
TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.1Slides by Wes J. Lloyd

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

Locks, 
Lock-Based Data Structures, 

Condition Variables

Wes J. Lloyd
School of Engineering and Technology
University of Washington  - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/23

 C Tutorial (Apr 30 11:59p AOE)

 Assignment 1 (May 7 11:59p AOE)

 Chapter 28: Locks
 Introduction, Lock Granularity

 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter

 Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables
 Producer/Consumer

 Covering Conditions
April 28, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington  - Tacoma
L9.2

OBJECTIVES – 4/28

 Please classify your perspective on material covered in 
today’s class (49 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.21 ( from 7 .32)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.53 ( from 5.63)

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L9.3

MATERIAL / PACE

 Is the pthread_cond_t data type a queue in itself, 
OR does the system maintain a queue behind the scenes 
when an instance of  the type is init ialized? 

 The system maintains a FIFO queue behind the scenes for
each condition variable.

 Any thread that waits on the condition adds itself to the
queue

 When a signal is fired on the condition variable, 
threads are woken up in FIFO order

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L9.4

FEEDBACK FROM 4/23

 Is one instance of  the condition data type required per 
thread requiring access, or is only one instance required 
per crit ical region?

 Only one instance of a condition variable is required 
for each critical region

 Condition variables are associated with a lock variable

 The lock variable protects the critical section

 The condition variable enforces FIFO access
to the critical section

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L9.5

FEEDBACK - 2

 Wait example:

 wait puts thread to sleep, and automatically releases lock
 meanwhile: another thread sets the state variable and signals:

 when awoken, lock is reacquired, state variable passes test,
we can then execute a=a+b !!!

some other code 
in the program

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.6

CONDITION VARIABLE EXAMPLE

State variable set, 
Enables other thread(s) 

to proceed above.



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.2Slides by Wes J. Lloyd

 Are usually associated with a primitive state variable 
(int or Boolean)

 Variable tracks if it is okay to proceed:

** Are preconditions for execution met? **

 Introduced in Chatper 27 (Thread API)

 Covered in depth in Chapter 30

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L9.7

CONDITION VARIABLES

 Questions from 4/23

 C Tutorial (Apr 30 11:59p AOE)

 Assignment 1 (May 7 11:59p AOE)

 Chapter 28: Locks
 Introduction, Lock Granularity

 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter

 Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables
 Producer/Consumer

 Covering Conditions
April 28, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington  - Tacoma
L9.8

OBJECTIVES – 4/28

 Questions from 4/23

 C Tutorial (Apr 30 11:59p AOE)

 Assignment 1 (May 7 11:59p AOE)

 Chapter 28: Locks
 Introduction, Lock Granularity

 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter

 Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables
 Producer/Consumer

 Covering Conditions
April 28, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington  - Tacoma
L9.9

OBJECTIVES – 4/28

 Tuesday May 5th 

 ONLINE via Canvas (for 3 hrs 12:30 – 3:30p)
 Additional hour provided in case of internet issues, etc.
 Open book, note, internet
 Individual work

 Preparation:
 Practice quiz: CPU scheduling (to be posted)
 Auto grading w/ multiple attempts allowed as study aid

 Practice THURSDAY – first hour of lecture
 Series of problems presented with some time to solve
 Will then work through solutions 

 Second hour – new material not on midterm

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L9.10

MIDTERM

CHAPTER 28 –
LOCKS

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L9.11

 Questions from 4/23

 C Tutorial (Apr 30 11:59p AOE)

 Assignment 1 (May 7 11:59p AOE)

 Chapter 28: Locks
 Introduction, Lock Granularity

 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter

 Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables
 Producer/Consumer

 Covering Conditions
April 28, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington  - Tacoma
L9.12

OBJECTIVES – 4/28



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.3Slides by Wes J. Lloyd

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given 

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.13

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked  (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.14

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner 
releases it.

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.15

LOCKS - 3

 Program can have many mutex (lock) variables to 
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data 
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an 

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table, 

row, field

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.16

LOCKS - 4

 Is this code a good example of  “f ine grained parallelism”?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.17

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.18

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.4Slides by Wes J. Lloyd

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from 
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation 

lies someplace along
the trade-off space…

Correctness
 Does the lock work?  

 Are critical sections mutually exclusive?  
(atomic-as a unit?)

 Fairness
 Do all threads that compete for a lock have a fair chance 

of acquiring it?

Overhead

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.20

EVALUATING LOCK IMPLEMENTATIONS

What makes a 
good lock?

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock 
implementation

 Atomic-as a unit exchange instruction 
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.21

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.22

HISTORICAL IMPLEMENTATION

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.23

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.24

DIY: CORRECT?



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.5Slides by Wes J. Lloyd

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.25

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 Hardware support required for working locks
 Book presents pseudo code of C implementation 
 TEST-and-SET adds a simple check to the basic spin lock
 Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1
 Comparison is in the caller

 Can implement the C version (non-atomic) and have some 
success on a single-core VM

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.26

TEST-AND-SET INSTRUCTION

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.27

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks with atomic Test-and-Set: 

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:
 No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting (< 1 time quantum)

 Performance is slow when multiple threads share a CPU

 Especially if “spinning” for long periods 

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.28

SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST, 
before changing its value
 If so, make assignment
 Return value at location

 Adds a comparison to TestAndSet
 Textbook presents C pseudo code
 Assumption is that the compare-and-swap method runs atomically  

