoma

1079

79

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
© Simpie Concurient List
X Cancurrent Hash T

Time (seconds]
=]

0 10 20 30 40
Inserts (Thousands)

scales

ently

g Systems [Spring.

April 27,2023 School of Engineering and Technology,

ersity of Washington - Tacoma

81

structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

™ o comten, . hel

[| |
Whichisa major advantage of using concurrent data

83

Slides by Wes J. Lloyd

4/27/2023

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket

One lock per hash (bucket)
Hash bucket is a linked lists

Bucket is implemented using a concurrent linked list

‘TCS5422: Operating Systems [Spring 2023]

‘ Gpallzl A School of Engineering and Technology, University of Washington - Tacoma

L1080

80

CONCURRENT HASH TABLE

BUCKETS (101)

ash_t {
UCKETS] 7

Hash_Tnit(hash_t *H) [
i

¢ 1 < BUCKETS; i++)
ist_Init (sH->lists[i]):

> ey % BUC)
21 List_Lookup(sH—>1 istabucket], key) s

TCS5422: Operating Systems [Spring 2023]

‘ Apell2752023) School of Engineering and Technology, University of Washington - Tacoma

L1082

82

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomiclintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: ttps //docs.oracle, com[en[lavazIavasez:l.:l.Zdocs[aplz

TCs5422: Operating Systems [spring 2023]
School of Engineering and Technology, University of Washington - Tacoma

April 27,2023

84

L10.14

TCSS 422 A — Spring 2023 4/27/2023
School of Engineering and Technology

QUESTIONS

85

Slides by Wes J. Lloyd L10.15

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/27
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/25
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Feedback - 4
	Slide 10: OBJECTIVES – 4/27
	Slide 11: OBJECTIVES – 4/27
	Slide 12: OBJECTIVES – 4/27
	Slide 13: Quiz 1
	Slide 14: Quiz 2
	Slide 15: OBJECTIVES – 4/27
	Slide 16: Conditions and signals
	Slide 17: Conditions and signals - 2
	Slide 18: conditions and signals - 3
	Slide 19: Condition and SIGNALS - 4
	Slide 20: Pthreads library
	Slide 21: Sample Makefile
	Slide 22
	Slide 23: OBJECTIVES – 4/27
	Slide 24: Chapter 28 – LOCKS
	Slide 25: Locks
	Slide 26: Locks - 2
	Slide 27: Locks - 3
	Slide 28: OBJECTIVES – 4/27
	Slide 29: Locks - 4
	Slide 30: Fine grained?
	Slide 31: Fine grained parallelism
	Slide 32: Lock granularity trade-off space
	Slide 33: Evaluating lock implementations
	Slide 34: Building locks
	Slide 35: Historical implementation
	Slide 36: We will return at 4:55pm
	Slide 37: OBJECTIVES – 4/27
	Slide 38: Basic Spin lock implementation
	Slide 39: Basic Spin lock: Correct?
	Slide 40: Basic Spin lock: performance ?
	Slide 41: OBJECTIVES – 4/27
	Slide 42: Test-and-set instruction
	Slide 43: Test-and-set - 2
	Slide 44: Spin Lock evaluation
	Slide 45: OBJECTIVES – 4/27
	Slide 46: Compare and Swap
	Slide 47: Compare and swap
	Slide 48
	Slide 49: “lock Building” CPU instructions on arm processors
	Slide 50: LL/SC Lock
	Slide 51: LL/SC lock - 2
	Slide 52: OBJECTIVES – 4/27
	Slide 53: Chapter 29 – LOCK Based data structures
	Slide 54: Lock-based concurrent data structures
	Slide 55: Counter structure w/o lock
	Slide 56: concurrent counter
	Slide 57: Concurrent counter - 2
	Slide 58: Concurrent counters - Performance
	Slide 59: Perfect scaling
	Slide 60: OBJECTIVES – 4/27
	Slide 61: approximate (sloppy) counter
	Slide 62: approximate counter – main points
	Slide 63: approximate counter - 2
	Slide 64: Threshold value S
	Slide 65: approximate counter - example
	Slide 66
	Slide 67: OBJECTIVES – 4/27
	Slide 68: Concurrent linked list - 1
	Slide 69: Concurrent linked list - 2
	Slide 70: Concurrent linked list - 3
	Slide 71: Concurrent linked list
	Slide 72: Ccl – second implementation
	Slide 73: Ccl – second implementation - 2
	Slide 74: Concurrent Linked list performance
	Slide 75: OBJECTIVES – 4/27
	Slide 76: Michael and scott concurrent queues
	Slide 77: Concurrent queue
	Slide 78: Concurrent queue - 2
	Slide 79: OBJECTIVES – 4/27
	Slide 80: Concurrent hash table
	Slide 81: Insert performance – concurrent hash table
	Slide 82: Concurrent hash table
	Slide 83
	Slide 84: Lock-free data structures
	Slide 85: Questions

