TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Locks, ~
Lock-Based Data Structures, Q -
Condition Variables '

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

aprili2e72020 School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 4/28

® Questions from 4/23
® C Tutorial (Apr 30 11:59p AOE)
= Assignment 1 (May 7 11:59p AOE)
® Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumetr

= Covering Conditions

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 28, 2020

9.2

Lioyd

4/28/2020

L9.1

TCSS 422 B — Spring 2020 4/28/2020
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in
today’s class (49 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew
= Average - 7.21 (from 7.32)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.53 ({ from 5.63)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 193

April 28, 2020

FEEDBACK FROM 4/23

m |s the pthread_cond_t data type a queue in itself,
OR does the system maintain a queue behind the scenes
when an instance of the type is initialized?

B The system maintains a FIFO queue behind the scenes for
each condition variable.

® Any thread that waits on the condition adds itself to the
queue

® When a signal is fired on the condition variable,
threads are woken up in FIFO order

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Lo4

April 28, 2020

Slides by Wes J. Lloyd L9.2

TCSS 422 B — Spring 2020
School of Engineering and Technology

FEEDBACK - 2

® |s one instance of the condition data type required per

thread requiring access, or is only one instance required

per critical region?

® Only one instance of a condition variable is required
for each critical region

® Condition variables are associated with a lock variable
® The lock variable protects the critical section

® The condition variable enforces FIFO access
to the critical section

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.5

® Wait example:

CONDITION VARIABLE EXAMPLE

a=a+ b;

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD COND_ INITIALIZER;

pthread mutex_ lock (&lock) ;
while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock

pthread mutex unlock (&lock) ;

® meanwhile: another thread sets the state

® wait puts thread to sleep, and automaticallireleaces lack

State variable set,
Enables other thread(s)

pthread mutex lock(&lock);
» initialized = 1;
pthread cond signal (&init);
pthread mutex unlock(&lock);

to proceed above.

some other code
in the program

® when awoken,

lock is reacquired, state variable passes test,

we canh then execute a=a+b !!!

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

Slides by Wes J. Lloyd

4/28/2020

L9.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONDITION VARIABLES

®m Are usually associated with a primitive state variable
(int or Boolean)

= Variable tracks if it is okay to proceed:
=%*%* Are preconditions for execution met? **

® [ntroduced in Chatper 27 (Thread API)

® Covered in depth in Chapter 30

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

.7

OBJECTIVES - 4/28

® Questions from 4/23

® C Tutorial (Apr 30 11:59p AOE)

= Assignment 1 (May 7 11:59p AOE)
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

9.8

Slides by Wes J. Lloyd

4/28/2020

L9.4

TCSS 422 B — Spring 2020 4/28/2020
School of Engineering and Technology

OBJECTIVES - 4/28

® Questions from 4/23
® C Tutorial (Apr 30 11:59p AOE)
= Assighment 1 (May 7 11:59p AOE)
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 28, 2020 19.9

MIDTERM

® Tuesday May 5th

® ONLINE via Canvas (for 3 hrs 12:30 - 3:30p)

®m Additional hour provided in case of internet issues, etc.
® Open book, note, internet

® |[ndividual work

= Preparation:
® Practice quiz: CPU scheduling (to be posted)
= Auto grading w/ multiple attempts allowed as study aid
® Practice THURSDAY - first hour of lecture
= Series of problems presented with some time to solve
= Will then work through solutions
®m Second hour - new material not on midterm

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L9.10

April 28, 2020

Slides by Wes J. Lloyd L9.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

CHAPTER 28 -
LOCKS

TCSS422: Operating Systems [Spring 2020]

Aprili2632020 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/28

® Questions from 4/23
® C Tutorial (Apr 30 11:59p AOE)
= Assignment 1 (May 7 11:59p AOE)
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

L9.12

Slides by Wes J. Lloyd

4/28/2020

L9.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

® Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given
time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

| balance = balance + 1;

m A “critical section”:

balance

o Wk

lock_t mutex; // some globally-allcocated lock ‘mutex’

lock (&mutex) ;

= balance + 1;

unlock (&mutex) ;

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.13

m States

LOCKS - 2

® Lock variables are called “MUTEX”
= Short for mutual exclusion (that’s what they guarantee)

®E Lock variables store the state of the lock

= Locked (acquired or held)

= Unlocked (available or free)

® Only 1 thread can hold a lock

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

19.14

Slides by Wes J. Lloyd

4/28/2020

L9.7

TCSS 422 B — Spring 2020 4/28/2020
School of Engineering and Technology

LOCKS -3

"pthread mutex_lock(&lock)
= Try to acquire lock
= |If lock is free, calling thread will acquire the lock

= Thread with lock enters critical section
Thread “owns” the lock

® No other thread can acquire the lock before the owner
releases it.