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be 

updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

 Shared data structure updates become “wait-free” 
 Upcoming in Chapter 32

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.29

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.30

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.6Slides by Wes J. Lloyd

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L9.31

 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.32

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.33

LL/SC LOCK

 Two instruction lock

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.34

LL/SC LOCK - 2

TCSS 422 WILL RETURN 
AT ~2:40PM

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L9.35

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L9.36



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.7Slides by Wes J. Lloyd

 Questions from 4/23

 C Tutorial (Apr 30 11:59p AOE)

 Assignment 1 (May 7 11:59p AOE)

 Chapter 28: Locks
 Introduction, Lock Granularity

 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter

 Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables
 Producer/Consumer

 Covering Conditions
April 28, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington  - Tacoma
L9.37

OBJECTIVES – 4/28

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.38

LOCK-BASED
CONCURRENT DATA STRUCTURES

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.39

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.40

CONCURRENT COUNTER

 Decrease counter

 Get value

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.41

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.42

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.8Slides by Wes J. Lloyd

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.43

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.44

SLOPPY COUNTER

 Idea of Sloppy Counter is to RELAX the synchronization 
requirement for counting

 Instead of synchronizing global count variable each time:
counter=counter+1
 Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically
reduces locking API overhead by trading-off split-second 
accuracy of the counter

 Sloppy counter: trade-off accuracy for speed
 It’s sloppy because it’s not so accurate (until the end)

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L9.45

SLOPPY COUNTER – MAIN POINTS

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.46

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.47

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.48

SLOPPY COUNTER - EXAMPLE



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.9Slides by Wes J. Lloyd

 Simplification - only basic list operations shown

 Structs and initialization:

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.49

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.50

CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks 

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.51

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.52

CONCURRENT LINKED LIST

 Init and Insert

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.53

CCL – SECOND IMPLEMENTATION

 Lookup

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.54

CCL – SECOND IMPLEMENTATION - 2



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.10Slides by Wes J. Lloyd

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L9.55

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.56

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.57

CONCURRENT QUEUE

 Add to queue

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.58

CONCURRENT QUEUE - 2

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.59

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.60

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.11Slides by Wes J. Lloyd

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.61

CONCURRENT HASH TABLE

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L9.62

 Lock-free data structures in Java

 Java.util.concurrent.atomic package

 Classes:
 AtomicBoolean

 AtomicInteger

 AtomicIntegerArray

 AtomicIntegerFieldUpdater

 AtomicLong

 AtomicLongArray

 AtomicLongFieldUpdater

 AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/
java.base/java/util/concurrent/atomic/package-summary.html

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.63

LOCK-FREE DATA STRUCTURES

CHAPTER 30 –
CONDITION VARIABLES

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L9.64

 Questions from 4/23

 C Tutorial (Apr 30 11:59p AOE)

 Assignment 1 (May 7 11:59p AOE)

 Chapter 28: Locks
 Introduction, Lock Granularity

 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Sloppy Counter

 Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables
 Producer/Consumer

 Covering Conditions
April 28, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington  - Tacoma
L9.65

OBJECTIVES – 4/28

 There are many cases where a thread wants to 
wait for another thread before proceeding with 
execution

Consider when a precondition must be fulfilled 
before it is meaningful to proceed …

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.66

CONDITION VARIABLES



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.12Slides by Wes J. Lloyd

 Support a signaling mechanism to alert 
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or 
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait 
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.67

CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.68

CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to  put waiting threads on a queue… why 
not use a stack?
 Queue (FIFO), Stack (LIFO)

 Using condition variables eliminates busy waiting by putting  threads 
to “sleep” and yielding the CPU.  

 Why do we want to  not busily wait for  the lock to become 
available?

 A program has 10-threads, where 9 threads are waiting.  The 
working thread finishes and broadcasts that the lock is 
available.  What happens next?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.69

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.70

MATRIX GENERATOR

 The main thread, and worker thread (generates matrices) 
share a single matrix pointer.

 What would happen if we don’t use a condition variable to 
coordinate exchange of the lock?

 Let’s try “nosignal.c”

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.71

MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 
is not waiting yet.  

 The s ignal is  lost

 The parent deadlocks

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.72

SUBTLE RACE CONDITION: 
WITHOUT A WHILE



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.13Slides by Wes J. Lloyd

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L9.73

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically 
generated matrices and performs an operation on them 
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.74

PRODUCER / CONSUMER

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.75

PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.76

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer  2. Consumer

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.77

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.78

PRODUCER / CONSUMER - 3

Producer



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.14Slides by Wes J. Lloyd

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it fails 
 How can it be fixed ?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.79

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.80

EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 When producer threads awake, they do not check if there is 
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.81

PRODUCER/CONSUMER 
SYNCHRONIZATION

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.82

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.83

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.84

TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.15Slides by Wes J. Lloyd

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.85

FINAL PRODUCER/CONSUMER

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.86

FINAL P/C - 2

full

(&full);

&full,

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.87

FINAL P/C - 3

 A condition that covers all cases (conditions):
 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:
When a program deals with huge memory 

allocation/deallocation on the heap
 Access to the heap must be managed when memory is 

scarce 

PREVENT: Out of memory:
- queue requests until memory is free

Which thread should be woken up?

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.88

COVERING CONDITIONS

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.89

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting 
memory

 Each thread evaluates if there’s enough memory: 
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute

April 28, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L9.90

COVER CONDITIONS - 3



TCSS 422 B – Spring 2020
School of Engineering and Technology

4/28/2020

L9.16Slides by Wes J. Lloyd

QUESTIONS

WILL RETURN IN A FEW 
MINUTES