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1915

April 28, 2020

LOCKS - 4

® Program can have many mutex (lock) variables to
“serialize” many critical sections

® Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously

= Programmer can make sections of code “granular”

Fine grained - means just one grain of sand at a time through an
hour glass

= Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1916

April 28, 2020

Slides by Wes J. Lloyd L9.8

TCSS 422 B - Spring 2020 4/28/2020
School of Engineering and Technology

FINE GRAINED?

® |s this code a good example of “fine grained parallelism”?

pthread_mutex_lock(&lock);

a b++;

b=a*c;

*d =a+ b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);

ListNode *node = mylist->head;

Int i=0

while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;

node->end = *e;
node = node->next;
i++

} .

e=¢e-1;

pthread_mutex_unlock(&lock);

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L9.17

April 28, 2020

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unTock(&lock_a);

pthread_mutex_lock(&lock_b);
b=a?*c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 .

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1518

April 28, 2020

Slides by Wes J. Lloyd L9.9

TCSS 422 B — Spring 2020 4/28/2020
School of Engineering and Technology

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED COARSE-GRAINED
Many Lock (kernel) calls Few Lock (kernel) calls
More overhead from Low overhead from

excessive locking minimal locking

More parallelism Less parallelism
Higher code complexity Low code complexity
& debugging & simpler debugging

Every program
implementation
lies someplace along
the trade-off space...

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L4.19

April 9, 2020

EVALUATING LOCK IMPLEMENTATIONS

What makes a
m Correctness good lock?

= Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

® Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

® Qverhead

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1920

April 28, 2020

Slides by Wes J. Lloyd L9.10

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

BUILDING LOCKS

® Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction
CMPXCHG
CMPXCHGSB
CMPXCHG16B

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 28, 2020

L9.21

HISTORICAL IMPLEMENTATION

® To implement mutual exclusion
= Disable interrupts upon entering critical sections

void lock() {
DisableInterrupts();

}

void unlock() {

EnableInterrupts();

a1 WD

}

Any thread could disable system-wide interrupt
= What if lock is never released?

® On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

While interrupts are disabled, they could be lost
= |f not queued...

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

19.22

Lloyd

4/28/2020

L9.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

SPIN LOCK IMPLEMENTATION

® Operate without atomic-as a unit assembly instructions

® “Do-it-yourself” Locks

® |s this lock implementation: (1)Correct? (2)Fair? (3)Performant?

\n\““g”um
) % ,,

Wil
\\“3;‘0 eé’"’/:,

0 0
‘ru., "“g“‘“‘\

[R R R e I S

typedef struct _ lock t { int flag:; } lock t:

void init(lock_t *mutex) |
// 0 2 lock is available, 1 = held
mutex->flag = 07

}

void lock(lock t *mutex) {

(mutex— >flag == 1) // TEST the flag
: // spin-wait (do nothing)

mutex->flag = 17 // now SET it !

}

void unlock(lock t *mutex) {
mutex->flag = 07

}

April 28, 2020

19.23

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

® Correctness requires luck...

DIY: CORRECT?

(e.g. DIY lock is incorrect)

Threadl Thread2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1

flag = 1; // set flag to 1 (too!)

® Here both threads have “acquired” the lock simultaneously

April 28, 2020

TCSS422: Operating Systems [Spring 2020] 19.24

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

4/28/2020

L9.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

DIY: PERFORMANT?

{

mutex->flag = 1;

}

void Tock(lock_t *mutex)

// while Tock is unavailable, wait..

® What is wrong with while(<cond>); ?

® Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%
= Continuously loops, and evaluates mutex->flag value...
= Generates heat...

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

TEST-AND-SET INSTRUCTION

® Hardware support required for working locks

® Book presents pseudo code of C implementation
= TEST-and-SET adds a simple check to the basic spin lock
= Assumption is this “C code” runs atomically on CPU:

i int TestAndSet (int #*ptr, int new) {

2 int old = *ptr; // fetch old value at ptr
3 *ptr = new; D

4 old;

3 }

® lock() method

checks that TestAndSet doesn’t return 1

® Comparison is in the caller

® Can implement the C version (hon-atomic) and have some
success on a single-core VM

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.26

Slides by Wes J. Lloyd

4/28/2020

L9.13

TCSS 422 B - Spring 2020

School of Engineering and Technology

Slides by Wes J.

DIY: TEST-AND-SET - 2

m C version: requires preemptive scheduler onsingle core system
® Lock is never released without a context switch
® single-core VM: occasionally will deadlock, doesn’t miscount

typedef struct _ lock t {

}

}

Vo

oid lock(lock_t *lock) {

}

int flag:
lock t;

void init(lock_t *lock) {

// 0 ¥ that lock is available,
// 1 that 1 held

lock->flag = 07

(TestAndset (&lock->flag, 1) == 1)

// spin-wait

void unlock(lock t *lock) {

}

lock->flag = 07

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

= Correctness:

SPIN LOCK EVALUATION

= Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting (< 1 time quantum)

= Performance is slow when multiple threads share a CPU

Especially if “spinning” for long periods

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

19.28

Lloyd

4/28/2020

L9.14

TCSS 422 B — Spring 2020
School of Engineering and Technology

COMPARE AND SWAP

® Checks that the lock variable has the expected value FIRST,
before changing its value
= |If so, make assignment
= Return value at location

® Adds a comparison to TestAndSet

= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

m Useful for wait-free synchronization
= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction
= Shared data structure updates become “wait-free”

= Upcoming in Chapter 32

. TCSS422: Operating Systems [Spring 2020]
aprilize32020 School of Engineering and Technology, University of Washington - Tacoma L9.29

Slides by Wes J.

COMPARE AND SWAP

® Compare and Swap

al int CompareAndSwap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)
4
5

*ptr = new;
actual;

C implementation 1-core VM:

® Spin loc "
Count is correct, no deadlock

g o

m X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
" cmpxchgléb

. TCSS422: Operating Systems [Spring 2020]
April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma L5:30

Lloyd

4/28/2020

L9.15

TCSS 422 B - Spring 2020

School of Engineering and Technology

Slides by Wes J.

When implementing locks in a high-level language

(e.g. C), what is missing that prevents
implementation of CORRECT locks?

Shared state variable
Condition variables

ATOMIC instructions

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.co

Fairness

.

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

®m Cooperative instructions used together to support
synchronization on RISC systems

B No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

® Load-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

® Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

19.32

Lloyd

4/28/2020

L9.16

TCSS 422 B - Spring 2020

School of Engineering and Technology

LL/SC LOCK

1
2

3 }

4

5

6

7

8

9 }
10

11 }
12 &

int LoadLinked (int #*ptr) {

*ptr:

int StoreConditional (int *ptr, int wvalue) {

(no one has updated *ptr since the LoadLinked to this address) {
*ptr = value;
1; // success!

0; // failed to update

B LL instruction loads pointer value (ptr)
® SC only stores if the load link pointer has not changed
® Requires HW support

= C code is psuedo code

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

LL/SC LOCK - 2

1 void lock(lock_t *lock) {

2 (1) {

3 (LoadLinked (&lock->flag) == 1)
4 ¢ // spin until ‘it's zero
5 (storeConditional (&lock->flag, 1) == 1
[3 CR Y it-to-1 w
7 Exy i

8 }

9 }

10

11 wvoid unlock(lock t *lock) {

12 lock->flag = 07

13

® Two instruction lock

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

19.34

Slides by Wes J. Lloyd

4/28/2020

L9.17

TCSS 422 B - Spring 2020 4/28/2020
School of Engineering and Technology

TCSS 422 WILL RETURN
AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

Aprili2632020 School of Engineering and Technology, University of Washington - [illcoma

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2020]

{oggll 2, 2 School of Engineering and Technology, University of Washington - D

Slides by Wes J. Lloyd L9.18

TCSS 422 B - Spring 2020

School of Engineering and Technology

OBJECTIVES - 4/28

® Questions from 4/23
® C Tutorial (Apr 30 11:59p AOE)
= Assighment 1 (May 7 11:59p AOE)
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.37

LOCK-BASED

CONCURRENT DATA STRUCTURES

m Adding locks to data structures make them
thread safe.

= Considerations:
=Correctness
= Performance
= Lock granularity

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

19.38

Slides by Wes J. Lloyd

4/28/2020

L9.19

TCSS 422 B - Spring 2020

School of Engineering and Technology

COUNTER STRUCTURE W/0 LOCK

®m Synchronization weary --- not thread safe

1 typedef struct _ counter t {
2 int value:

3 } counter t;

4

o void init (counter t *c) {

& c->value = 0;

g/ }

8

9 void increment (counter t *c) {
10 c->vValue++;

1 1

12

13 void decrement (counter t *c) {
14 c->value--;

15 1

16

17 int get(counter t *c) {

18 return c->value;

19 1

TCSS422: Operating Systems [Spring 2020]

April 28,2020 School of Engineering and Technology, University of Washington - Tacoma

L9.39

CONCURRENT COUNTER

1 typedef struct _ counter t {

2 int value;

3 pthread lock t lock;

4 } counter_t;

5

& void init (counter_t *c) {

7 c->value = 0;

g Pthread mutex init (sc->lock, NULL);
9 1

10

11 void increment (counter t *c) {

12 Pthread mutex lock(&c->lock):
13 c->value++;

14 Pthread mutex unlock(&c->lock);
15 1

1€

= Add lock to the counter
®m Require lock to change data

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

L9.40

Slides by Wes J. Lloyd

4/28/2020

L9.20

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONCURRENT COUNTER - 2

® Decrease counter
® Get value

{Cont.)

17 void decrement (counter t *c) {

18 Pthread mutex lock(&c->lock);
19 c->value--;

20 Pthread mutex unlock(&c->lock);
21 1

22

23 int get(counter_t *c) {

24 Pthread mutex lock(&c->lock);
25 int rc = c—>value;

26 Pthread mutex unlock(&c->lock);
27 return rc;

28 }

TCSS422: Operating Systems [Spring 2020]

April 28,2020 School of Engineering and Technology, University of Washington - Tacoma

L9.41

® iMac: four core Intel 2.7 GHz i5 CPU
® Each thread increments counter 1,000,000 times

15
X Precise
© Sloppy
8101
3
£
0 # 5 5 5 Traditional vs. sloppy counter
1 2 3 4 Sloppy Threshold (S) = 1024
Threads

‘ scales poorly

CONCURRENT COUNTERS - PERFORMANCE

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

19.42

Slides by Wes J. Lloyd

4/28/2020

L9.21

TCSS 422 B — Spring 2020 4/28/2020
School of Engineering and Technology

PERFECT SCALING

®m Achieve (N) performance gain with (N) additional resources

® Throughput:
® Transactions per second (tps)

= 1 core
= N=100 tps
®= 10 cores (x10)
=N =1000 tps (x10)
. TCSS422: Operating Systems [Spring 2020]
aprilize32020 School of Engineering and Technology, University of Washington - Tacoma L9.43

SLOPPY COUNTER

® Provides single logical shared counter

=" Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

L9.44

Slides by Wes J. Lloyd L9.22

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

SLOPPY COUNTER - MAIN POINTS

® |dea of Sloppy Counter is to RELAX the synchronization
requirement for counting
= I[nstead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Sloppy counter: trade-off accuracy for speed
= |t’s sloppy because it’s not so accurate (until the end)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L9.45

April 28, 2020

SLOPPY COUNTER - 2

® Update threshold (S) = 5
®m Synchronized across four CPU cores
® Threads update local CPU counters

Time Ly Ly Lg Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 530 1 3 4 5 (from L,)
7 0 2 4 530 10 (from L)

April 28, 2020 ;Er?iilzif gr?;i;ac:(ie':'ignzy:;edm‘lig‘:\:?fgio fJ(r)l]iversity of Washington - Tacoma L9.46

Lloyd

4/28/2020

L9.23

TCSS 422 B - Spring 2020

School of Engineering and Technology

THRESHOLD VALUE S

® Consider 4 threads increment a counter 2000000 times each
" Low S > What is the consequence?

® High S > What is the consequence?

15

—_
(=)
|

Time (seconds)

w
L

0 T T T T T T T T i T
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

Slides by Wes J. Lloyd

4/28/2020

L9.24

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONCURRENT LINKED LIST -1

®m Simplification - only basic list operations shown
® Structs and initialization:

1 // basic node structure

2 typedef struct _ node t {

3 int key;

4 struct _ node t *next;

5 } node t:

3

7 list structure (one used per list)
8 typ struct = list t {

9 node t *head;

10 pthread mutex t lock;

el I 15t by

12

13 void List_Init(list t *L) {

14 L->head = NULL;

15 pthread mutex init (&L->lock, NULL);
16 1

17

(Cont.)

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

CONCURRENT LINKED LIST - 2

® Insert - adds item to list
®m Everything is critical!
= There are two unlocks

{Cont.)

18 int List Insert(list t *L, int key) {

19 pthread mutex lock(&L->lock);

20 node_t *new = malloc(sizeof (node_t));
2zl if (new == NULL) {

22 perror("malloc");

23 pthread mutex unlock(&L->lock):
24 return -1; // fail }

26 new->key = key;

27 new->next = L->head;

28 L->head = new;

29 pthread mutex unlock(&L->lock):

30 return 0; // success

31 }

{Cont.)

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

Slides by Wes J. Lloyd

4/28/2020

L9.25

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONCURRENT LINKED LIST - 3

® Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

{Cont.)

32

32 int List_Lookup(list_t *L, int key) {

33 pthread mutex lock(&L->lock) i

34 node t *curr = L->head;

35 while (curr) {

36 if (curr->key == key) {

37 pthread mutex unlock(&L->lock);
38 return 0; // success
39 1

40 curr = curr->next;

41 1

42 pthread mutex unlock(&L->lock);

43 return -1; // failure

44 }

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.51

prone

practice

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= I[f malloc() fails lock must be released
Research has shown “exception-based control flow” to be error

40% of Linux OS bugs occur in rarely taken code paths
Unlocking in an exception handler is considered a poor coding

There is nothing specifically wrong with this example however

m Second Implementation ...

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

Slides by Wes J. Lloyd

4/28/2020

L9.26

TCSS 422 B — Spring 2020
School of Engineering and Technology

® |nit and Insert

CCL - SECOND IMPLEMENTATION

[=- BRI AT S AV S

void List Init(list t *L) {

L->head = NULL;
pthread mutex init(&L->lock, NULL);:

void List_Imsert(list_t *L, int key) {

// synchronization not n =1
node_t *new = malloc(sizeof (node_t));
if (new == NULL) {

perror("malloc™)

return;
}

new->key = key;

// just lock critical section
pthread mutex lock(&L->lock);
new->next = L->head;

L-»head = new;

pthread mutex unlock(&L->lock):

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

= Lookup
(Cont.)
22 int List Lookup(list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L->lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr->key == key) {
28 rv = 0;
29 b k:
30 }
31 curr = curr->next;
32 1
33 pthread mutex unlock(&L—>lock);
34 return rv; // now both success and failure
35 1
q TCSS422: Operating Systems [Spring 2020
April 28, 2020 School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma Lo.54

Slides by Wes J. Lloyd

4/28/2020

L9.27

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

CONCURRENT LINKED LIST PERFORMANCE

® Using a single lock for entire list is not very performant

® Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

® Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 28, 2020

MICHAEL AND SCOTT CONCURRENT QUEUES

® Improvement beyond a single master lock for a queue (FIFO)
® Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

® |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Lo.56

April 28, 2020

Lloyd

4/28/2020

L9.28

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONCURRENT QUEUE

® Remove from queue

[R R

struct _ node t {

int value;

struct _ node_t *next:
} node t:
ty] struct _ queue_t {

node_t *head;

node_t *tail;

pthread mutex t headLock;

pthread mutex t taillLock;
} queue t;

volid Queue Init (queue t *q) {
node t *tmp = malloc(?izecf(nodeft));
tmp->next = NULL;
q->head = g->tail = tmp;
pthread mutex init(sgq->headLock, NULL)}:
pthread mutex init(sgq->taillock, NULL):

(Cont.)

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21

vold Queue Enqueue(queue t *g, int value) {
node t *tmp = malloc(sizeof (node t));
assert (tmp !'= NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(&g->taillLock);
g->tail->next = tmp;

g->tail = tmp;

pthread mutex unlock(&gq->tailLock);

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

Slides by Wes J. Lloyd

4/28/2020

L9.29

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONCURRENT HASH TABLE

= Consider a simple hash table
="Fixed (static) size
=Hash maps to a bucket

Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

. TCSS422: Operating Systems [Spring 2020]
April 28,2020 School of Engineering and Technology, University of Washington - Tacoma

L9.59

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU
15

O Simple Concurrent List
X Concurrent Hash Table

0 i 3 T ke *F.
0 10 20 30 40
Inserts (Thousands)

o] [
magnificently

. TCSS422: Operating Systems [Spring 2020]
April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

L9.60

Slides by Wes J. Lloyd

4/28/2020

L9.30

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONCURRENT HASH TABLE

@~ ;WM

#define BUCKETS (101)

typedef struct _ hash t {
list_t 1ists[BUCKETS];
} hash t;

void Hash_Init (hash t *H) {
int i;
for (i = 0; i < BUCKETS; i++) {
List Init (&aH->1ists[i]);s
}
}

int Hash_Insert (hash t *H, int key) {

int bucket = key % BUCKETS;

return List Insert(&H->lists[bucket], key):
}

int Hash_Lookup (hash_t *H, int key) {
int bucket = key % BUCKETS;
return List Lookup(&H->1lists[bucket], key):

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily

structures in your programs?

share data

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

.'Which is a major advantage of using concurrent data

Slides by Wes J. Lloyd

4/28/2020

L9.31

TCSS 422 B - Spring 2020 4/28/2020
School of Engineering and Technology

LOCK-FREE DATA STRUCTURES

® Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomiclntegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

® See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.html

. TCSS422: Operating Systems [Spring 2020]
April 28,2020 School of Engineering and Technology, University of Washington - Tacoma

L9.63

CHAPTER 30 -

CONDITION VARIABLES

TCSS422: Operating Systems [Spring 2020]

{oggll 2, 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L9.32

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/28

® Questions from 4/23
® C Tutorial (Apr 30 11:59p AOE)
= Assighment 1 (May 7 11:59p AOE)
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.65

execution

CONDITION VARIABLES

®"There are many cases where a thread wants to
wait for another thread before proceeding with

®m Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.66

Slides by Wes J. Lloyd

4/28/2020

L9.33

TCSS 422 B - Spring 2020

School of Engineering and Technology

CONDITION VARIABLES - 2

® Support a signaling mechanism to alert ~
threads when preconditions have been satisfied

® Eliminate busy waiting

m Alert one or more threads to “consume” a result, or
respond to state changes in the application

® Threads are placed on an explicit queue (FIFO) to wait
for signals

m Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

CONDITION VARIABLES - 3

® Condition variable

H pthread cond t c; |

= Requires initialization

® Condition API calls

pthread cond wait (pthread cond t *c, pthread mutex t *m); /7 wait ()
pthread cond signal(pthread cond t *c): // signal ()

= signal()

® wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= Wakes up thread, awakening thread acquires lock

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

Slides by Wes J. Lloyd

4/28/2020

L9.34

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue... why
not use a stack?
= Queue (FIFO), Stack (LIFO)

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= Why do we want to not busily wait for the lock to become
available?

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L9.69

April 28, 2020

MATRIX GENERATOR

Matrix generation example

Chapter 30
sighal.c

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L9.70

April 28, 2020

Lloyd

4/28/2020

L9.35

TCSS 422 B - Spring 2020

School of Engineering and Technology

MATRIX GENERATOR

® The main thread, and worker thread (generates matrices)
share a single matrix pointer.

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

m Let’s try “nosignal.c”

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

SUBTLE RACE CONDITION:

WITHOUT A WHILE

WMo~ Gy W

void thr exit() {
done = 1;
Pthread cond signal (&c);
}

void thr jeoin() {
if (done == 0)
Pthread cond wait(&c):;

}

= Parent thread calls thr_join() and executes the comparison
® The context switches to the child

® The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

® The signal is lost
® The parent deadlocks

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

Slides by Wes J. Lloyd

4/28/2020

L9.36

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PRODUCER / CONSUMER

Work Queue

< il

TCSS422: Operating Systems [Spring 2020]

April28,2020 School of Engineering and Technology, University of Washington - Tacoma

19.73

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Qur example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
B Multithreaded web server example
= Http requests placed into work queue; threads process

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

L9.74

Lloyd

4/28/2020

L9.37

TCSS 422 B - Spring 2020

School of Engineering and Technology

PRODUCER / CONSUMER - 2

® Producer / Consumer is also known as Bounded Buffer

® Bounded buffer

= Similar to piping output from one Linux process to another

= grep pthread signal.c | wc -I

= Synchronized access:
sends output from grep = wc as it is produced

= File stream

TCSS422: Operating Systems [Spring 2020]

April 28,2020 School of Engineering and Technology, University of Washington - Tacoma

L9.75

PUT/GET ROUTINES

®m Buffer is a one element shared data structure (int)
® Producer “puts” data

® Consumer “gets” data

® Shared data structure requires synchronization

1 int buffer;

2 int count = 0; // initially, empty
3

4 void put(int value) {

5 assert (count == 0);
6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert (count == 1);
12 count = 0;

13 return buffer;

14 }

TCSS422: Operating Systems [Spring 2020]

April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma

L9.76

Slides by Wes J. Lloyd

4/28/2020

L9.38

TCSS 422 B - Spring 2020

School of Engineering and Technology

PRODUCER / CONSUMER - 3

® Producer adds data
®m Consumer removes data (busy waiting)
= Will this code work (spin locks) with 2-threads?

1. Producer 2. Consumer

1 void *producer(void *arg) {
2 int i;
3 int loops = (int) arg:
4 for (1 = 0; 1 < loops: i++) {
5 put (1) ;5
6 }
1 }
8
9 void *consumer (void *arg) {
10 int i;
Tl while (1) {
12 int tmp = get():
13 printf ("$d\n", tmp);
14 }
15 }

a TCSS422: Operating Systems [Spring 2020

April 28,2020 School of Er’:gineerigngyand Te«Eh?onoggy, Un]iversity of Washington - Tacoma .77

PRODUCER / CONSUMER - 3

® The shared data structure needs synchronization!

1 cond_t cond;
2 mutex t mutex;
3
4 void *producer (void *arg) {
5 int i;
[3 or (1 = 0; 1 < loops; i++) { Producer
T » Pthread mutex lock(&mutex): /7 pl
8 if (count == 1) // p2
9 Pthread cond wait (scond, &mutex); f{ip3
10 put(i); // pi
ki Pthread_cond signal (&cond) ; /4 p5
12 Pthread mutex_unlock(amutex); // pe
13 }
14 H
15
16 void *consumer (void *arg) {
17 int is
18 for (i = 0; i < loops; i++) {
19 » Pthread mutex lock(&amutex); i o
q TCSS422: Operating Systems [Spring 2020
nulRE2020 School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma L9.78

Slides by Wes J. Lloyd

4/28/2020

L9.39

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

4/28/2020
20 if (count == 0) // c2
21 Pthread_cond_wait (&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread cond signal (&cond) ; // cb5
24 Pthread mutex unlock (&mutex) ; // c6
25 printf ("$d\n", tmp);
26 } Consumer
27 }
® This code as-is works with just:
(1) Producer
(1) Consumetr
® |f we scale to (2+) consumer’s it fails
= How can it be fixed ?
. TCSS422: Operating Systems [Spring 2020]
April 28,2020 School of Engineering and Technology, University of Washington - Tacoma L9.79
NO WHILE, 1 PRODUCER, 2 CONSUMERS
T. State Te2 State T, State Count Comment
= Two threads cl Running Ready Ready 0
c2 Running Ready Ready 0
» c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready pl Running 0
C1 /p1 = IOCk Sleep Ready p2 Running 0
02/p2' CheCk var Sleep Read pd Running 1: Buffer now full
C3/p3' Wa|t iea:y zeacdiy pz Eunnfng 1 T4 awoken
ea ea unnin
c4- put() . - | i
4 Ready Ready pl Running ik
p - get() Ready Ready p2 Running 1
C5/p5' Slg nal Ready Read p3 Sleep 1: Buffer full; sleep
06/p6' Un|OCk Ready| el Running Sleep 1 T, sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready 5 Running Ready 0 T, awoken
Ready] c6 Running Ready 0
» cd Running Ready Ready 0 Oh oh! No data
q TCSS422: Operating Systems [Spring 2020]
April 28, 2020 School of Engineering and Technology, University of Washington - Tacoma L9.80
Lloyd L9.40

TCSS 422 B — Spring 2020
School of Engineering and Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= Need while, not if

= T, needs to wake T, to T,

= When producer threads awake, they do not check if there is
any data in the buffer...

= What if T, puts a value, wakes T,; whom consumes the value

= Then T, has a value to put, but T;,'s signal on &cond wakes T,
® There is nothing for T,, consume, so T, sleeps
" T.4, Teo, and T, all sleep forever

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.81

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty State T2 State T State Count Comment

cl Running Ready Ready 0
2 Running Ready Ready 0

c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep cl Running Ready 0
C1 /p1 - IOCk Sleep c2 Running Ready 0

02/p2_ Check var Sleep c3 Sleep Ready 0 Nothing to get
C3/p3' Wa|t Sleep Sleep pl Running 0
04_ put() Sleep Sleep p2 Runn!ng 0

Sleep Sleep pd Running i Buffer now full

p4- get() * Ready Sleep p5 Running 1 T, awoken

C5/p5- Slgnal Ready Sleep p6 Running il
06/p6' UnIOCk Ready Sleep pl Running il
Ready Sleep p2 Running 1

Ready Sleep p3 Sleep i Must sleep (full)

» c2 Running Sleep Sleep 1 Recheck condition

c4 Running Sleep Sleep 0 T,; grabs data

» c5 Running Ready Sleep 0 Oops! Woke T,

April 28, 2020 ;Er?iilzif gr?;i;ac::e':'ignzy:;edm‘lig‘:\!ggi? fJ(r)l]iversity of Washington - Tacoma L5.82

Slides by Wes J. Lloyd

4/28/2020

L9.41

TCSS 422 B - Spring 2020

School of Engineering and Technology

EXECUTION TRACE - 2

c6/p6- unlock

= T., runs, no data to consume

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

T State T2 State T, State Count Comment
L_ege_nd 5 (cont)

C1/p1 - IOCk 6 Running Ready Sleep 0

02/p2' CheCk var cl Running Ready Sleep 0

C3/p3- Walt c? Running Ready Sleep 0

c4- put() c3 Sleep Ready Sleep 0 Nothing to get
p4_ get() Sleep c2 Running Sleep 0

CS/pS' Slg nal Sleep £3 Sleep Sleep 0 Everyone asleep ...

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

TWO CONDITIONS

m Use two condition variables: empty & full
= One condition handles the producer
=the other the consumer

W Jo U WN

ond t empty, full;
mutex_t mutex;

void *producer (void *arg) {

int
for

i;

(1 =0; i < loops; i++) {
Pthread mutex lock (&mutex) ;
while (count == 1)

Pthread cond wait (&empty, &mutex);

put (i) ;
Pthread cond signal (&full);
Pthread mutex unlock (&mutex) ;

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

Slides by Wes J. Lloyd

4/28/2020

L9.42

TCSS 422 B - Spring 2020

School of Engineering and Technology

FINAL PRODUCER/CONSUMER

® Change buffer from int, to int buffer[MAX]
= Add indexing variables

s int buffer[MAX];
2 int fill = 0;
3 int use = 0;
4 int count = 0;
5
3 void put (int value) {
i) buffer[fill] = value;
8 £i11 = (£ill + 1) % MAX:
9 count++;
10 }
1%
12 int get() {
13 int tmp = buffer[use];
14 use = (use + 1) % MAX;
15 count--;
16 return tmp;
k) }
a TCSS422: Operating Systems [Spring 2020
April 28,2020 School of Er’:gineerigngyand Te«Eh?onoggy, Un]iversity of Washington - Tacoma L9.85

FINAL P/C - 2

L
2 mutex t mutex;
3
4 void *producer(wvoid *arg) {
5 int i;
& for (i = 0; i < loops:; i++) {
7 Pthread mutex lock(smutex); /7 pl
8 while (count == MAX) // p2
9 Pthread cond wait (sempty, smutex); f{ip3
10 put (i) s // pé
il Pthread_cond_signal (&full); {f PS5
12 Pthread mutex unlock(smutex); /! pe
13 }
14 }
15
16 void *consumer(void *arg) {
17 AN i
18 for (i = 0; i < loops; i++) {
19 Pthread mutex lock(amutex); i el
20 while (count == 0) // c2
21 Pthread cond wait(sfull, &mutex):; i e3
22 int tmp = get (): ’ /7 el
q TCSS422: Operating Systems [Spring 2020
nulRE2020 School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma L9.86

Slides by Wes J. Lloyd

4/28/2020

L9.43

TCSS 422 B — Spring 2020
School of Engineering and Technology

FINAL P/C - 3

(Cont.)

}

w

Pthread cond signal (semptv); f/
Pthread mutex unlock(&mutex); 7/
printf ("%d\n", tmp);

nn
o

® Producer: only sleeps when buffer is full
® Consumer: only sleeps if buffers are empty

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.87

scarce

COVERING CONDITIONS

®m A condition that covers all cases (conditions):
® Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

= When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

April 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.88

Slides by Wes J. Lloyd

4/28/2020

L9.44

TCSS 422 B — Spring 2020 4/28/2020
School of Engineering and Technology

1 // how many bytes of the heap are free?
2 int bytesLeft = MAX HEAP SIZE;
3
4 // need lock and condition too
5 cond_t c;
[3 mutex t m;
i
8 void *
9 allocate(int size) {
10 Pthread mutex lock(&m);
11 »while (bytesLeft < size) Check available memory
12 Pthread cond wait(sc, &m);
13 void *piri= ...¢ // get mem from heap
14 bytesLeft -= size;
15 Pthread_mutex unlock (&m) ;
le return ptr;
17 }
18
19 void free (void *ptr, int size) {
20 Pthread mutex lock(&m);
21 bytesLeft += size;
23 Pthread mutex_unlock (&m) ;
24 }
a TCSS422: Operating Systems [Spring 2020
April 28,2020 School of Er’:gineerigngyand Te«Eh?onoggy, Un]iversity of Washington - Tacoma L9.89

COVER CONDITIONS - 3

®m Broadcast awakens all blocked threads requesting
memory

®m Each thread evaluates if there’s enough memory:
(bytesLeft < size)

= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory

= Run: requests which can be fulfilled
with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L9.50

April 28, 2020

Slides by Wes J. Lloyd L9.45

TCSS 422 B - Spring 2020 4/28/2020
School of Engineering and Technology

QUESTIONS

WILL RETURN IN A FEW
MINUTES

Slides by Wes J. Lloyd L9.46

